関野 徹 Tohru SEKINO 教授 Professor 大阪大学 産業科学研究所 The Institute of Scientific and Industrial Research, Osaka University 先端ハード材料研究分野 Department of Advanced Hard Materials LAST UPDATE : 2015/01/30 構造機能共生型材料 セラミックス基材料 低次元ナノマテリアル 構造-機能チューニング Multifunctional Materials Design and Creation Ceramics and Composites Low-dimensional Nanostructured Materials Structure-Function Tuning 次元構造制御による先端材料への高次機能集約 Multi-functionalization of Advanced Materials through Dimensional Structure Design and Control 高度に発展した私たちの社会は多様な材料によって支えられています。一方で地球環境やエネルギー、加速する高齢化社会など解決すべき 様々な問題も生じています。この様な課題を解決し、快適で住みやすい環境と持続的社会を実現するために材料に求められることは、簡便で 低環境負荷なプロセスで作製できると共に、それ自体がデバイスの様に機能できること、すなわち、多彩な機能をひとつの材料に集約した「機 能共生型マテリアル」の創製と実用化が必要となります。 Highly developed our society is supported by a wide variety of materials. On the other hand, there are various problems to be solved such as environment, energy, accelerated aging society and so on. To solve them and to realize the sustainable and environmentally comfortable society, we believe that creation of novel materials, which can work like as a device, is an important key through simple and low environmental impact processes. Thus, the creation and practical application of "multifunctional material" in which various functions are coexisting synergistically in one material is strongly required. セラミックスや金属などを中心とした材料のナノからマクロまでの構造設計・制御および融合をキーテクノロジーとして、機能集積型のバル クセラミックス材料や低次元半導体酸化物ナノマテリアルの創製を行い、これら構造や基礎物性・特性評価および機構解明を通じて、新規な 構造特性や機能特性を有する先端機能性構造材料の研究開発を行っています。これらを通し、今日の社会が抱える課題解決に資する次世代型 基盤材料の創出とその応用を指向しています。 Based on the design, control and fusion of materials nano to macroscopic structures for ceramics and metals, we are focusing on fabrication of functional coexistence ceramic-based materials, low-dimensional oxide semiconductor nanostructured materials and so on, and investigating their detailed structures, fundamental properties, functions analysis and mechanisms. Through these researches, we are aiming to create advanced next-generation functional structure materials to solve various problems in our society. Fig.1. CNT-dispersed zirconia ceramic nanocomposites and their electrical conductivity having very low percolation volume due to CNT’s 1D characteristics. Fig.2. Electrical conductivity of Fe-doped SnO2-TiO2 binary ceramics and the self-organized spinodal phase separation with nano-scale lamella structure. Fig.3. Excellent H2 evolution (water splitting) photocatalytic performance by UV light for Pd nanoparticles immobilized titania (TiO2) nanotubes (TNTs). <総説>まてりあ, 53(11), 546(2014). J. Ceram. Soc. Japan, 120, 307(2012)., Res. Chem. Intermed., 39, 1581(2013)., ACS Appl. Mater. Inter., 6, 2759(2014). Mater. Lett., 142, 7(2015). [email protected] http://www.sanken.osaka-u.ac.jp/labs/mmp/
© Copyright 2024 ExpyDoc