First SACSESS International Workshop Warsaw, Poland, April 22-24, 2015 Studies on Extraction Behaviour of U(VI) to [bmim][NfO] Ionic Liquid and Its Recovery Using Hydrogen Peroxide Research Laboratory for Nuclear Reactors Tokyo Institute of Technology Koichiro Takao* (Associate Prof.) Kohei Arakawa, Takahiro Mori, Masayuki Harada, Yasuhisa Ikeda *E-mail: [email protected] 1 2/14 Background Uranium-Contaminated Wastes (Low-Level Wastes) from Nuclear Fuel Fabrication Current Problem • Extremely Long Lifetime of Uranium Isotopes • Raising Total Radioactivity after 104 Years by Daughters of U How to Treat & Dispose Them ? (Shallow Depth?) To reduce load to waste repository… Decontamination Chemical Decontamination Using Ionic Liquids + Chemical Traps (NaF, Al2O3) from Enrichment Process in Nuclear Fuel Fabrication 105 Drum Cans (200 L) 2 3/14 Background What is Ionic Liquid? A Salt melts below RT or 100°C • Typical Traits: • Non-volatile, Incombustible, Durable towards Electrolysis, Solubility for Various Metal Ions • Designable Chemical Structure to Give Specific Functions 3 4/14 Background 1-Butyl-3-methylimidazolium Nonafluorobutanesulfonate ([bmim][NfO]) • Solubility for U(VI) • Highly Hydrophobic: Immiscible with Water Chemical Decontamination for U-Contaminated Wastes Extraction U-Wastes U U U U U Decontaminated Wastes H2O2 U U U [bmim][NfO] Decontaminated Wastes U Recovery of U(VI) as UO4 [bmim][NfO] [bmim][NfO] U U U Dissolution of U(VI) in HNO3(aq) U U U U U U Extraction Recycle of [bmim][NfO] Chemical Decontamination Process Using [bmim][NfO] (planned) 4 —: Direct, —: Indirect 5/14 Objectives 1. Extraction Behaviour of U(VI) in HNO3(aq)-[bmim][NfO] System 2. Recovery of Extracted U(VI) from [bmim][NfO] by Addition of H2O2 1 Extraction U-Wastes U U U U U Decontaminated 2 Wastes U U U [bmim][NfO] Decontaminated Wastes U U Dissolution of U(VI) in HNO3(aq) U U Recovery of U(VI) as UO4 [bmim][NfO] [bmim][NfO] U H2O2 1 U U U U U Extraction Recycle of [bmim][NfO] Chemical Decontamination Process Using [bmim][NfO] (planned) 5 —: Direct, —: Indirect 6/14 Experimental Extraction Behaviour of U(VI) in HNO3(aq)-[bmim][NfO] System Mechanical Shaking at 298 K, 1 h HNO3(aq) 0.01-3.00 M + 18.6 mM U(VI) 1 mL Determination of U(VI) by ICP-AES [bmim][NfO] 1 mL Evaluation E = ([U(VI)]init – [U(VI)]aq)/[U(VI)]init × 100 D = ([U(VI)]init – [U(VI)]aq)/[U(VI)]aq E: Extractability (%) D: Distribution Ratio [U(VI)]init: Concentration