ASIAA/CCMS/IAMS/LeCosPA/NTU-Phys Joint Colloquia 2015.4.28 Probing Membrane Lipids: a Perspective from Solid-State NMR Study Michio Murata 村田道雄 大阪大学大学院理学研究科 JST ERATO脂質活性構造プロジェクト 1 Biomembrane comprise diverse lipids and proteins and form complex structures without proteins 2 Contents I Model Membrane of Lipid Rafts Sphingomyelin and Cholesterol Binary System II Domain Formation in Membrane Sphingomyelin and Phosphatidylcholine System III Raman Imaging of Raft Model Membrane Development of new Raman Tagged Sphingomyelin 3 Approaches towards membrane lipids with variable time and spacious scales Our objective: Elucidation of the molecular basis of lipid raft formation biomembrane Solid state NMR (2H NMR, REDOR) Molecular level 10 μs – 10 ms time scale Raman Imaging Ternary system Unary and binary systems Macroscopic membrane Fluorescent lifetime Molecular level several ns time scale Artificial lipid membranes Cho SM Lipid behavior in various membranes (mobility and intermolecular interaction) 3 Lipid rafts GPI-anchored protein Glycosphingolipid Sphingomyelin (SM, SSM) Cholesterol (Cho) Transmembrane protein ・Resistance to solubilization with Triton X-100 (DRM) ・Ordered lipids (Lo phase) undergoes domain formation ・Implication in many cellular processes (signal transduction etc.) Molecular basis of lipid raft formation 1) Simons,K.; Ikonen,E. Nature, 1997, 387, 569-572. 2) Pike, L. J. J. Lipid Res. 2006, 47, 1597-1598. ? 5 How can we elucidate the conformatoin and interactions of lipids in membrane? Lipid-lipid & lipid-protein interaction in membrane Drug-membrane interaction Elucidation of 3D structures and interactions of lipids in membrane is essential But… Lipid bilayer membranes Difficulties in structure elucidation × X-ray Crystallography △ Solution NMR Solid state NMR works in such weird systems ? 6 Micelles vs Bicelles for membrane mimic Micelles Detergent Sterol ・Many examples ・High curvature Bicelles Phospholipid Detergent ・Bilayer-like structure ・Strick conditions; temp. & conc. 7 Ordering of SM-d2 bound in Cho-containing large bicelles B0 B0 33.6 kHz 35.3 kHz + Chol 10’-d2-SM/DHPC(4/1) 10’-d2-SM/DHPC/Chol (4/1/0.4) 10% Cho siginificantly ehnaces the ordering of SM bicelle membranes 8 Size-dependent orientation of bicelles along magnetic field O O N O O P O O O O DHPC (short chained FA) Stearoyl SM (major constituent) Small Bicelles ・ Planar bilayer structure ・Non-orientation along B0 q > 2.0 q < 2.0 q = [SSM] / [DHPC] High mobility of small bicelles enables high resolution NMR spectra even for 1H nucleus. 