Abstracts - Departamento de Ciencias de la Computación

Simposio Complejidad y Multidisciplina
El Centro de Ciencias de la Complejidad de la UNAM
“On the threshold of complexity”
Richard Levins
Harvard School of Public Health
http://www.hsph.harvard.edu/richard-levins/
Science is poised on the threshold of confronting complexity as the central intellectual
problem of our time. We have been marvelous successful in solving problems at the level of
the laboratory and learning how to catch the idiosyncratic errors with the tools we group as
“the scientific method”. But we have been painfully unsuccessful in confronting the major
converging crises that threaten our species: hunger, using up of resources, persistent racism
and sexism, climate change, pollution, growing inequality, endemic warfare. All of these are
complex problems in the sense that they involve not only many variables but variables from
different disciplines with contradictory interactions. In these areas, we have seen pesticides
increasing pest damage, antibiotics creating new pathogens, hospitals becoming foci of
infection, building of dams creating flood and increasing erosion, international agreements
followed by rising atmospheric CO2. It is not enough to acknowledge error and call for
complexity. We have to study error, especially the shared biases of whole scientific
communities that prevent us from adopting whole system approaches to the problems facing
us. I propose three major sets of obstacles to the full flowering of the complex sciences of the
future: 1. The political economy of science, a knowledge industry producing knowledge as
commodities. A commodity is something made for sale, to make profit. And there is no
necessary relation between the economic value of a commodity and its human impact. The
knowledge industry develops technologies whether they are useful, harmful or irrelevant for
our lives. But since not all knowledge is equally convertible into profitable commodities, the
industry drives the agenda of science. A pesticide is more salable every year to farmers than an
ecological insight about intercropping or encouraging spiders. Heart medicine is more
profitable than slowing the pace of the assembly line. Evaluation of a drug should not look too
far for indirect effects. Thus commodity production favors simplistic reductionism. 2. The
institutional separation of disciplines. Medicine hardly talks to plant pathology. Science still
divides the world into mutually exclusive dichotomies such as physiological/psychological,
genetic/environmental, random/deterministic, biological/social, quantitative/qualitative and
these are studied in different departments or even schools. 3. Reductionist philosophy still
insists that knowing the smallest parts of something is enough to understand the whole, that
the smaller the object the more fundamental, and that something is real if we can measure it.
An alternative dialectical strategy asks where does the rest of the world enter? Why are things
the way they are instead of a little bit different? Very different? How might the prevailing laws
of nature be overthrown? How can we develop the tools to educate our intuition for
complexity?
“Enfermedades por degradación de los sistemas adaptativos complejos”
Manuel Martínez Lavín
Instituto Nacional de Cardiología Ignacio Chávez
La medicina actual está basada en una ciencia lineal y reduccionista. Lineal porque busca una
relación directa entre los síntomas (el efecto) y una lesión en alguna parte del cuerpo o al
menos una alteración en los análisis de laboratorio (la causa). El conocimiento médico es tan
vasto que hay sido artificialmente reducido a especialidades. Este tipo de medicina ha sido muy
eficaz para explicar enfermedades lineales, sin embargo es incapaz de entender un grupo
grande de padecimientos que provocan múltiples síntomas y que hemos denominado
“enfermedades complejas”.
Aproximadamente el 20% de todas las consultas médicas son debidas a estas
enfermedades complejas incomprendidas y por ende maltratadas. Ejemplos; fibromialgia,
síndrome de fatiga crónica y sus manifestaciones localizadas; síndrome témporo-maxilar,
intestino irritado, cistitis no infecciosa y un largo etcétera. Estos padecimientos se traslapan
entre ellos y están relacionados a estrés. Se pueden concebir como resultado de una respuesta
maladaptativa al medio ambiente estresante. Nuestras investigaciones se han enfocado al
estudio de la fibromialgia.
Conceptos derivados de las ciencias de la complejidad tales como sistemas adaptativos
complejos, fractales y holismo científico, ayudan a explicar estas enfermedades complejas.