of U(VI) at Initial State [U(VI)]aq: Concentration of U(VI) in Aq Phase after Extraction 6 7/14 Extraction Behaviour of U(VI) in HNO3(aq)-[bmim][NfO] Extractability and Distribution Ratio of U(VI) as a Function of [HNO3] [HNO3]/M 0.010 0.100 0.500 1.00 3.00 E /% 80.3 60.0 25.2 13.3 17.1 D 4.08 1.50 0.336 0.154 0.206 Extractant-Less Extraction of U(VI) • Prominent Role of [bmim][NfO] NaNO3 HClO4 HNO3 [H+] = 0.01-3.00 M • Hydrolysis of UO22+ can be ignored. [H+] Dependency • Fig. Distribution ratio (D) as a function of [H+] or [NO3-]. Competition with NfO- + H+ = NfOH [NO3-] Dependency • Coordination of NO3- to UO22+ → Decrease in E and D • Extractable Species: UO22+ Origin of U(VI) Extraction by [bmim][NfO] ? Further Investigation at [HNO3] = 0.01 M, 7 the Simplest System 8/14 Role of NfO- in U(VI) Extraction [bmim][Tf2N] • U(VI) Not Extractable (Panel (a)) • As “Solvent” • [bmim][NfO] as “Extractant” + [bmim][Tf2N] [bmim][NfO] [NfO-] Dependency • • Linearity of log D-log[NfO-] Plot (panel (b)) Slope: 4.2 ± 0.3 4 NfO- is accompanied with U(VI). Coordination? Not Likely… Fig. Extraction behavior of U(VI) in HNO3(aq)-[bmim][Tf2N] systems. In panel (a), extractability is compared with that in HNO3(aq)-[bmim][NfO]. Panel (b) shows dependency of D as a function of [NfO-] at [HNO3] = 0.010 M together with the best fit line resulted from the least-squares regression. 8 What happens in this extraction? 9/14 Interaction between UO22+ and NfO UV-vis Absorption Spectra • 0.01 M HClO4(aq)-[bmim][NfO] System aq. vs. [bmim][NfO] • Characteristic Fine Structure@420 nm LMCT Band of UO22+ with Vibronic Str. • Identical to Those of [UO2(H2O)5]2+ • No Coordination Interaction • [UO2(H2O)5]2+ in Both Phases Even after Extraction Formation of Outer-Sphere Complex as an Extractable Species Fig. UV-vis absorption spectrum of U(VI) in 0.01 M HClO4(aq)[bmim][NfO] extraction system (blue: aq, red: [bmim][NfO]) together with that of [UO2(H2O)5]2+ in 0.01 M HClO4(aq) (black). [UO2(H2O)5]2+(aq) + 4 NfO-(IL) 9 = [UO2(H2O)5]2+.4(NfO-)(IL) 10/14 On Extraction Mechanism Charge Compensation • Charge balance in each phase must be compensated. Possible Mechanisms • Cation Exchange 2 [bmim]+ per [UO2(H2O)5]2+ move from [bmim][NfO] to aq. • Ion Pairing 2 NO3- are also extracted to [bmim][NfO] together with [UO2(H2O)5]2+. Net Conc. of [bmim]+ transferred to Aq. was ONLY 5 mM, while 13.3 mM U(VI) was extracted. Aq. Reliable Extraction Mechanism