9 1H 5 4 NMR NOESY of bicelles under MAS a 1,3 b 2 g 2’ 6 SM liposome SM/DHPC (1/2) bicelle a MAS: 5 kHz, Mixing time: 30 ms, Temp.:37 ºC 10 Conformation of SM head group deduced from NOEs and J coupling in small bicelles NOEs are similar between the Cho-containing and Cho-free bicelles Conformation of SM is similar between pure SM and SM-Cho 11 Yamaguchi, T. Suzuki, T., Yasuda, T. Oishi,T., Matsumori, N., Murata, M. Bioorg. Med. Chem. 20, 270-278 (2012). How REDOR works I ⊿S/S 0 1.0 15N 0 0 4 8 12 16 NCTr (ms) 20 Synchronous irradiation to magic angle spinning S0 15N r 13C d - S DS = 13C 15N-non- 15N-irradiated REDOR Decay irradiated Accuracy is <0.1 Angstrom ! T. Gullion, J. Schaefer, J. Magn. Reson., 1989, 13, 57 *REDOR data; A. Naito, et al., J. Phys. Chem. 1996, 100, 14995 12 How REDOR works II MAS (Magic Angle Spinning): S0 Magnetic field Strength Dipole Coupling gI gS h m0 D= 16 3 r3 Integration = 0 15N DS 1 2 1 [ J 0 ( 2nt r D )] 2 [ J k ( 2nt r D )]2 2 S0 k 1 16k 1 REDOR: S 13Magnetic 31 field ⊿S/S 0 Cが Pから Strength 受ける磁場 N 2 1.0 S 4 2 S 3 B0 Magic Angle N N 1 O S S 13 C r 180 180° パルス Pulse 4 N 1 1 3 Tr Integration > 0 t 0 0 4 8 12 16 NCTr (ms) 20 Jn: Vessel Function, ntr: REDOR dephasing time gI: Gyromagnetic Ratio of I nucleus. gS: That of S nucleus h: Plank const., m0: Permeability of Vacuum Gullion, T. et al. Adv. Magn. Reson. 13, 57 (1989); Gullion, T. et al. J. Magn. Reson. 89, 479 (1990). 13 13C{15N}REDOR DC N used for evaluation of mobility and orientation 3 cos 2 q 1 D0 Smol 2 Wobbling Smol Dipole coupling of rapidly moving mol. depends on Mol. axis angle q Wobbling Smol θ 14 REDOR data for 13C-15N-labeled SM in SM/Chol and SM only membranes Mol. axis Wobbling S θ DC-N=265 Hz 13C 15N DC-N=150 Hz C1’ 1’-13C,2-15N-SM (D0=1302 Hz) SM/Cho: DC-N=265 Hz SM only: DC-N=158 Hz Non-irr. S0 Irradiated S 1’-13C,2-15N-SM/Chol (1/1) 50 % wt D2O MAS 5 kHz, Temp. 45˚C, Scan 2896, t 4.0 ms 1) Gullion, T et al. Adv. Magn. Reson. 1989, 13, 57-83. 15 REDOR reveals Smol and orientation for amide bond Not only conformation but orientation is not affected by Cho. Difference is in mobility C1’ / 15N C2’ / 15N C1 / 15N C2 / 15N C3 / 15N 1302 232 233 1073 229 DC-N SM/Chol 265 12 63 82 33 DC-N SM only 158 2 69 55 48 D0 (Hz) DC N θ 3 cos 2 q 1 D0 Smol 2 Major conformer in SM-Chol: Smol: 0.94, (a, b) = 166o, 32o Major conformer in SM only : Smol: 0.70, (a, b) = 158o, 35o 16 Cho ordering effect and orientation lead to intermolecular H-bonds ● H-bonding Formation Lo domain (raft-like) SM/Chol Disruption 17 Motion capture of alkyl chains of membrane lipid by 2H NMR Quadrupolar Compling Small Δνmax 63.8 kHz Rotation axis Dν Mobility Large Molecular motion capture Perdeutero-acyl chain Palmitoyl-sphingomyelin (PSM) Library of site-specifically 2H-labeled SM 6 Synthesis of 2H-labeled fatty acids 19 Synthesis of 2H-labeled SM 20 Depth-dependent order of SM by 2H NMR 60 大 Q splitting Dn (kHz) Mobility 小 Raft (SM/Chol =1/1) 45℃ 60 50 50 40 40 30 30 20 Non-Raft (100% SM) 20 10 10 0 0 1 2 3 4 5 6 7 8 9 101112131415161718 10 12 14 16 18 carbon number <Sphingosin chain> Raft (SM/Chol =1/1) 45℃ Non-Raft (100% SM) 1 2’ 2 33’ 44’ 5 6’ 6 7 88’ 9 10 14 15 16 10’11 12 12’13 14’ 16’17 18’ carbon number <Acy chain> Cho cyclic core Both alkyl chains interact with Cho similarly. Matsumori, N.; Yasuda, T. et al. Biochemistry 2012, 51, 8363-8370. 