Nuestro principal sistema de regulación interna y de adaptación al medio ambiente – el sistema
nervioso autónomo- es un sistema adaptativo complejo con finos circuitos realimentadores.
Este sistema autónomo es también el componente principal de respuesta al estrés.
Los órganos más importantes del cuerpo humano tienen estructura fractal. En
situaciones normales, la variabilidad de la frecuencia cardiaca tiene organización fractal ya que
las fluctuaciones son estadísticamente autosimilares en las diferentes escalas de tiempo. La
fractalidad de los ritmos del corazón revela un sistema nervioso autónomo resiliente.
Estudios recientes analizando la fractalidad de los ritmos de corazón proponen que las
pacientes con fibromialgia tienen un sistema autónomo que ha perdido resiliencia y que tiene
un comportamiento más rígido. Esta alteración ofrece una explicación coherente para los
múltiples síntomas de la fibromialgia.
En conclusión: Hay un grupo grande de padecimientos humanos no explicables
mediante paradigmas lineales. Conceptos derivados de las ciencias de la complejidad proveen
un marco teórico coherente para estos padecimientos. Tales enfermedades se pueden concebir
como un intento fallido de nuestro principal sistema adaptativo complejo, para acomodarse a
un medio ambiente hostil. El entendimiento de estos padecimientos demanda en acercamiento
holístico basado en paradigmas complejos.
“Cities as Complex Adaptive Systems”
Luís M. A. Bettencourt
Santa Fe Institute
http://tuvalu.santafe.edu/~bettencourt
@BettencourtLuis
“Models of opinion formation in social networks”
Rafael Ángel Barrio
Instituto de Física, UNAM
We shall present models of opinion formation in social networks based on the concept of
coevolution, which implies the coupling of several dynamic changes in different time scales.
This interplay of the dynamics causes the network to acquire a structure in which small
communities tightly linked are weakly connected with others, as observed in real social
networks. We shall exhibit mobile phone data to compare with our results. We extend the
basic idea to include a dynamical change of the weights of the interactions based on the
opinion divergence, and also to treat the general case in which the personal opinion of the
agents in not publicly known, that is, there is room for information withholding, deception and
lies. Our results show important features known in evolutive psychology.
“Leadership and dominance in two different systems: flock of pigeons and pack of
dogs”
Máté Nagy
Royal Society Newton Fellow
Fulford JRF at Somerville College
Department of Zoology, University of Oxford
http://oxnav.zoo.ox.ac.uk/matenagy
Hierarchical organisation is widespread in societies of humans and other animals. However,
does the “alpha” individual necessarily have the most influence over group decisions? We
measured social dominance and compared it to leadership within the same groups of animals
during collective movement. To uncover general principles, we investigated two different
systems: a flock of pigeons and a pack of dogs. The animals’ movement paths were recorded
by high-resolution GPS loggers; for pigeons in flight and for dogs in a free running situation.
Leader-follower events were detected by correlation-based method when one’s direction of
motion was “copied” by another individual delayed in time. Collectively feeding pigeons were
filmed and trajectories were extracted by autonomous computer-vision-based tracking. From
the recorded paths the aggression-based social interactions (retreating, access to food) were
automatically detected by novel quantitative analysis. The “automated methods” results were
verified by a “pecking order” obtained from computer-aided manual identification of social
interactions. In the case of dogs, data on dominance and behavioural variables were collected
from questionnaires filled out by the owner and gained from ethological tests. For both
pigeons and dogs, the dominance structures were compared with various physical parameters
and with the same animals’ respective leadership roles during collective motion. For pigeons
we found that birds’ ranks varied widely between the dominance and leadership contexts. The
dogs' positions in the network correlated with the age, dominance rank order, trainability,
controllability and aggression derived from personality questionnaires. This confirms that in
societies with robust hierarchical dominance, alternative hierarchies may or may not exist
during decision making.
