Module handook - Ingenieurwissenschaften

Module handook
17 411 Engineering Science MSE
Student Office MSE
Technische Universität München
http://www.tum.de/
https://www.engineering.mse.tum.de/studium/curriculum/
23/04/2015
1
Module Description MA9801
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9801: Basic Mathematics (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
8
Total number
of hours:
240
Self-study
hours:
135
Contact
hours:
105
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
None
Contents:
Basics and Notation in Linear Algebra and Analysis in IR.
- Linear Algebra:
Systems of linear equations, matrix factorization, eigenvalues, linear least squares, with emphasis on numerical
algorithms and their implementation
- Analysis in IR:
limits, continuity, differentiation;
Newton's method and further applications
- Numerical methods:
polynomials and polynomial interpolation
Study goals:
At the end of the module, the students are able to
- understand basic mathematical problems and tools,
- analyze fundamental concepts in Linear Algebra and Analysis in IR,
- apply the basic vector and matrix calculus for solution of problems
arising in applications
- implement and test numerical algorithms for the solution of simple
engineering problems in MATLAB or similar software.
Teaching and learning methods:
The Lecture is presented by blackboard, overhead or tablet. In the Tutorials students analyse the exercises by
themselves. They have support by a tutor. Additionally in small student teams MATLAB (for numerical experiments) is
used to deepen the mathematical skills.
23/04/2015
2
16.04.2015 13:55
Module Description MA9801
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
Homework assignments;
Presentation of exercises;
Programming with MATLAB.
Solutions of the homework assignments are provided online.
Literature:
Ansorge, R., Oberle, H. J.: Mathematik für Ingenieure 1, Lineare Algebra und analytische Geometrie, Differential- und
Integralrechnung einer Variablen, Wiley-VCH Verlag (2000).
Arens, T., et al.: Mathematik, Spektrum Verlag (2008).
Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006).
C. B. Moler: Numerical Computing with MATLAB, SIAM (2004).
J. Stewart: Essential Calculus, Cengage Learning Services; Auflage: International Ed (20. Juni 2007).
G. Strang: Introduction to Linear Algebra, Wellesley-Cambridge Press, 1993.
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555445
Generated on: 16.04.2015 13:55
23/04/2015
3
16.04.2015 13:55
Module Description MA9801
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9801: Basic Mathematics (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
8
Total number
of hours:
240
Self-study
hours:
135
Contact
hours:
105
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
None
Contents:
Basics and Notation in Linear Algebra and Analysis in IR.
- Linear Algebra:
Systems of linear equations, matrix factorization, eigenvalues, linear least squares, with emphasis on numerical
algorithms and their implementation
- Analysis in IR:
limits, continuity, differentiation;
Newton's method and further applications
- Numerical methods:
polynomials and polynomial interpolation
Study goals:
At the end of the module, the students are able to
- understand basic mathematical problems and tools,
- analyze fundamental concepts in Linear Algebra and Analysis in IR,
- apply the basic vector and matrix calculus for solution of problems
arising in applications
- implement and test numerical algorithms for the solution of simple
engineering problems in MATLAB or similar software.
Teaching and learning methods:
The Lecture is presented by blackboard, overhead or tablet. In the Tutorials students analyse the exercises by
themselves. They have support by a tutor. Additionally in small student teams MATLAB (for numerical experiments) is
used to deepen the mathematical skills.
23/04/2015
4
16.04.2015 13:55
Module Description MA9801
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
Homework assignments;
Presentation of exercises;
Programming with MATLAB.
Solutions of the homework assignments are provided online.
Literature:
Ansorge, R., Oberle, H. J.: Mathematik für Ingenieure 1, Lineare Algebra und analytische Geometrie, Differential- und
Integralrechnung einer Variablen, Wiley-VCH Verlag (2000).
Arens, T., et al.: Mathematik, Spektrum Verlag (2008).
Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006).
C. B. Moler: Numerical Computing with MATLAB, SIAM (2004).
J. Stewart: Essential Calculus, Cengage Learning Services; Auflage: International Ed (20. Juni 2007).
G. Strang: Introduction to Linear Algebra, Wellesley-Cambridge Press, 1993.
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555445
Generated on: 16.04.2015 13:55
23/04/2015
5
16.04.2015 13:55
Module Description PH9021
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
PH9021: Physics (MSE)
TUM Department of Physics
Module level:
Bachelor
Language:
German
Module duration:
two semesters
Occurrence:
winter/summer semester
Credits*:
9
Total number
of hours:
270
Self-study
hours:
150
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
A written exam takes place at the end of the second term. This way, it is ensured that a problem is recognized within
limited time and with limited auxiliary means and that ways to a correct solutions are found. The exam covers the
entire content of the module.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Fundamental knowledge of physics and mathematics (Gymnasium).
Contents:
The module Physics imparts the fundamentals of experimental physics and thus belongs to the basic scientific
education in engineering science. The lecture covers the following chapters (together with part II).
Introduction
Gravitation, Dynamics
Newton's Laws.
Forces.
Energy.
Oscillations.
Collisions.
Rigid Body Movements
Deformable Bodies
Gases, Statistical Mechanics, Brownian Motion; Diffusion
Thermodynamics & Heat.
Optics
Electrostatics / Electrodynamics
Quantum Physics
Study goals:
Students will have the ability to classify physical processes according to the categories presented in the lecture and to
describe them correctly in a quantitative fashion at a level that corresponds to those of the individual chapters of the
lecture.
23/04/2015
6
16.04.2015 13:57
Module Description PH9021
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
The learning results are worked out in several complementary building blocks. The lecture is supported by a
presentation and the use of the blackboard. The presentation is provided in batches online before the lecture. The
content of the lecture is engrossed in the exercise. There, solutions of the problems are worked out and are
presented, which will prepare the students for the written exam. As a support, the consultation hours of the lecturer
and the tutors are offered.
Media formats:
Lecture and exercise with presentation and use of blackboard. Moreover, the presentation of the lecture as well as
problem sheets and solutions are provided online. Experiments.
Literature:
The presentation of the lecture as well as the problem sheets are provided. The following books are recommended:
Demtröder, Physik
D. Meschede: Gerthsen Physik, Springer Verlag
Tipler: Physik für Wissenschaftler und Ingenieure, Spektrum
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=553619
Generated on: 16.04.2015 13:57
23/04/2015
7
16.04.2015 13:57
Module Description PH9021
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
PH9021: Physics (MSE)
TUM Department of Physics
Module level:
Bachelor
Language:
German
Module duration:
two semesters
Occurrence:
winter/summer semester
Credits*:
9
Total number
of hours:
270
Self-study
hours:
150
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
A written exam takes place at the end of the second term. This way, it is ensured that a problem is recognized within
limited time and with limited auxiliary means and that ways to a correct solutions are found. The exam covers the
entire content of the module.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Fundamental knowledge of physics and mathematics (Gymnasium).
Contents:
The module Physics imparts the fundamentals of experimental physics and thus belongs to the basic scientific
education in engineering science. The lecture covers the following chapters (together with part II).
Introduction
Gravitation, Dynamics
Newton's Laws.
Forces.
Energy.
Oscillations.
Collisions.
Rigid Body Movements
Deformable Bodies
Gases, Statistical Mechanics, Brownian Motion; Diffusion
Thermodynamics & Heat.