NO YES Cation Exchange 2 [bmim]+ [bmim][NfO] Ion Pair 2 NO3- 10 [UO2(H2O)5]2+ NfONfO2+ NfO- [UO2(H2O)5] NfO- 11/14 Experimental Recovery of Extracted U(VI) from [bmim][NfO] by Using H2O2 30 wt% H2O2(aq) 0.5 or 1 mL Mechanical Shaking at 298 K, 20 min Back-Extraction of U(VI) by 3 M HNO3(aq) 0.5 mL H2O 0.9 ml [bmim][NfO] from Extraction Expt., 0.9 mL Determination of U(VI) by ICP-AES [bmim][NfO] 0.5 mL Precipitation Yield (Y/%) Y = 100 × (1 – D[U(VI)]sup,b/[U(VI)]IL) D: Distribution Ratio at [HNO3] = 3 M (D = 0.21) [U(VI)]IL: U(VI) Conc. in [bmim][NfO] after Extraction Expt. [U(VI)]sup,b: U(VI) Conc. in Aq of Back-Extraction 11 Pale yellow ppt was formed. 12/14 Precipitation Behaviour of U(VI) from [bmim][NfO] Characterization of Precipitate XRD Pattern (Cu Ka, l = 1.5418 Å) Identical to [(UO2)(O2)(H2O)2]·2H2O (studtite, dotted line) Expt. UO22+ + H2O2 → [(UO2)(O2)(H2O)2]·2H2O↓ + 2 H+ Sim. Fig. Powder XRD pattern of (a) pale yellow precipitate collected from [bmim][NfO] after addition of 30 wt% H2O2(aq) together with (b) that of [(UO2)(O2)(H2O)2]·2H2O (studtite) calculated on the basis of its crystallographic data reported by Burns et al. (fwhm = 0.3°, Am. Mineralogist, 2003, 88, 1165-1168). 12 13/14 Precipitation Behaviour of U(VI) from [bmim][NfO] Dependency of Precipitation Yield (Y) Low [HNO3] in Extraction → High Y No Dependency on Volume of 30 wt% H2O2(aq) pH in Aq. • High pH → High Y • Lower Efficiency Compared with Aqueous System UO22+ + H2O2 → [(UO2)(O2)(H2O)2]·2H2O↓ + 2 H+ Fig. Precipitation yield (Y) as functions of [HNO3] (a) and pH at equilibrium (pHeq, (b)) after addition of 30 wt% H2O2(aq). In panel (a), the transverse axis represents [HNO3] used in the preceding extraction experiments. • At [HNO3] = 0.01 M, E = 80.3%, Y = 96.2% • Low [HNO3] is preferable for both extraction and recovery of U(VI) 13 Guide to Chemical Decontamination Process 14/14 Conclusion 1. Extraction Behaviour of U(VI) in HNO3(aq)-[bmim][NfO] System U(VI) is extractable by [bmim][NfO] Applicable to Both Direct and Indirect Decontamination of UContaminated Wastes under an Optimized Condition 2. Recovery of Extracted U(VI) from [bmim][NfO] by Addition of H2O2 Feasibility of U(VI) Recovery from [bmim][NfO] by H2O2(aq) Recyclability of [bmim][NfO] in Decontamination Process Strong Dependency of Ppt. Efficiency on pH This chemical decontamination Process should be operated at low [HNO3]. Further Investigation… • • • Dissolution of Uranium Oxides Selectivity Actual Decontamination of 14 Simulated U-Wastes Forum Article, Inorg. Chem. 2013, 52, 3459-3472 Dziękuję! Thank you for your attention! http://www.nr.titech.ac.jp/~ktakao/ 15 NO3-のU(VI)の抽出挙動への影響 NO3-による影響 ・UO22+にはNO3-が配位する。 