“Complexity, Computation, and Philosophy”
Carlos Gershenson
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM
http://turing.iimas.unam.mx/~cgg/
@cgershen @cgg_mx
The scientific study of complex systems has become possible because of computers. Our
brains or previous tools cannot manipulate too many variables and interactions as computers
can. Thus, computers have been similar to microscopes and telescopes, allowing us to explore
complex phenomena. Historically, scientific advances have had implications in philosophy,
since both are interested in understanding our world. The novel insights provided by
complexity and computation require a philosophical reaction. In particular, I will argue that
considering interactions (the essence of complex systems) as real as matter and energy implies
the obsolescence of reductionism, materialism, predictability, Platonism, and nihilism.
Alternatives for each of these will be suggested.
Gershenson, C. (2013). The implications of interactions for science and philosophy.
Foundations of Science, Early View. http://dx.doi.org/10.1007/s10699-012-9305-8
“Controlling the Behavior of Complex Networks”
Adilson E. Motter
Northwestern University, Evanston, USA
http://dyn.phys.northwestern.edu
Genetic diseases, ecosystem collapses, cascading failures, network synchronization, materials
design. These are some of the many outstanding interdisciplinary problems that could benefit
from a predictive modeling approach to control the perturbation response of
complex networks. A fundamental property of networks is that perturbations to one node can
affect other nodes, potentially
causing the entire system to change behavior or fail. In this talk I will
show that it is possible to exploit the same principle to control network behavior. The main
obstacle to the development of
such an approach has been that it is generally unclear how the large-scale collective behavior is
affected by the local properties of the underlying interactions. I will discuss an approach
recently developed in my research group, which is based on inverting this perspective and
seeking instead the conditions that should be imposed on the local network structure and/or
dynamics to generate a desired (natural or human-selected) global collective behavior. This
approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the
system to a desired state even when this state is not directly accessible due to constraints that
limit the allowed interventions. I will discuss applications to processes as
diverse as cascade control, network reprogramming, network rescue, and transient stability in
genetic, ecological, mechanical, and power-grid networks.
“Bioética y Complejidad”
León Olivé
Instituto de Investigaciones Filosóficas, UNAM
Se hará una caracterización poco ortodoxa de la bioética como el análisis y crítica de las
prácticas sociales humanas que tienen que ver con el fenómeno de la vida en el planeta. Esto
abarca desde las prácticas biomédicas y en general las que están relacionadas con la salud, a las
agrícolas y a las que afectan al medio ambiente. Enseguida se caracterizarán las prácticas
sociales, haciendo énfasis en su estructura, incluyendo su estructura axiológica, y se subrayará
que toda práctica social está inserta en un medio, al cual afecta y es afectada por ese medio.
Entonces, la relación entre las prácticas y el medio, así como la forma en que se afectan entre
sí, es compleja, como los son todas las prácticas y los medios en los cuales se desarrollan. Se
concluirá con una breve discusión de algunas prácticas de salud, agrícolas, y de algunas que
afectan al medio ambiente.
“Integration of Economics and Transport Geography into the Network Science”
Igor Lugo
Centro Regional de Investigaciones Multidisciplinarias, UNAM
https://sites.google.com/site/igorlugoolmos/
Network science is increasingly important to connect theories, models, and techniques among
scientific perspectives. However, economics and transport geography have been developed in
autonomous manner because of reductionism. The aim of this presentation is to show the
integration of such perspectives into network theory, which is used as a main framework,
connecting explicitly urban and transport studies. The result suggests a multidisciplinary
approach to enhance our understanding of spatial phenomena.
"Using Robots to Understand Complex Systems"
Joshua C. Bongard
Director of the Morphology, Evolution and Cognition Laboratory
Vice-Chair of the Vermont Complex Systems Center
Associate Professor in the Department of Computer Science
University of Vermont
http://www.cs.uvm.edu/~jbongard/
@DoctorJosh
This talk will have three parts. In the first part of the talk I will discuss the history and current
state of the University of Vermont's Complex Systems Center. In the second part of the talk I
will discuss my own research program, in which we use robots to understand and build
complex systems. In the third and final part of my talk I will describe my group's recent efforts
to create an educational tool that allows people of all ages and from all countries to collectively
perform their own robotics experiments.
http://www.uvm.edu/~ludobots/
“De las redes genéticas a la formación de patrones en los seres vivos: patrones florales,
células troncales y cáncer”
Elena Álvarez-Buylla
Instituto de Ecología, UNAM
http://www.ecologia.unam.mx/ie/academicos/alvarez/alvarez_contacto.htm
@eabuylla
Se presentan modelos que permiten integrar gran cantidad de información genética y no
genética subyacente a la diferenciación celular y formación de patrones en los sistemas vivos.