21 Contents I Model Membrane of Lipid Rafts Sphingomyelin and Cholesterol Binary System II Domain Formation in Membrane Sphingomyelin and Phosphatidylcholine System III Raman Imaging of Raft Model Membrane Development of new Raman Tagged Sphingomyelin 22 Comparison between SM and PC Both SM and saturaed PC are known to form Lo domains SM PSPC What is the difference between SM and PC in formation of Lo domains. Systematic comparison between SM and saturated PC Space : Atomic ~ Molecular ~Entire membrane Time : nanosecond ~ millisecond Lipid constituents : Unary system ~ Ternary system The structure properties make SM preferentially form lipid rafts 23 Comparison of chain mobility between SM and PSPC 60 大 Q splitting Dn (kHz) Mobility 小 60 Raft (SM/Chol =1/1) 50 ℃ 50 50 40 40 30 30 Non-Raft (100% SM) 20 20 10 10 0 0 1 2’ 2 3’ 3 44’ 5 6’ 6 7 8’ 8 9 10’ 10 11 12 16 17 18’ 12’13 14 14’15 16’ carbon number < SM-Chol> <SM acyl chain> Raft (PC/Chol =1/1) 50 ℃ Non-Raft (100% PC) 1 2 3 4 2’ 3’ 4’ 5 6 6’ 7 8 8’ carbon number 9 10 11 12 13 14 15 16 17 18 10’ 12’ 14’ 16’ 18’ <PSPC acyl chain> <PSPC-Chol> The rigid tetracycle of Cho is located more deeply in SM membrane Probably due to hydrogen bond network by amide groups of SMs 24 1) Matsumori, N.; Yasuda, T. et al. Biochemistry 2012, 51, 8363-8370. 2) Yasuda, T. et al. Biophys. J. 2014, 106, 631-638. Temperature dependent ordering of SM and PC at low Cho concentration 60 60 55 50 45 ● 10’,10’-d2-SM - Cho ● 10’,10’-d2-PSPC - Cho 40 35 15 20 25 30 35 40 45 Temperature (℃) 33 mol% Cho Q splitting Dn (kHz) Q splitting Dn (kHz) 20 mol% Cho 50 55 55 50 45 ● 10’,10’-d2-SM - Cho ● 10’,10’-d2-PSPC - Cho 40 35 15 20 25 30 35 40 45 Temperature (℃) 50 55 SM-Cho membrane is more tolerant to temperature change than PC-Cho membrane. (Lesser temperature dependence) Higher thermal stability SM intermolecular H-bond (membrane surface) + Cho ordering effect (membrane interior) Yasuda, T. et al. Biophys. J. 2014, 106, 631-638. 