Optics
Electrostatics / Electrodynamics
Quantum Physics
Study goals:
Students will have the ability to classify physical processes according to the categories presented in the lecture and to
describe them correctly in a quantitative fashion at a level that corresponds to those of the individual chapters of the
lecture.
23/04/2015
8
16.04.2015 13:57
Module Description PH9021
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
The learning results are worked out in several complementary building blocks. The lecture is supported by a
presentation and the use of the blackboard. The presentation is provided in batches online before the lecture. The
content of the lecture is engrossed in the exercise. There, solutions of the problems are worked out and are
presented, which will prepare the students for the written exam. As a support, the consultation hours of the lecturer
and the tutors are offered.
Media formats:
Lecture and exercise with presentation and use of blackboard. Moreover, the presentation of the lecture as well as
problem sheets and solutions are provided online. Experiments.
Literature:
The presentation of the lecture as well as the problem sheets are provided. The following books are recommended:
Demtröder, Physik
D. Meschede: Gerthsen Physik, Springer Verlag
Tipler: Physik für Wissenschaftler und Ingenieure, Spektrum
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=553619
Generated on: 16.04.2015 13:57
23/04/2015
9
16.04.2015 13:57
Module Description CH1204
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
CH1204: Chemistry
TUM Department of Chemistry
Module level:
Bachelor
Language:
German/English
Module duration:
two semesters
Occurrence:
winter/summer semester
Credits*:
7
Total number
of hours:
210
Self-study
hours:
135
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The course will be examined with a written exam after the 2nd semester, encompassing the contents from both
semesters. In the exam one should be able to recognise and work out a problem to the right solution in a limited time,
with limited tools available.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Basic knowledge of physics and chemistry (high school).
Contents:
1st Semester: Introduction to Basic chemistry principles, Inorganic Chemistry and Inorganic Materials
basic knowledge in: atomic structure and periodic table (of the elements);
molecules: covalent bonding, chemical forces, ionic bonding, weak (intermolecular/interatomic) forces, structure and
bonding in metals;
chemical reactions: mass and energy conversion;
reaction rates, chemical equilibrium: dissolution, acid-base and redox reactions;
basic knowledge in electrochemistry: electrolysis, corrosion;
chemistry of non-metal elements: basics;
chemistry of metals:basics;
inorganic solids/materials: basics.
2nd Semester: Introduction to Organic Chemistry, Organic Materials and Polymers
Structures of organic compounds, classes of compounds, structural aspects of stereochemistry,
aromaticity, reactivity of organic compunds (basics),
polysaccharides, lipids, proteins and ezymatic catalysis, nucleic acids, petrochemistry, polymers
Study goals:
23/04/2015
10
16.04.2015 13:57
Module Description CH1204
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
After participation in this course students will be able to categorize chemical compounds and retrace and classify their
reactions. They have acquired basic knowledge of the chemistry of the most important elements, inorganic and
organic materials and their main properties as a pre-condition for consolidation of skills in the following terms of their
studies.
Teaching and learning methods:
The course will be taught using lectures. The course materials (powerpoint slides) will be provided online. You will
have to make your own notes during the lectures. Depending on the topics, more or less time will be spend in the
lecture to work through question and problems together. In addition to the lecture materials, set Questions and
Problems will be provided online (including answers) to practise and get familiar with the material and subjects taught.
Media formats:
Notes during the lectures, powerpoint slides (online)
Literature:
'Mark J Winter, John E Andrew, Foundations of Inorganic Chemistry, Oxford Chemistry Primer (No. 94), Oxford
University Press, New York 2000. ISBN 0198792883;
P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, 4th or 5th Edition, Oxford University
Press, ISBN 019926463, 9780199264636;
E. Riedel, C. Janiak. Allgemeine and Anorganische Chemie, 9. Auflage, de Gruyter, Berlin 2008. ISBN:
9783110202779; als online book in der CHE-Bibliothek.
G. Kickelbick, Chemie fur Ingenieure, 1. Auflage, Pearson Studium 2008. ISBN: 9783827372673
C. E. Mortimer, Chemie: das Basiswissen, 9. Auflage, Thieme Verslag 2007, ISBN: 9783134843095
E. Riedel 'Anorganische Chemie',
"Lehrbuch der Organischen Chemie" H. Beyer, W. Walter, W. Franke, S. Hirzel Verlag, Stuttgart;
"Organische Chemie" K.P.C. Vollhardt, N.E. Schore; "Organic Chemistry" Wiley-VCH Verlag GmbH, Weinheim
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=705916
Generated on: 16.04.2015 13:57
23/04/2015
11
16.04.2015 13:57
Module Description CH1204
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
CH1204: Chemistry
TUM Department of Chemistry
Module level:
Bachelor
Language:
German/English
Module duration:
two semesters
Occurrence:
winter/summer semester
Credits*:
7
Total number
of hours:
210
Self-study
hours:
135
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The course will be examined with a written exam after the 2nd semester, encompassing the contents from both
semesters. In the exam one should be able to recognise and work out a problem to the right solution in a limited time,
with limited tools available.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Basic knowledge of physics and chemistry (high school).
Contents:
1st Semester: Introduction to Basic chemistry principles, Inorganic Chemistry and Inorganic Materials
basic knowledge in: atomic structure and periodic table (of the elements);
molecules: covalent bonding, chemical forces, ionic bonding, weak (intermolecular/interatomic) forces, structure and
bonding in metals;
chemical reactions: mass and energy conversion;
reaction rates, chemical equilibrium: dissolution, acid-base and redox reactions;
basic knowledge in electrochemistry: electrolysis, corrosion;
chemistry of non-metal elements: basics;
chemistry of metals:basics;
inorganic solids/materials: basics.
2nd Semester: Introduction to Organic Chemistry, Organic Materials and Polymers
Structures of organic compounds, classes of compounds, structural aspects of stereochemistry,
aromaticity, reactivity of organic compunds (basics),
polysaccharides, lipids, proteins and ezymatic catalysis, nucleic acids, petrochemistry, polymers
Study goals:
23/04/2015
12
16.04.2015 13:57
Module Description CH1204
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
After participation in this course students will be able to categorize chemical compounds and retrace and classify their
reactions. They have acquired basic knowledge of the chemistry of the most important elements, inorganic and
organic materials and their main properties as a pre-condition for consolidation of skills in the following terms of their
studies.
Teaching and learning methods:
The course will be taught using lectures. The course materials (powerpoint slides) will be provided online. You will
have to make your own notes during the lectures. Depending on the topics, more or less time will be spend in the
lecture to work through question and problems together. In addition to the lecture materials, set Questions and
Problems will be provided online (including answers) to practise and get familiar with the material and subjects taught.
Media formats:
Notes during the lectures, powerpoint slides (online)
Literature:
'Mark J Winter, John E Andrew, Foundations of Inorganic Chemistry, Oxford Chemistry Primer (No. 94), Oxford
University Press, New York 2000. ISBN 0198792883;
P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, 4th or 5th Edition, Oxford University
Press, ISBN 019926463, 9780199264636;
E. Riedel, C. Janiak. Allgemeine and Anorganische Chemie, 9. Auflage, de Gruyter, Berlin 2008. ISBN:
9783110202779; als online book in der CHE-Bibliothek.