Para analizar dinámicamente cómo la acción concertada de todos estos componentes
interactuantes puede subyacer tras los patrones morfogenéticos normales y alterados hemos
usado modelos de redes. Se explica cómo se construyen y validan experimentalmente estos
modelos, y también cómo son útiles para plantear predicciones novedosas. Se ejemplifica este
enfoque de biología de sistemas con ejemplos de desarrollo vegetal, y también del
funcionamiento de los nichos de células troncales. Se discute finalmente cómo este tipo de
modelos y enfoques pueden ayudar a entender la emergencia de crecimientos tumorales.
“Evolutionary and Developmental Restrictions to Infinite Biological Complexity”
Diego Rasskin-Gutman
Theoretical Biology Research Group
Institute Cavanilles for Biodiversity and Evolutionary Biology
University of Valencia, Spain
http://www.uv.es/biodiver/c/inve/grup_bio_teor.htm
Biodiversity is the mark of our blue planet. Millions of different species co-exist on Earth
while many more have gone extinct in the past three billion years. Comparing the beaks of
birds, the petals of flowers, or the bodies of fishes makes us wonder if there are no limits to
what nature can produce through evolution. Indeed, Darwin himself defined this wonder by
ending The Origin of Species with one of the most elegant phrases in the history of scientific
writing: "…from so simple a beginning endless forms most beautiful and most wonderful have
been, and are being, evolved.“ Darwin expressed his sense of wonder by contrasting the word
“simple” with the words “beautiful” and “wonderful,” implying that evolution had proceeded
toward more complex forms. Ever since, authors have looked into the problem of
evolutionary speciation encountering and creating fields of scientific inquiry to address
questions still unsolved. What is biological complexity? Is there a complexity arrow in
evolution? How complex is complexity? Can species evolve “endlessly” towards any kind of
complexity? These questions help to put in perspective one of the most important issues in
contemporary biology: What are the limits to biological evolution?
"Unmasking the interaction between influenza and bacterial pneumonia"
Pejman Rohani
University of Michigan
http://vserver1.cscs.lsa.umich.edu/~rohani/
The association between influenza infection and bacterial pneumonia has been mooted for
more than two centuries. This has been proposed as a polymicrobial system, whereby
transmission and pathogenicity of one pathogen (the bacterium) are affected by interactions
with the other (the virus). However, studies focusing on different scales of resolution have
painted an inconsistent picture: Individual-scale animal experiments have unequivocally
demonstrated an association, whereas epidemiological support in human populations is, at
best, inconclusive. We integrate weekly incidence reports and a mechanistic transmission
model within a likelihood-based inference framework to characterize the nature, timing, and
magnitude of this interaction. We find support for a strong but short-lived interaction, with
influenza infection increasing susceptibility to pneumococcal pneumonia ~100-fold. We infer
modest population-level impacts arising from strong processes at the level of an individual,
thereby resolving the dichotomy in seemingly inconsistent observations across scales. An
accurate characterization of the influenza-pneumococcal interaction can form a basis for more
effective clinical care and public health measures for pneumococcal pneumonia.
“Climate policy: Cooperation dynamics in an uncertain world”
Francisco C. Santos*
joint work with Jorge M. Pacheco and Vítor V. Vasconcelos
* Instituto Superior Técnico, INESC-ID & ATP-group, Universidade de Lisboa, Portugal
http://web.ist.utl.pt/franciscocsantos/
http://www.ciul.ul.pt/~ATP/
The welfare of our planet stands as a perfect example of what scientists commonly refer to as
public goods — a global good from which everyone profits, whether or not they contribute to
maintain it. Indeed, reducing the effects of global warming has been described as one of the
greatest public goods problems (or “games”) we humans face, and the one we cannot afford to
lose. Unfortunately, individuals, regions or nations may opt to be “free riders”, hoping to
benefit from the efforts of others while choosing not to make any effort themselves.