25 Evaluation of membrane fluidity in nanosecond time domain -Fluorescent lifetime experiment Fluorescent lifetime τ The average time that fluorophore remains in the excited state (ns) Dependence on lipid phase state Gel phase Lo phase Ld phase Intensity [Counts] 104 Example :SSM+33 mol% Cho 30 ℃ 103 Measuring data 102 101 100 0 40 80 120 160 200 240 280 320 360 400 time [ns] Fluidity Low Lifetime Long High Short ※ Deconvolution by two lifetime components 𝑛 α𝑖 exp −𝑡/τ𝑖 I (t) = 𝑖=1 = α1exp (-t/τ1) + α2exp (-t/τ2) trans parinaric acid (tPA) λex = 295 nm, λem = 405 nm 2 mol% of total lipids τ1 , τ2 … lifetime of each component α1 , α2 … fractional amplitudes of each component 26 Membrane fluidity on nanosecond time scale SM/33 mol% Cho lifetime τ (ns) 70 The fluidity of phase state : Gel < Lo < Ld Lo + Ld Cho-poor gel-like + Lo 60 No gel phase exists above Tm. 50 40 30 Over Tm (> 45 ℃) Lo domain Ld domain Under Tm (< 45 ℃) Cho-poor gel-like domain Lo domain 20 10 0 15 20 25 30 35 40 45 50 55 Temperature (℃) τ1 ● ● Longer lifetime → Lower fluid domain τ2 ● ● Shorter lifetime → Higher fluid domain Gel phase Membrane heterogeneity NMR cannot detect the coexistence of domains. Lipid cluster with short lifetime Low concentration of Cho → Similar behavior with gel phase 27 Hypothetical model for interconversion of nano-domains Below Tm (< 20 ℃) Gel-like domain Lo domain Gel-like domain Lo domain Gel-like domain Lo domain ~100 ns 1) Above Tm (> 49 ℃) Ld domain Lo domain 1) Chachaty, C. et al. Biophys. J. 2005, 88, 4032-4044. Ld domain Lo domain Ld domain Lo domain 30 Difference in dynamic behavior between SM and PC in Cho-containing binary systems PSPC SM 2H NMR Lipid mobility at atomic level Fluorescent lifetime Membrane fluidity in nanosecond time domain Present Hydrogen bond network Absent Deeper Location of Cho Shallower Temperature dependence of lipid ordering Larger Smaller Lo domain-forming ability Lower Higher These data suggest that SM-SM H-bonding plays major roles rather than Coexistence of cho-poor clusters with short lifetime SM-Cho interaction. 29 Can SM form macroscopic domains without Cho? SM: Sphingomyelin (C18) DHSM: Dihydrosphingomyelin (C18) a) eSM a) SM c) DHSM b) DHSM vs b)・Major tSMSM in human ・Raft model lipid d) tripleSM ・Relatively abundant SM homologues ・Form more stable Lo domains than SM DOPC: Unsaturated PC, a typical Ld lipid in the presence of SM and Cho Kinoshita, M., Goretta, S., Tsuchikawa, H., Matsumori, N., Murata, M., Biophysics 9, 37-49 (2013). 30 DHSM forms macroscopic domains without Cho DHSM SM Temp (℃) Temp (℃) Uniform Uniform Phase separated Phase separated Mol. Ratio of DOPC Mol. Ratio of DOPC DHSM-rich DHSM DOPC-rich H-bond Pure +DOPC Mixted Separated Mixed again Kinoshita, M., Matsumori, N., Murata, M. Biochim. Biophys. Acta 1838, 1372-1381 (2014). 