G. Kickelbick, Chemie fur Ingenieure, 1. Auflage, Pearson Studium 2008. ISBN: 9783827372673
C. E. Mortimer, Chemie: das Basiswissen, 9. Auflage, Thieme Verslag 2007, ISBN: 9783134843095
E. Riedel 'Anorganische Chemie',
"Lehrbuch der Organischen Chemie" H. Beyer, W. Walter, W. Franke, S. Hirzel Verlag, Stuttgart;
"Organische Chemie" K.P.C. Vollhardt, N.E. Schore; "Organic Chemistry" Wiley-VCH Verlag GmbH, Weinheim
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=705916
Generated on: 16.04.2015 13:57
23/04/2015
13
16.04.2015 13:57
Module Description MW1406
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1406: Engineering Mechanics 1 (MSE)
Associate Professorship of Mechanik auf
Höchstleistungsrechnern (Prof. Gee)
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben
zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als
Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in
den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Abiturwissen Mathematik (Differentiation, Integration,...) und Physik (Kräfte, Hebelgesetz,...)
Contents:
Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie
beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit
einhergehenden Kräften. Ruhende Körper als Teilgebiet der Mechanik werden in der (Elasto-)Statik beschrieben,
deren Grundlagen in diesem Modul vermittelt werden. Dies erfolgt vor allem für starre Körper, gegen Ende der
Veranstaltungen aber auch für elastische Körper.
Die Schwerpunkte sind:
Modellbildung in der Mechanik, allgemeine ebene und räumliche Tragwerke, Fachwerke, Balken, Rahmen- und
Bogenträger, Prinzip der virtuellen Arbeit, Reibung, Seilstatik, Elastostatik kleiner Verzerrungen (Dehnstab), Arbeitsund Energiemethoden
Study goals:
Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics 1 sind die Studierenden in der
Lage, ruhende Tragwerke in Natur und Technik zu erkennen. Sie können mechanische Modelle aus der Realität
extrahieren, hinsichtlich der Analyse einordnen und statisch bestimmte sowie statisch unbestimmte Systeme mit den
erlernten Methoden berechnen. Dies erfogt vor allem hinsichtlich auftretender Kräfte zwischen und in den starren
Körpern. Auch sind sie in der Lage, Zusammenhänge der Elastostatik, also zwischen Kräften und Verformungen zu
erkennen und diese für einfache Tragwerkstypen zu berechnen. Die erlernten grundlegenden Methoden tragen zur
Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie
selbstständig zu lösen.
23/04/2015
14
16.04.2015 14:04
Module Description MW1406
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die
Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und
weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können,
neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben
werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend
abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung.
Media formats:
Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf
Lernplattform.
Literature:
(1) Lückenskript zur Vorlesung. (2) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 1:
Statik, Springer, Berlin, 2009. (3) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 2:
Elastostatik, Springer, Berlin, 2009.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556512
Generated on: 16.04.2015 14:04
23/04/2015
15
16.04.2015 14:04
Module Description MW1406
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1406: Engineering Mechanics 1 (MSE)
Associate Professorship of Mechanik auf
Höchstleistungsrechnern (Prof. Gee)
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben
zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als
Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in
den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Abiturwissen Mathematik (Differentiation, Integration,...) und Physik (Kräfte, Hebelgesetz,...)
Contents:
Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie
beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit
einhergehenden Kräften. Ruhende Körper als Teilgebiet der Mechanik werden in der (Elasto-)Statik beschrieben,
deren Grundlagen in diesem Modul vermittelt werden. Dies erfolgt vor allem für starre Körper, gegen Ende der
Veranstaltungen aber auch für elastische Körper.
Die Schwerpunkte sind:
Modellbildung in der Mechanik, allgemeine ebene und räumliche Tragwerke, Fachwerke, Balken, Rahmen- und
Bogenträger, Prinzip der virtuellen Arbeit, Reibung, Seilstatik, Elastostatik kleiner Verzerrungen (Dehnstab), Arbeitsund Energiemethoden
Study goals:
Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics 1 sind die Studierenden in der
Lage, ruhende Tragwerke in Natur und Technik zu erkennen. Sie können mechanische Modelle aus der Realität
extrahieren, hinsichtlich der Analyse einordnen und statisch bestimmte sowie statisch unbestimmte Systeme mit den
erlernten Methoden berechnen. Dies erfogt vor allem hinsichtlich auftretender Kräfte zwischen und in den starren
Körpern. Auch sind sie in der Lage, Zusammenhänge der Elastostatik, also zwischen Kräften und Verformungen zu
erkennen und diese für einfache Tragwerkstypen zu berechnen. Die erlernten grundlegenden Methoden tragen zur
Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie
selbstständig zu lösen.
23/04/2015
16
16.04.2015 14:04
Module Description MW1406
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die
Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und
weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können,
neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben
werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend
abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung.
Media formats:
Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf
Lernplattform.
Literature:
(1) Lückenskript zur Vorlesung. (2) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 1:
Statik, Springer, Berlin, 2009. (3) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 2:
Elastostatik, Springer, Berlin, 2009.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556512
Generated on: 16.04.2015 14:04
23/04/2015
17
16.04.2015 14:04
Module Description IN8011
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8011: Engineering Informatics I (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
75
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
not specified
Contents:
The lecture is presents basic concepts of object-oriented programming languages and fundamental techniques of
programming. Control-constructs such as iteration, recursion as well as simple concepts for structuring programs by
means of classes and inheritance are examplified for a modern object-oriented language such as Java. Simple
data-structures such as arrays, lists, trees and hash maps are introduced and algorithms for solving fundamental
problems such as sorting and searching are presented. At the beginning there is a compact introduction to tools for
scientific computing such as Maple or Matlab.
Study goals:
Knowledge in object-oriented programming and experience with simple data structures and basic algorithms. The
students should be able to independently solve simple programming tasks.
Teaching and learning methods:
lecture, exercise course, problems for individual study
Media formats:
slide show, blackboard, possibly online programming and/or animations
Literature:
Heinisch, Cornelia / Müller-Hofmann, Frank / Goll, Joachim:
Java als erste Programmiersprache. 5., überarb. u. erw. Aufl. 2007.
Deitel, Harvey / Deitel, Paul: How to program Java Prentice-Hall, 2005
Ullenboom, Christian: Java ist auch eine Insel. Gallileo Computing, 2009 (auch online)
23/04/2015
18
16.04.2015 14:08
Module Description IN8011
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Responsible for the module:
Seidl, Helmut; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556992
Generated on: 16.04.2015 14:07
23/04/2015
19
16.04.2015 14:08
Module Description IN8011
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8011: Engineering Informatics I (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
75
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
not specified
Contents:
The lecture is presents basic concepts of object-oriented programming languages and fundamental techniques of
programming. Control-constructs such as iteration, recursion as well as simple concepts for structuring programs by
means of classes and inheritance are examplified for a modern object-oriented language such as Java. Simple
data-structures such as arrays, lists, trees and hash maps are introduced and algorithms for solving fundamental
problems such as sorting and searching are presented. At the beginning there is a compact introduction to tools for
scientific computing such as Maple or Matlab.
Study goals:
Knowledge in object-oriented programming and experience with simple data structures and basic algorithms. The
students should be able to independently solve simple programming tasks.
Teaching and learning methods:
lecture, exercise course, problems for individual study
Media formats:
slide show, blackboard, possibly online programming and/or animations
Literature:
Heinisch, Cornelia / Müller-Hofmann, Frank / Goll, Joachim:
Java als erste Programmiersprache. 5., überarb. u. erw. Aufl. 2007.