UO22+ + n NO3- UO2(NO3)n2-n 硝酸濃度の増加に伴い形成される錯体 [UO2NO3]+ [UO2(NO3)3]- [UO2(NO3)2] ・ [HNO3] = 0.01 M の場合UO22+のモル分率 が最も大きい。 各種硝酸濃度におけるウラニルイオ ン の錯体分布図([HNO3] = 0.01~10 M)* NO3-のUO22+への配位が、分配比の減少に関与。 *; 佐々木琴江、芝浦工業大学大学院修士論文、2012 16 硝酸濃度0.01 MにおけるU(VI)の抽出メカニズムの考察 硝酸(0.01 M)-[BMI][NfO]系における抽出機構としては、次の2種類の可能性が考えられる。 イオン対形成による抽出 UO22+(aq) + 2A-(aq) + 4[NfO]-(IL) [UO2(NfO)4]2-(IL) + 2A-(IL) カチオン交換による抽出 UO22+(aq) + 4[BMI]+(IL) + 4[NfO]-(IL) [UO2(NfO)4]2-(IL) + 2[BMI]+(aq) 水相 [BMI][NfO]相 UO22+ 2A- 4[NfO]- 4[BMI]+ 水相 [BMI][NfO]相 4[BMI]+ [UO2(NfO)4]2-2A- 水相 UO22+ [BMI][NfO]相 4[NfO]- 水相 [BMI][NfO]相 4[BMI]+ 2[BMI]+ [UO2(NfO)4]2- 17 2[BMI]+ 硝酸濃度0.01 MにおけるU(VI)の抽出メカニズムの考察 抽出機構の判別を行うため、NMRを用いて抽出操作後 に水相に含まれる[BMI]+の定量を行った。 抽出操作時の水相の硝酸濃度と抽出操作後の水相の[BMI]+の濃度の関係 [HNO3]/M [BMI+]aq/M 0.01 0.1 0.5 1 3 3.01×10-2 4.80×10-2 8.06×10-2 9.86×10-2 0.162 [BMI+]aq (ブランク) /M 2.55×10-2 3.20×10-2 7.01×10-2 9.17×10-2 0.136 [BMI+]aq濃度の差/M [UO22+]IL /M 4.60×10-3 1.60×10-2 1.05×10-2 6.00×10-3 2.60×10-2 1.33×10-2 1.10×10-2 5.64×10-3 2.85×10-3 3.09×10-3 カチオン交換による抽出が起きる場合1個のU(VI)が抽出されると2個の[BMI]+ が水相に移行する [HNO3] = 0.01 Mにおいて、そのような量的関係は見られない。 カチオン交換は否定される。 イオン対形成が妥当。 18 [BMI][NfO]系におけるU(VI)の沈殿機構 UO22+ + H2O2 → UO2(O2)↓ + 2H+ [BMI][NfO]系において沈殿試験前後のpHを測定し、pHと沈殿率の関係を調べた。 沈殿試験前後におけるpH変化と沈殿率 pHpre-equ pHeq 発生したH+の モル数/mol Y/% 2.86 1.87 1.30 1.06 0.37 2.08 1.70 1.20 0.91 0.43 1.04×10-5 1.58×10-5 4.32×10-5 9.36×10-5 1.36×10-4 96.2 92.2 85.1 77.5 48.1 ウラニルイオンの沈殿により水素イオンが生成す る。 UO2(O2)生成反応式と一致 19 U(VI)の沈殿率 ・各硝酸濃度(0.01, 0.1, 0.5, 1, 3 M)でU(VI)の溶媒抽出実験を行った後、[BMI][Nf O]相に対して沈殿試験を行った。 ・ U(VI)の沈殿率の抽出時の硝酸濃度依存性を調べた。 ・U(VI)の沈殿率は溶媒抽出実験で用いた 100 水相の硝酸濃度の増加とともに減少 Y /% 80 60 40 0.001 沈殿率の減少には[BMI][NfO]中に溶解し た硝酸が影響を与えている。 30 wt% H2O2 : 0.5 mL : 1 mL 0.01 0.1 [HNO3] /M 1 10 硝酸-[BMI][NfO]系におけるU(VI)の溶媒抽出実 験を行った際の硝酸濃度と沈殿率の関係 ・30 wt%過酸化水素水添加量0.5 mL以上 では沈殿率の変化見られなかった。 20 U(VI)の沈殿率のpH依存性 U(VI)の沈殿率のpH依存性を調べた。比較のため水溶液系におけるU(VI)の沈殿試験も 行った。 ・ 水溶液系:U(VI)の沈殿率は pH 0.43~1.34の 範囲において、96%以上になる。 80 ・[BMI][NfO]系:U(VI)の沈殿率は水相の pHの減少に伴い減少する。 Y /% 100 30 wt% H2O2 : [BMI][NfO] : H2O 60 ・水相のpH 1.7以上の領域では[BMI][NfO]中 における沈殿率は90%以上に達する。 40 0.5 1.0 1.5 pHeq 2.0 2.5 U(VI)を含む水溶液と[BMI][NfO]相に おける沈殿率とpHの関係 水相のpHを高くすることでU(VI)をより 多く沈殿として回収できる。 21
© Copyright 2024 ExpyDoc