31 Approaches towards Membrane Lipids with Variable Time and Spacious Scales Elucidation of the molecular basis of lipid rafts formation biomembrane 2H solid state NMR (2H NMR) Molecular level 10-1000 μs time scale Raman Imaging Entire membrane level Ternary system Fluorescent lifetime Several ns time scale Unary and binary systems Artificial lipid membranes SM DOPC Cho 34 Domain separation of ternary SM/Cho/DOPC as observed by microscope and 2H NMR Solid state 2H NMR Fluorescence microscope GUV Sample : SM/Cho/DOPC (1/1/1) + 0.2 mol% Bodipy- PC (λex = 488 nm) T : 30 ℃ 10’,10’-d2-SM 51.5 kHz 30 ℃ 36.0 kHz Ld-specific fluorescent dye SM rich ラフト相 (Lo 相) DOPC rich 液晶相 (Ld 相) GUV of SM/Cho/DOPC (1/1/1) 10’,10‘-d2-SM/Cho/DOPC (1/1/1) の2H NMRスペクトル Two pairs of doublets 33 Fractional abundance of Ternary SM/Cho/DOPC system as revealed by 2H NMR Lo Domain Ld非ラフト相 Domain 34 Depth-dependent order of Lo and Ld domains in SM-Cho-DOPC system Lo domains of ternaryCarbon and number binary systems showed similar ordering ↓ Occurrence SM-only domains evenN. in ternary systems Yasuda,of T., Kinoshita, M., Murata, M., Matsumori, Biophys. J. 106, 631-638 (2014). 35 Contents I Model Membrane of Lipid Rafts Sphingomyelin and Cholesterol Binary System II Domain Formation in Membrane Sphingomyelin and Phosphatidylcholine PhosphatidylChoine System III Raman Imaging of Raft Model Membrane Development of new Raman Tagged Sphingomyelin 36 Labelled lipids for fluorescence spectroscopy do not reproduce original lipids due to balky substituents Fluorescence Imaging Raman Imaging Small Raman tag 37 Small Raman tags of SM for imaging O R O OH O P O HN O R: N D3C HO N N SM alkyne-SM (1) diyne-SM (2) D3C N CD3 SM-d9 (3) Goretta, S. A., Kinoshita, M., Mori, S., Tsuchikawa, H., Matsumori,N., Murata, M. Bioorg. Med. Chem. 2012, 20, 4012-4019. 38 Diyne moiety shows strong intensity in background-free area Triple bond Diyne Deuterated Cui, J., Lethu, S., Yasuda, T., Matsuoka, S., Matsumori, N., Sato, F., Murata, M. Bioorg. Med. Chem. Lett. 25, 203-206 (2015). 39 Diyne SM shows similar behavior to original lipid on 2H NMR d-Cho d2-SM vs Diyne-d2-SM 2H NMR Spectra DOPC SM SM Diyne-SM (a)d-Cho/DOPC (1/1 mol), (b)SM/d-Cho/DOPC (1/1/1 mol), and (c)diyne SM/d-Cho/DOPC (1/1/1 mol) at 25 oC. Diyne-SM (a)d2-SM/DOPC/Cho (1/1/1 mol), and (b) d2-diyne SM/DOPC/Cho (1/1/1 mol) at 25 oC. Cui, J., Lethu, S., Yasuda, T., Matsuoka, S., Matsumori, N., Sato, F., Murata, M. Bioorg. Med. Chem. Lett. 25, 203-206 (2015). 40 Diyne probe mimics SM in Lo domains on supported monolayer 10mm = Bodipy-PC ジイン-SM Quartz-supported monolayer Diyne-SM/Cho/DOPC (1/1/1 mol) 41 Concentration graduation of SM revealed by Raman imaging Raman Image of diyne-SM 0 Monolayer of diyne-SM/DOPC/Cho (1:1:1) 2 4 mm 42 Summary Site-selective 2H labeling precisely discloses depthdependent mobility of alkyl chains of SM and PC in Lo and Ld membranes Intermolecular hydrogen-bonds play a key role in SM-SM interaction, which may lead to formation of raft-like Lo domains. Nano-domains largely consisting