Deitel, Harvey / Deitel, Paul: How to program Java Prentice-Hall, 2005
Ullenboom, Christian: Java ist auch eine Insel. Gallileo Computing, 2009 (auch online)
23/04/2015
20
16.04.2015 14:08
Module Description IN8011
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Responsible for the module:
Seidl, Helmut; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556992
Generated on: 16.04.2015 14:07
23/04/2015
21
16.04.2015 14:08
Module Description MA9802
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9802: Differential and Integral Calculus (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
8
Total number
of hours:
240
Self-study
hours:
135
Contact
hours:
105
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
MA9801 Basic Mathematics
Contents:
Analysis in IR and IRn
- Analysis in IR:
Riemann quadrature;
main theorem of integral and differential calculus
Laplace and Fourier transformation
Fast Fourier Transform (FFT)
- Analysis in IR :
partial and total derivative
mean value theorem
Taylor expansion
Gradient, Hessian matrix
Extremal problems
Newton's Method in IRn
- Integration in IR:
Vector Analysis
- linear o. d. e.´s with constant coefficients and source terms
Study goals:
At the end of the module students
- understand the essential concepts of one - and multidimensional calculus
- are able to apply the analytical methods and concepts
- have the basic tools for the treatment of advanced engineering problems.
23/04/2015
22
16.04.2015 14:09
Module Description MA9802
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
The Lecture is presented on blackboard, overhead or tablet.
In tutorials, students solve exercises by themselves supported by a tutor.
To deepen the intuitive understanding, students work in teams using MATLAB or similar software to solve small
problems.
Media formats:
Presentation of exercises; Solution of exercises;
Programming with MATLAB.
Solutions of exercises can be found in the Internet.
Literature:
Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 1 Lineare Algebra und analytische Geometrie, Differential- und
Integralrechnung einer Variablen, Wiley-VCH Verlag (2000).
Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 2 Differential- und Integralrechnung mehrerer Variabler,
gewöhnliche und partielle Differentialgleichungen, Integraltransformationen, ..., Wiley-VCH Verlag (2003).
Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006).
J. Stewart: Essential Calculus, Cengage Learning Services;
Auflage: International Ed (20. Juni 2007).
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555436
Generated on: 16.04.2015 14:09
23/04/2015
23
16.04.2015 14:09
Module Description MA9802
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9802: Differential and Integral Calculus (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
8
Total number
of hours:
240
Self-study
hours:
135
Contact
hours:
105
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
MA9801 Basic Mathematics
Contents:
Analysis in IR and IRn
- Analysis in IR:
Riemann quadrature;
main theorem of integral and differential calculus
Laplace and Fourier transformation
Fast Fourier Transform (FFT)
- Analysis in IR :
partial and total derivative
mean value theorem
Taylor expansion
Gradient, Hessian matrix
Extremal problems
Newton's Method in IRn
- Integration in IR:
Vector Analysis
- linear o. d. e.´s with constant coefficients and source terms
Study goals:
At the end of the module students
- understand the essential concepts of one - and multidimensional calculus
- are able to apply the analytical methods and concepts
- have the basic tools for the treatment of advanced engineering problems.
23/04/2015
24
16.04.2015 14:09
Module Description MA9802
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
The Lecture is presented on blackboard, overhead or tablet.
In tutorials, students solve exercises by themselves supported by a tutor.
To deepen the intuitive understanding, students work in teams using MATLAB or similar software to solve small
problems.
Media formats:
Presentation of exercises; Solution of exercises;
Programming with MATLAB.
Solutions of exercises can be found in the Internet.
Literature:
Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 1 Lineare Algebra und analytische Geometrie, Differential- und
Integralrechnung einer Variablen, Wiley-VCH Verlag (2000).
Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 2 Differential- und Integralrechnung mehrerer Variabler,
gewöhnliche und partielle Differentialgleichungen, Integraltransformationen, ..., Wiley-VCH Verlag (2003).
Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006).
J. Stewart: Essential Calculus, Cengage Learning Services;
Auflage: International Ed (20. Juni 2007).
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555436
Generated on: 16.04.2015 14:09
23/04/2015
25
16.04.2015 14:09
Module Description MW1409
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1409: Engineering Mechanics 2 (MSE)
Associate Professorship of Mechanik auf
Höchstleistungsrechnern (Prof. Gee)
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben
zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als
Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in
den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Engineering Mechanics I
Contents:
Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie
beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit
einhergehenden Kräften. Im Modul Engineering Mechanics I wurden zeitunabhängige Kräfte und Verfomungen
betrachtet (ruhende Körper), die Engineering Mechanics II handeln nun von zeitlich bewegten Körpern. Die
Schwerpunkte sind: Kinematik von Punkten und Starrkörpern in festen und auch in bewegten Koordinatensystemen
(Relativkinematik), Kinetik von Punktmassen und Starrkörpern, Stoßphänomene, Schwingungen.
Study goals:
Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics II sind die Studierenden in der
Lage, auftretende Bewegungen in Natur und Technik geometrisch (kinematisch) zu beschreiben. Sie verstehen weiter
das Zusammenspiel von Kräften und Bewegungen und können dieses mit den erlernten Methoden analysieren und
berechnen. Auch sind sie in der Lage, Schwingungssysteme zu berechen. Die erlernten grundlegenden Methoden
tragen zur Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie
selbstständig zu lösen.
Teaching and learning methods:
Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die
Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und
weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können,
23/04/2015
26
16.04.2015 14:11
Module Description MW1409
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben
werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend
abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung.
Media formats:
Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf
Lernplattform
Literature:
Lückenskript zur Vorlesung; D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 3: Kinetik,
Springer, Berlin, 2010
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556514
Generated on: 16.04.2015 14:10
23/04/2015
27
16.04.2015 14:11
Module Description MW1409
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1409: Engineering Mechanics 2 (MSE)
Associate Professorship of Mechanik auf
Höchstleistungsrechnern (Prof. Gee)
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben
zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als
Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in
den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Engineering Mechanics I
Contents:
Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie
beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit
einhergehenden Kräften. Im Modul Engineering Mechanics I wurden zeitunabhängige Kräfte und Verfomungen
betrachtet (ruhende Körper), die Engineering Mechanics II handeln nun von zeitlich bewegten Körpern. Die
Schwerpunkte sind: Kinematik von Punkten und Starrkörpern in festen und auch in bewegten Koordinatensystemen
(Relativkinematik), Kinetik von Punktmassen und Starrkörpern, Stoßphänomene, Schwingungen.
Study goals:
Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics II sind die Studierenden in der
Lage, auftretende Bewegungen in Natur und Technik geometrisch (kinematisch) zu beschreiben. Sie verstehen weiter
das Zusammenspiel von Kräften und Bewegungen und können dieses mit den erlernten Methoden analysieren und
berechnen. Auch sind sie in der Lage, Schwingungssysteme zu berechen. Die erlernten grundlegenden Methoden
tragen zur Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie
selbstständig zu lösen.
Teaching and learning methods:
Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die
Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und
weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können,
23/04/2015
28
16.04.2015 14:11
Module Description MW1409
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben
werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend
abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung.