Cooperation problems faced by humans often share this setting, in which the immediate
advantage of free riding drives the population into the “tragedy of the commons”, the ultimate
limit of widespread defection. Moreover, nations and their leaders seek a collective goal that is
shadowed by the uncertainty of its achievement. In this talk, I will discuss an evolutionary
dynamics approach to a broad class of cooperation problems in which attempting to minimize
future losses turns the risk of failure into a central issue in individual decisions. Our results
suggest that global coordination for a common good should be attempted by segmenting tasks
in many small to medium sized groups in which perception of risk is high and achievement of
goals involves stringent requirements (whose meaning I will make precise). Moreover,
whenever the perception of risk is low — as it is presently the case — we find that a
polycentric approach involving multiple institutions is more effective than that associated with
a single, global one, indicating that a bottom-up approach, setup at a local scale, provides a
better ground on which to attempt a solution for such a complex and global dilemma. Finally,
we show that, if one takes into consideration that individuals are interwoven in complex
political networks, the chances for global coordination in an overall cooperating state are
further enhanced
“Diseño basado en sistemas complejos”
Liliana B. Sosa Compeán.
Universidad Autónoma de Nuevo León.
El urbanismo, la arquitectura y el diseño industrial, tienen en común la actividad de diseñar en
su quehacer. Diseñar es conjugar información de manera particular, conteniéndola en
entidades, sistemas o conceptos de diversa índole, orientados hacia un fin. Esta disciplina se ha
transformado a la par de los cambios en las dinámicas sociales y adelantos tecnológicos. En el
contexto actual, surgen proyectos de diseño en donde se funden conocimientos de distintas
disciplinas y toma auge la multifuncionalidad, autonomía, adaptabilidad y personalización de
los objetos, edificios y espacios públicos. Para enfrentar los retos que esto implica, es
indispensable identificar al objeto de diseño desde el enfoque de la complejidad para poder dar
soluciones a problemas en contextos complejos y cambiantes.
La naturaleza organizada en sistemas complejos adaptativos ha desarrollado diseños y
estrategias de supervivencia increíblemente eficaces, por lo que un modelo de diseño basado
en las dinámicas, patrones y procesos que estos sistemas comportan, nos puede dar las pautas
para diseñar de una manera eficiente y efectiva los objetos que repliquen estas propiedades,
tales como ciudades o matrices sociales; robots y sistemas inteligentes, hasta objetos de
materiales vivos.
“FUTURICT: Global computing for aour complex connected word”
Anna Carbone
Politecnico di Torino & Institute for Complex Systems of the National Research Concil,
Università ‘La Sapienza di Roma’ & ETH Zurich
http://www.polito.it/noiselab
@AnnaFCarbone
FuturICT (www.futurict.eu) is a visionary project that will deliver new science and technology
to explore, understand and manage our connected world. This will inspire new information
and communication technologies (ICT) that are socially adaptive and socially interactive,
supporting collective awareness.
Our increasingly dense interconnected world poses every day new challenges that need to be
approached in several dimensions, at different temporal and spatial scales. In particular, given
the scope and scale of the world's future Internet of everything, new technologies with the
lowest energetic impact, unconventional computational schemes, novel phenomena and
paradigm should be figure out for understanding and managing such increasing complexity
Revealing the hidden laws and processes underlying our complex, global, socially interactive
systems constitutes one of the most pressing scientific challenges of the 21st Century.
Integrating complexity science with ICT and the social sciences, will allow us to design novel
robust, trustworthy and adaptive technologies based on socially inspired paradigms. Data from
a variety of sources will help us to develop models of techno-socioeconomic systems. In turn,
insights from these models will inspire a new generation of socially adaptive, self-organised
ICT systems. This will create a paradigm shift and facilitate a symbiotic co-evolution of ICT
and society.