of SM can be formed in the presence or absence of Cho. Formation mechanism of SM/Cho-rich rafts in biological membranes 43 Hypothetical nano-sized cluster of SM A B C1 C2 44 大阪大学理学研究科 化学専攻 JST ERATO, 理研 (九州大学教授) Dr. Sodeoka Å bo Akademi Univ. (Finland) Prof. Matsumori Prof. Slotte Dr. Yasuda Dr. Jin Cui Dr. Yamaguchi 45 Thank you for your attention 46 Osaka is the 2nd largest city in Japan. Our Campus 47 Stat. of Osaka University Graduate schools: 20 Faculty members : 2600 Undergraduate students: 12000 Graduate students: 7800 (including 1000 foreign students) The largest national university in Japan in terms of the number of undergraduate students. 48 OF OSAKA UNIV. 49 SM-Cho interaction results in stable SM-SM hydrogen bond formation while SM-Cho affinity is not high Hydrogen Bond Lo phase association (raft model) SM/Cho dissociation Ld phase (non-raft) SM 100% 50 Lo domain-forming ability in SM and PSPC memb. 70 SM 60 lifetime τ (ns) lifetime τ (ns) 70 50 40 30 20 PSPC 60 50 40 30 Lo domain 20 Lo domain 10 10 15 20 25 30 Temperature (℃) 35 40 15 ▲ SSM (Gel phase) ● SSM-33 mol%Cho Cho-poor gel-like domain 25 30 35 Temperature (℃) Lo domain 45 ・ ・ > ・ 40 ▲ PSPC (Gel phase) ● PSPC-33 mol%Cho Cho-poor gel-like domain The affinity with Cho ・ Cho-poor gel-like domain 20 Gel phase Cho-poor gel-like domain SM has a higher Lo domain-forming ability. 51 Temperature dependence of mean lifetime in SM and PSPC membrane containing Chol Mean lifetime : the weighted average of fluidity in the bilayer on nanosecond time domain 60 60 50 50 Mean lifetime (ns) Mean lifetime (ns) 20 mol% Chol 40 30 20 ● SSM-Chol ● PSPC-Chol 10 0 15 20 25 33 mol% Chol 40 30 20 ● SSM-Chol ● PSPC-Chol 10 0 30 35 40 45 Temperature (℃) 50 55 15 20 25 30 35 40 45 50 55 Temperature (℃) Similar behavior to the data from 2H NMR The decreasing degree of lifetime in SM membrane is smaller with increasing temperature. The local mobility of acyl chain in phospholipids is closely correlated to the entire membrane order. 52 ERATO脂質活性構造プロジェクト 本研究の3つの目標 膜タンパク質周辺脂質 (around protein) 3つグループで協力 固体NMR, 結晶X線回折, 合成化学, XAFS 周辺脂質の立体構造と機能 脂質活性構造 異分野融合の必要性 タンパク質内部脂質 杉山G(in と protein) 松岡Gが担当 マイクロドメイン 主に村田Gが担当 (as a field) 結晶X線回折, 固体NMR, カロリメータ, 計算機科学 脂質リガンドとの相互作用 Spring-8, SACLA, 固体NMR, 化学合成, 表面プラズモン共鳴 物理化学計測, 脂質集合体の分子基盤 共焦点顕微鏡, ラマンイメージング 関連する戦略目標:生命システムの動作原理の解明と活用のための基盤技術の創出 53 生体膜中脂質分子Gの研究成果 ④ II 脂質ラフト形成の分子機構 III SM膜の生物物理学的解析 IV ラマンイメージを用いた液体秩序相の観察 V 脂質二重膜における天然物との相互作用 1.梯子状ポリエーテル系天然物 2.