Media formats:
Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf
Lernplattform
Literature:
Lückenskript zur Vorlesung; D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 3: Kinetik,
Springer, Berlin, 2010
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556514
Generated on: 16.04.2015 14:10
23/04/2015
29
16.04.2015 14:11
Module Description EI4381
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI4381: Electronic Design Automation for
Integrated Circuits (MSE)
TUM Department of Electrical and Computer Engineering
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
75
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Abschlussprüfung. Unbewertete Semestralklausur kann optional angeboten werden. Sofern Projektarbeit integriert
wird (noch nicht final entschieden), könnte diese auch in die Note einfließen.
Exam type:
written
Exam duration
(min.):
60min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
Yes
(Recommended) requirements:
Vorlesung "Digitale Schaltungen" (kann auch parallel gehört werden);
Kenntnis diskreter Mathematik hilfreich, wird aber nicht vorausgesetzt.
Contents:
Logiksynthese: Grundlagen der Logiksynthese; Binäre Boolesche Funktionen; Synthese von kombinatorischen
Schaltungen mit zwei Ebenen; Heuristische Minimierung von kombinatorischen Schaltungen mit zwei Ebenen;
Synthese von kombinatorischen Schaltungen mit mehr als zwei Ebenen; Ordered Binary Decision Diagrams;
Synthese von sequentiellen Schaltungen mittels endlicher Automaten
Simulation digitaler Schaltungen: Grundlagen Digitalsimulation; Werterepräsentation; Simulation des Zeitverhaltens
Weitere Themen: Layoutentwurf; Testverfahren (zu entscheiden in Abstimmung mit anderen Dozenten)
Study goals:
Studierende kennen Grundlagen von Algorithmen zu Synthese, Simulation und Testentwurf digitaler Schaltungen und
sind mit der Anwendung von Verfahren der diskreten Mathematik zur Beschreibung und Optimierung von
Schaltungen vertraut;
Studierende können digitale Schaltungen mittels Boolescher Funktionen beschreiben und verschiedene
Darstellungsformen Boolescher Funktionen (SOP-Formen, Kubengraph, Reduced Ordered Binary Decision Diagram)
interpretieren, erstellen und ineinander überführen;
Studierende können Logikoptimierung durch verschiedene Verfahren durchführen: Minimierung Boolescher
Funktionen nach Quine/McCluskey, mittels Resolventen-Methode, heuristische Ansätze;
Studierende sind vertraut mit Beschreibung unnd Zustandsminimierung von endlichen Automaten (Finite State
Machines);
Studierende kennen die Grundlagen der Simulation digitialer Schlaltungen auf dem Computer.
23/04/2015
30
16.04.2015 14:11
Module Description EI4381
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
Wird noch ergänzt
Media formats:
Primär Tafelanschrieb oder Tablet PC.
In geringem Umfang PowerPoint-Folien (primär für Themeneinführungen)
Vorlesungsinhalte sollen den Studierenden auch als Unterlagen zur Verfügung gestellt werden.
Evtl. Unterstützung durch Online-Aufgaben.
Literature:
TBD
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556405
Generated on: 16.04.2015 14:11
23/04/2015
31
16.04.2015 14:11
Module Description EI4381
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI4381: Electronic Design Automation for
Integrated Circuits (MSE)
TUM Department of Electrical and Computer Engineering
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
75
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Abschlussprüfung. Unbewertete Semestralklausur kann optional angeboten werden. Sofern Projektarbeit integriert
wird (noch nicht final entschieden), könnte diese auch in die Note einfließen.
Exam type:
written
Exam duration
(min.):
60min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
Yes
(Recommended) requirements:
Vorlesung "Digitale Schaltungen" (kann auch parallel gehört werden);
Kenntnis diskreter Mathematik hilfreich, wird aber nicht vorausgesetzt.
Contents:
Logiksynthese: Grundlagen der Logiksynthese; Binäre Boolesche Funktionen; Synthese von kombinatorischen
Schaltungen mit zwei Ebenen; Heuristische Minimierung von kombinatorischen Schaltungen mit zwei Ebenen;
Synthese von kombinatorischen Schaltungen mit mehr als zwei Ebenen; Ordered Binary Decision Diagrams;
Synthese von sequentiellen Schaltungen mittels endlicher Automaten
Simulation digitaler Schaltungen: Grundlagen Digitalsimulation; Werterepräsentation; Simulation des Zeitverhaltens
Weitere Themen: Layoutentwurf; Testverfahren (zu entscheiden in Abstimmung mit anderen Dozenten)
Study goals:
Studierende kennen Grundlagen von Algorithmen zu Synthese, Simulation und Testentwurf digitaler Schaltungen und
sind mit der Anwendung von Verfahren der diskreten Mathematik zur Beschreibung und Optimierung von
Schaltungen vertraut;
Studierende können digitale Schaltungen mittels Boolescher Funktionen beschreiben und verschiedene
Darstellungsformen Boolescher Funktionen (SOP-Formen, Kubengraph, Reduced Ordered Binary Decision Diagram)
interpretieren, erstellen und ineinander überführen;
Studierende können Logikoptimierung durch verschiedene Verfahren durchführen: Minimierung Boolescher
Funktionen nach Quine/McCluskey, mittels Resolventen-Methode, heuristische Ansätze;
Studierende sind vertraut mit Beschreibung unnd Zustandsminimierung von endlichen Automaten (Finite State
Machines);
Studierende kennen die Grundlagen der Simulation digitialer Schlaltungen auf dem Computer.
23/04/2015
32
16.04.2015 14:11
Module Description EI4381
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
Wird noch ergänzt
Media formats:
Primär Tafelanschrieb oder Tablet PC.
In geringem Umfang PowerPoint-Folien (primär für Themeneinführungen)
Vorlesungsinhalte sollen den Studierenden auch als Unterlagen zur Verfügung gestellt werden.
Evtl. Unterstützung durch Online-Aufgaben.
Literature:
TBD
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556405
Generated on: 16.04.2015 14:11
23/04/2015
33
16.04.2015 14:11
Module Description BGU65007T4
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BGU65007T4: Computer Aided Modeling of
Products and Processes
Chair of Computer-assisted Modeling and Simulation (Prof.
Borrmann)
Module level:
Bachelor
Language:
German
Module duration:
two semesters
Occurrence:
winter/summer semester
Credits*:
8
Total number
of hours:
240
Self-study
hours:
120
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The module examination consists of a combination of a written examination and coursework assignments. There is a
written exam at the end of the winter semester; auxiliary means are not allowed. Coursework assignments are part of
the module examination: 18 assignments over 2 semesters, 14 have to be passed. At least half of the assignments
are verified via an oral examination in front of the computer.
Exam type:
written
Exam duration
(min.):
2 * 60
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Prerequisits for attending the module are: Completion of the module 'Engineering Informatics I'.
Most important prerequisits are basic programming skills as well as knowledge in basic data structures.