細胞膜内Cholと相互作用する天然物 54 偏光減衰全反射赤外分光法(pATR-FTIR) Z YTX含有または非含有 GpA-TM再構成重水和DMPC膜 θ1 θ2 αα1 α α 2 エバネッセント波 0o x 45° 90o 赤外入射 ATRプリズム(Ge) 検出器 プリズム平面上におけるペプチド 含有脂質二重膜の簡略図 偏光フィルター 例: 二色比: R =ΔA 90° /ΔA 0° Abs./a.u. Amide I 90o 0o 1800 1700 1600 Wavenumber/cm-1 イェッソトキシン (YTX) 4) 有毒渦鞭毛藻によって生産される海洋生物毒 55 リン脂質膜中でYTXによるGpA-TMの配向変化の解析 配向 脂質分子DMPCのアシル鎖 GpA-TMのαヘリックス軸 CH2対称伸縮振動 アミドⅠ (αヘリックス) バンド 試料名 α (°) 重水和 GpATM-DMPC (1:50) 27.30 重水和 GpATM-DMPCYTX (1:50:1) YTX 26.84 重水和 GpATM-DMPC (1:50) 30.61 重水和 GpATM-DMPCYTX (1:50:1) 33.23 ○ 脂質分子のアシル鎖の配向角度はYTXの有無に関わらず一定、ペプチドのαヘリックス軸の配 向はYTXにより約10%変化 ○ GpA-TMとYTXが結合することによってペプチドの会合状態や配向が変化した結果と考えられる。 GpA二量体 GpA単量体 GpA-YTX複合体 リン脂質膜中におけるYTXとGpA-TMが相互作用することが示唆された 56 細胞膜内ステロールと相互作用する天然物 TMN ペプチド-膜脂質の持つ強い 分子間相互作用と比較的小 さな分子量に着目 ・ 膜脂質検出用の低分子 プローブの開発 ・ 固体NMR実験の試行 Espiritu, R. A., Matsumori, N., Murata, M., Nishimura, S., Kakeya, H., Matsunaga, S., Yoshida, M., Biochemistry 2013, 52, 2410. 57 DHMS相挙動のDOPC依存性 仮定 1. 2. DHSMは強い分子間水素結合を形成する(H-bonds). DHSM はDOPCより大きな曲率をもつ膜を形成する DHSM vesicle xq Temperature (℃) xp Lα2 domain attenuation (xDOPC=xq) of H-bond DOPC add DOPC のモル比(xDOPC) Lα2 domain vesicle homogeneous Lα2 domain (xDOPC =xqDOPC ) 58 DHSM/DOPC系の相分離は珍しい例 DEPC/DPPE Temperature (℃) Temperature (℃) DSPC/C18C10PC (Mason, 1988) (Wu & McConnel, 1975) Temperature (℃) DHSM/DOPC Molar fraction of DOPC (xDOPC) 59 SM類縁体だけの相分離の観測 コレステロールがなくても強い相互作用を示すか? SM: Sphingomyelin (C18) a) SM DHSM: Dihydrosphingomyelin (C18) a) eSM a) eSM b) c) DHSM DHSM c) DHSM c) b) tSM tSM d) tripleSM tripleSM d) vs b) tSM d) tripleSM ・代表的SM ・ラフトモデル膜に用いられる ・少量成分SM ・通常のChol存在下SMより固い膜を形成 DOPC不飽和リン脂質: 相分離して軟らかい相を形成 Kinoshita, M., Goretta, S., Tsuchikawa, H., Matsumori, N., Murata, M., Biophysics 9, 37-49 (2013). 60 SM誘導体の物理学的膜物性の測定 v (mL/g) 1.02 1.03 a) a SM 1.02 v (mL/g) 1.03 1.01 1.00 0.99 1.03 0.1 0.2 xchol 0.3 0.4 0.98 0.0 0.5 1.03 c)b tSM 0.1 0.2 xchol 0.3 0.4 0.5 0.4 0.5 d) tripleSM d 1.02 1.01 1.00 1.01 1.00 0.99 0.99 0.98 0.0 1.00 0.1 0.2 0.3 0.4 0.98 0.0 0.5 0.1 0.2 x chol xchol0.3 1270 1250 x: tripleSM VPMVSM (Å3) v (mL/g) 1.02 1.01 0.99 v (mL/g) 0.98 0.0 c DHSM b) 1230 □: 1210 DHSM SM △: tSM 〇: 1190 1170 0 0.1 0.2 0.3 xchol 0.4 0.5 0.6 61 60 40 40 20 20 0 0 -20 0.0 -20 1.0 Partial molecular area of cholesterol (Å2) 60 0.2 0.4 0.6 0.8 xchol Figure 7. The partial molecuar area of chol in (blue) diyneSM/chol and (red) SSM/chol binary monolayers at 5 mN/m was estimated from Figure 5 c and d. Table 1. Areal compressional modulus of SM CSM-1 (mN/m) at 5 mN/m. diyneSM SSM xchol=0 (LE phase) xchol≧0.5 (ordered phase) 33±10 47±10 130±20 120±20 62 三重結合1つでは感度不足:共役ジインの強度は10倍 -実際の膜で測定してみると- 63 脂質ラフト形成モデル ラフト相にSMとCholが多く分配 SM分子間水素結合のネットワーク 相分離が高温まで安定に保持 SM SM Ld ドメイン (周辺膜) Lo ドメイン (ラフト膜) 膜界面 ナノ秒スケールのラフト相内部 DOPC 短寿命の 脂質クラスター (SM/Chol) 速い生成と崩壊を繰り返す Chol 膜の深い位置に 分布するChol Chol Chol のステロイド骨格に よるオーダー効果 アルキル鎖中央部へのオーダー効果最大 16 位置選択的重水素標識PSPCの合成 Stearoyl-sphingomyelin (SSM) アシル鎖長 : C18 相転移温度(Tm) : 44 ℃ 1-palmitoyl-2-stearoyl-sn-glycerol-3-phosphocholine (PSPC) 計10種類の標識体ライブラリー アシル鎖長 : C18 相転移温度(Tm) : 48.8 ℃ 8
© Copyright 2024 ExpyDoc