Contents:
A) Basics:
Introduction to Modeling in Engineering, Basic of Geometric Modeling, Geometric Transformations, Introduction to
Graph Theory, Databases, Process Modeling, Discrete Event Modeling, Petri Nets
B) Applications on Products and Processes in Engineering:
Elementary CAD Modeling in 2D and 3D, Product Models, Process Models, Models in Product Lifecycle, Concurrent
Engineering, Parametric Modelling, Feature-based Modeling, Systems Modeling Language, Virtual Prototypes
Study goals:
After completion of the module the students will be able to:
- structure engineering tasks according to the goal of completing them using computational models and methods
- assess different computational methods with respect to their applicability to the development of products and
processes
- plan their usage for concrete, interdisciplinary applications in engineering science,
23/04/2015
34
16.04.2015 14:12
Module Description BGU65007T4
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
- verify, validate and analyze computational models and methods,
- assess software products with respect to their suitability for supporting the design of products and processes,
- use selected software products for concrete design tasks
Teaching and learning methods:
The teaching results of the module are achieved by multiple coordinated components. The lectures are supported by
powerpoint presentations, blackboard scripts and movies illustrating computer simulations. The lecture contents are
completed by exercises in the lecture hall. Here, the methods required for completing the assignments are
demonstrated live using the computer. The students work on the assignments in the practicals where they are
supported by student tutors.
Media formats:
Lectures and exercises: In the lecture hall, using powerpoint presentations, blackboard script and software examples
on the computer.
Practicals: in the computer pool.
The contents of lectures, exercises and practicals are coordinated with each other.
Literature:
Lecture notes with extensive references.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1067215
Generated on: 16.04.2015 14:12
23/04/2015
35
16.04.2015 14:12
Module Description BGU65007T4
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BGU65007T4: Computer Aided Modeling of
Products and Processes
Chair of Computer-assisted Modeling and Simulation (Prof.
Borrmann)
Module level:
Bachelor
Language:
German
Module duration:
two semesters
Occurrence:
winter/summer semester
Credits*:
8
Total number
of hours:
240
Self-study
hours:
120
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The module examination consists of a combination of a written examination and coursework assignments. There is a
written exam at the end of the winter semester; auxiliary means are not allowed. Coursework assignments are part of
the module examination: 18 assignments over 2 semesters, 14 have to be passed. At least half of the assignments
are verified via an oral examination in front of the computer.
Exam type:
written
Exam duration
(min.):
2 * 60
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Prerequisits for attending the module are: Completion of the module 'Engineering Informatics I'.
Most important prerequisits are basic programming skills as well as knowledge in basic data structures.
Contents:
A) Basics:
Introduction to Modeling in Engineering, Basic of Geometric Modeling, Geometric Transformations, Introduction to
Graph Theory, Databases, Process Modeling, Discrete Event Modeling, Petri Nets
B) Applications on Products and Processes in Engineering:
Elementary CAD Modeling in 2D and 3D, Product Models, Process Models, Models in Product Lifecycle, Concurrent
Engineering, Parametric Modelling, Feature-based Modeling, Systems Modeling Language, Virtual Prototypes
Study goals:
After completion of the module the students will be able to:
- structure engineering tasks according to the goal of completing them using computational models and methods
- assess different computational methods with respect to their applicability to the development of products and
processes
- plan their usage for concrete, interdisciplinary applications in engineering science,
23/04/2015
36
16.04.2015 14:12
Module Description BGU65007T4
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
- verify, validate and analyze computational models and methods,
- assess software products with respect to their suitability for supporting the design of products and processes,
- use selected software products for concrete design tasks
Teaching and learning methods:
The teaching results of the module are achieved by multiple coordinated components. The lectures are supported by
powerpoint presentations, blackboard scripts and movies illustrating computer simulations. The lecture contents are
completed by exercises in the lecture hall. Here, the methods required for completing the assignments are
demonstrated live using the computer. The students work on the assignments in the practicals where they are
supported by student tutors.
Media formats:
Lectures and exercises: In the lecture hall, using powerpoint presentations, blackboard script and software examples
on the computer.
Practicals: in the computer pool.
The contents of lectures, exercises and practicals are coordinated with each other.
Literature:
Lecture notes with extensive references.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1067215
Generated on: 16.04.2015 14:12
23/04/2015
37
16.04.2015 14:12
Module Description MA9803
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9803: Modeling and Simulation with Ordinary
Differential Equations (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Prüfungsart:
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
MA9801 Basic Mathematics,
MA9802 Differential and Integral Calculus
Contents:
Initial value problems for ordinary differential equations (o.d.e.s):
- Analysis:
existence, uniqueness, stability
- Numerical methods:
Runge-Kutta methods
BDF methods
stiffness (A-stability)
- Modeling and simulation with o.d.e's
Mathematical modeling of engineering problems with o.d.e's
numerical simulation, introduction to MATLAB o.d.e. Solvers
Study goals:
At the end of the module students
- understand the essential concepts in mathematical modeling with o.d.e's
- are able to formulate initial value problems and solve them by numerical methods
- can visualize parameter dependent solutions.
Teaching and learning methods:
The Lecture is presented on blackboard, overhead or tablet.
In tutorials, students solve exercises by themselves with support by a tutor.
23/04/2015
38
16.04.2015 14:13
Module Description MA9803
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
To deepen the mathematical intuition, students work in teams on the solution of small problems using MATLAB or
similar software packages.
Media formats:
Presentation of exercises; Solution of exercises;
Programming with MATLAB.
Solutions of exercises can be found in the Internet.
Literature:
Deuflhard, Bornemann: Scientific Computing with Ordinary Differential Equations, Springer Verlag (2004).
Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006).
Stoer/Bulirsch: Numerische Mathematik II, 4. Auflage, Springer, Berlin (2000).
Quarteroni, Sacco, Saleri: Numerical Mathematics, Springer Verlag (2000).
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555434
Generated on: 16.04.2015 14:13
23/04/2015
39
16.04.2015 14:13
Module Description MA9803
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9803: Modeling and Simulation with Ordinary
Differential Equations (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Prüfungsart:
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
MA9801 Basic Mathematics,
MA9802 Differential and Integral Calculus
Contents:
Initial value problems for ordinary differential equations (o.d.e.s):
- Analysis:
existence, uniqueness, stability
- Numerical methods:
Runge-Kutta methods
BDF methods
stiffness (A-stability)
- Modeling and simulation with o.d.e's
Mathematical modeling of engineering problems with o.d.e's
numerical simulation, introduction to MATLAB o.d.e. Solvers
Study goals:
At the end of the module students
- understand the essential concepts in mathematical modeling with o.d.e's
- are able to formulate initial value problems and solve them by numerical methods
- can visualize parameter dependent solutions.
Teaching and learning methods:
The Lecture is presented on blackboard, overhead or tablet.
In tutorials, students solve exercises by themselves with support by a tutor.
23/04/2015
40
16.04.2015 14:13
Module Description MA9803
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
To deepen the mathematical intuition, students work in teams on the solution of small problems using MATLAB or
similar software packages.
Media formats:
Presentation of exercises; Solution of exercises;
Programming with MATLAB.
Solutions of exercises can be found in the Internet.
Literature:
Deuflhard, Bornemann: Scientific Computing with Ordinary Differential Equations, Springer Verlag (2004).
Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006).
Stoer/Bulirsch: Numerische Mathematik II, 4. Auflage, Springer, Berlin (2000).
Quarteroni, Sacco, Saleri: Numerical Mathematics, Springer Verlag (2000).
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555434
Generated on: 16.04.2015 14:13
23/04/2015
41
16.04.2015 14:13
Module Description CH1205
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
CH1205: Material Science I
TUM Department of Chemistry
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam at the end of the semester covers the knowledge aquired in the lecture and Exercises.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Fundamentals of mathematics, physics and chemistry that are taught in the first and second semester of "Engineering
Science": Mathematical basics 1 and 2 (Linear Algebra, Analysis), Experiamental Physics 1 and 2, Chemistry 1 and 2
(Basic chemistry of Inorganic and Organic Materials)
Contents:
In general, the lecture "Material Science" (MS1 & MS2) discusses all subdomains of materials sciences starting with
physical and chemical basics of matter resp. materials up to the selection of materials, their design-specific
application and the characterisation of construction elements.
MS1 covers the physical and chemical basics necessary to understand the structure of materials and their properties
such as tensile strength, corrosion resistance, hardness, ductility, brittleness and anisotropy. Based on fundamental
interactions in solids the structural features and the structure determination by phyicochemical methods will be
explained. Major aspects of selected substance classes will be discussed with the focus on the technical relevance in
Materials Science and its Structure-Property relations.
Topics of the lecture:
Introduction: Binding forces in solids
1. Atomic structure of solids (crystal structures, reciprocal lattice, diffraction and spectroscopic techniques)
2. Classes of materials (metals/alloys, compound semiconductors, ceramics, oxides, zeolites,
polymers,nanomaterials)
3. Atomic-scale physical Properties of materials(mechanical, thermal, electrical, magneticand optical properties)
Study goals:
At the end of the module Material Science I the students understand the physical and chemical structure of materials
on an atomic scale and know methods to examin it. Furthermore, the students are able to identify and characterise
the classes of materials that are commonly used in engineering as well as define the different physical properties of
materials. They are able to differ the different substance classes in Materials Science and they can classify
compounds based on their knowlegde. Students are able to answer questions to the synthesis, reactivity and stabiltiy
23/04/2015
42
16.04.2015 14:14
Module Description CH1205
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
of materials based on the interconnection between the atomic strucutre odf solids, the chemical bonding and the
basic knowlegde in materials chemisty. After visiting the lecture Materials Science I the students are ready to discuss
structural features and are able to understand structure (and symmetry)-property relations of solids.
Teaching and learning methods:
The module consists of a lecture and exercises. The knowledge of the lecture is imparted by talks and presentations.
The students should read an accompanying textbook which can be supplemented by additional literature. In the
practical, the content of the lecture is demonstrated in practical tests.
Media formats:
The media used in the lecture are: presentations, videos, blackboard sketches.
Literature:
As textbook: Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010 (ebook);
additional: Askeland, Donald R., The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006 ; Roos,
E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008; Chemical section: Englisch literaure: A.
Burrows, J. Holman, A. Parsons, G. Pilling, G. Price, Chemistry, Oxford University press 2009, ISBN
978-0-19-927789-6; C. E. Housecroft, E. Constable, Chemistry, Pearson Education Limited Harlow, 3rd edition 2006,
ISBN 978-0-131-27567; P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, Oxford
University press, 4th edition 2006, ISBN 978-0-19-926463-6; German literature: E. Riedel, Allgemeine und
Anorganische Chemie, de Gruyter, 10. Auflage 2010, ISBN 978-3-11-022781-9; M. Binnewies, M. Jäckel, H. Willner,
G. Rayner-Canham Allgemeine und Anorganische Chemie, Spektrum Akademische Verlag Heidelberg, 1. Auflage
2004, ISBN 3-8274-0208-5; U. Müller, Inorganic Structure Chemistry, Whiley,Second Edition, ISBN 978-0470018651
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=774103
Generated on: 16.04.2015 14:14
23/04/2015
43
16.04.2015 14:14
Module Description CH1205
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
CH1205: Material Science I
TUM Department of Chemistry
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam at the end of the semester covers the knowledge aquired in the lecture and Exercises.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Fundamentals of mathematics, physics and chemistry that are taught in the first and second semester of "Engineering
Science": Mathematical basics 1 and 2 (Linear Algebra, Analysis), Experiamental Physics 1 and 2, Chemistry 1 and 2
(Basic chemistry of Inorganic and Organic Materials)
Contents:
In general, the lecture "Material Science" (MS1 & MS2) discusses all subdomains of materials sciences starting with
physical and chemical basics of matter resp. materials up to the selection of materials, their design-specific
application and the characterisation of construction elements.
MS1 covers the physical and chemical basics necessary to understand the structure of materials and their properties
such as tensile strength, corrosion resistance, hardness, ductility, brittleness and anisotropy. Based on fundamental
interactions in solids the structural features and the structure determination by phyicochemical methods will be
explained. Major aspects of selected substance classes will be discussed with the focus on the technical relevance in
Materials Science and its Structure-Property relations.
Topics of the lecture:
Introduction: Binding forces in solids
1. Atomic structure of solids (crystal structures, reciprocal lattice, diffraction and spectroscopic techniques)
2. Classes of materials (metals/alloys, compound semiconductors, ceramics, oxides, zeolites,
polymers,nanomaterials)
3. Atomic-scale physical Properties of materials(mechanical, thermal, electrical, magneticand optical properties)
Study goals:
At the end of the module Material Science I the students understand the physical and chemical structure of materials
on an atomic scale and know methods to examin it. Furthermore, the students are able to identify and characterise
the classes of materials that are commonly used in engineering as well as define the different physical properties of
materials. They are able to differ the different substance classes in Materials Science and they can classify
compounds based on their knowlegde. Students are able to answer questions to the synthesis, reactivity and stabiltiy
23/04/2015
44
16.04.2015 14:14
Module Description CH1205
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
of materials based on the interconnection between the atomic strucutre odf solids, the chemical bonding and the
basic knowlegde in materials chemisty. After visiting the lecture Materials Science I the students are ready to discuss
structural features and are able to understand structure (and symmetry)-property relations of solids.
Teaching and learning methods:
The module consists of a lecture and exercises. The knowledge of the lecture is imparted by talks and presentations.
The students should read an accompanying textbook which can be supplemented by additional literature. In the
practical, the content of the lecture is demonstrated in practical tests.
Media formats:
The media used in the lecture are: presentations, videos, blackboard sketches.
Literature:
As textbook: Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010 (ebook);
additional: Askeland, Donald R., The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006 ; Roos,
E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008; Chemical section: Englisch literaure: A.
Burrows, J. Holman, A. Parsons, G. Pilling, G. Price, Chemistry, Oxford University press 2009, ISBN
978-0-19-927789-6; C. E. Housecroft, E. Constable, Chemistry, Pearson Education Limited Harlow, 3rd edition 2006,
ISBN 978-0-131-27567; P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, Oxford
University press, 4th edition 2006, ISBN 978-0-19-926463-6; German literature: E. Riedel, Allgemeine und
Anorganische Chemie, de Gruyter, 10. Auflage 2010, ISBN 978-3-11-022781-9; M. Binnewies, M. Jäckel, H. Willner,
G. Rayner-Canham Allgemeine und Anorganische Chemie, Spektrum Akademische Verlag Heidelberg, 1. Auflage
2004, ISBN 3-8274-0208-5; U. Müller, Inorganic Structure Chemistry, Whiley,Second Edition, ISBN 978-0470018651
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=774103
Generated on: 16.04.2015 14:14
23/04/2015
45
16.04.2015 14:14
Module Description MW1405
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1405: Continuum Mechanics (MSE)
Associate Professorship of Continuum Mechanics (Prof.
Koutsourelakis)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
7
Total number
of hours:
210
Self-study
hours:
90
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam consists of two parts: a) a short-question (theory) part and b) a problem-solving (calculation) part.
The exam covers the whole course material and is intentionally intensive.
A voluntary, midterm exam is offered half-way during the semester that does not count towards the final grade but can
be used by the students to familiarize themselves with the final exam's content and structure.
Exam type:
written
Exam duration
(min.):
120
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Differential an Integral Calculus of functions of several variables, Partial and Ordinary differential equations, Technical
Mechanics I & II
Contents:
The module offers a unified description of fluids and solids under the paradigm of continuum mechanics. The module
discusses:
1) the motivation, foundation and limitations of continuum descriptions
2) the fundamental mathematical tools and in particular the algebra and calculus of tensors
3) Kinematics, 4) Conservation Laws of mass, momentum and energy, 5) invariants and symmetries, 6) Isothermal
Fluid Mechanics, (7) Linear Elasticity in Solid Mechanics.
Study goals:
Students who successfully complete this module will:
1) know the conceptual basis and essential quantities of Continuum Mechanics
2) be proficient in the essential mathematics i.e. algebra and calculus of tensors
3) know the mathematical description of motion and deformation for continua
4) know the fundamental conservation laws of mass , momentum and energy that govern the behavior of continua
5) understand the role of constitutive equations and models in the description of fluids and solids
6) have the the ability to solve analytically basic problems in fluids and solids
7) acquire the enecessary foundation in order to follow advanced modules and lecture topics in the subsequent
semesters.
Teaching and learning methods:
23/04/2015
46
16.04.2015 14:15
Module Description MW1405
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Lecture involving theory and examples, Problem-solving sessions, Sample solutions, Suggested readings
Media formats:
Lecture slides, Manuscript, Short Movies and Animations
Literature:
1) "Introduction to Continuum Mechanics", 4th Edition, by W Michael Lai, David Rubin, Erhard Krempl (Author)
2) Manuscript containing a list of over 20 additional textbooks
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
H.J. Kaltenbach, P.S. Koutsourelakis (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556526
Generated on: 16.04.2015 14:15
23/04/2015
47
16.04.2015 14:15
Module Description MW1405
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1405: Continuum Mechanics (MSE)
Associate Professorship of Continuum Mechanics (Prof.
Koutsourelakis)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
7
Total number
of hours:
210
Self-study
hours:
90
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam consists of two parts: a) a short-question (theory) part and b) a problem-solving (calculation) part.
The exam covers the whole course material and is intentionally intensive.
A voluntary, midterm exam is offered half-way during the semester that does not count towards the final grade but can
be used by the students to familiarize themselves with the final exam's content and structure.
Exam type:
written
Exam duration
(min.):
120
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Differential an Integral Calculus of functions of several variables, Partial and Ordinary differential equations, Technical
Mechanics I & II
Contents:
The module offers a unified description of fluids and solids under the paradigm of continuum mechanics. The module
discusses:
1) the motivation, foundation and limitations of continuum descriptions
2) the fundamental mathematical tools and in particular the algebra and calculus of tensors
3) Kinematics, 4) Conservation Laws of mass, momentum and energy, 5) invariants and symmetries, 6) Isothermal
Fluid Mechanics, (7) Linear Elasticity in Solid Mechanics.
Study goals:
Students who successfully complete this module will:
1) know the conceptual basis and essential quantities of Continuum Mechanics
2) be proficient in the essential mathematics i.e. algebra and calculus of tensors
3) know the mathematical description of motion and deformation for continua
4) know the fundamental conservation laws of mass , momentum and energy that govern the behavior of continua
5) understand the role of constitutive equations and models in the description of fluids and solids
6) have the the ability to solve analytically basic problems in fluids and solids
7) acquire the enecessary foundation in order to follow advanced modules and lecture topics in the subsequent
semesters.
Teaching and learning methods:
23/04/2015
48
16.04.2015 14:15
Module Description MW1405
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Lecture involving theory and examples, Problem-solving sessions, Sample solutions, Suggested readings
Media formats:
Lecture slides, Manuscript, Short Movies and Animations
Literature:
1) "Introduction to Continuum Mechanics", 4th Edition, by W Michael Lai, David Rubin, Erhard Krempl (Author)
2) Manuscript containing a list of over 20 additional textbooks
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
H.J. Kaltenbach, P.S. Koutsourelakis (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556526
Generated on: 16.04.2015 14:15
23/04/2015
49
16.04.2015 14:15
Module Description MW1408
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1408: Engineering Thermodynamics
Associate Professorship of Thermo-Fluid Dynamics (Prof.
Polifke)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
90
Contact
hours:
60
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Marked Exam, Resources are allowed (Notes, Books, Formulary)
Exam type:
written
Exam duration
(min.):
90
Homework:
Possibility
No
of re-taking:
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
maths (analysis, vector analysis, divergence theorem, ordinary differential equations)
mechanics (force, work, kinetic and potential energy)
physics of heat (temperature, heat capacity, ...)
basic matlab
Contents:
The lecture is divided into five chapters:
1) Conservation laws for mass momentum and energy in general integral formulation; simple forms for closed and
steady open systems derived therefrom. Manifestations of work. First Law of Thermodynamics.
2) Thermodynamic state. State diagrams and state changes. Thermal and caloric equations of state and material
properties of ideal and non-ideal gases, incompressible liquids and solids a well as gas-liquid-solid systems of pure
substances (steam tables). Mass and energy balances for phase change.
3) State (point) and process (path) variables. Work and heat of reversible iso-processes. Thermodynamic efficiency of
reversible cycle processes (Carnot, Joule, ...).
4) Entropy and Second Law of Thermodynamics, TS diagrams, Gibbs' equation, entropy production of irreversible
processes, Guoy-Stodola theorem. Maximization of entropy in thermodynamic equilibriation. Thermodynamic
potentials. Statistical interpretation of entropy.
5) Exergy balances and irreversible processes. Polytropic state change. Van der Waals gas, Clausius-Clapeyron.
Study goals:
23/04/2015
50
16.04.2015 14:16
Module Description MW1408
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Upon completion of the module, students can:
- characterize the central thermodynamic terms like energy, internal energy, entropy and exergy.
- discriminate between temperature and heat as well as state and path variables.
- derive simplified conservation laws for special systems using appropriate approximations of the general integral
formulations (including convective transport and unsteady effects).
- identify different forms of work in different thermodynamic systems in order to set up fully specified balances for
total/ internal/ mechanical energy.
- describe simple quantitative state changes of ideal gases using the thermal and caloric equations of state.
- determine state changes involving phase changes of pure substances using steam tables.
- calculate state changes of incompressible liquids and solids with constant material properties.
- apply the conservation laws in order to determine work and heat transferred in simple processes.
- name the characteristics of the most important cycle processes (Carnot, Joule, Rankine, Otto, Diesel, ...).
- evaluate heat engines and other machines for energy transformation using the results for work and heat of iso- and
cycle processes.
- evaluate heat engines and other machines for energy transformation using thermodynamic diagrams (TV, pV, Ts, hs,
ph, etc.) or steam tables.
- determine irreversible entropy production and the corresponding loss in exergy by balance equations and
discrimintae between reversible and irreversible processes.
- evaluate simple processes using exergy flow balances.
Teaching and learning methods:
multimedia-supported
The concepts and methods of thermodynamics are introduced in the lecture. In order to deepen the knowledge, a
tutorial session is demonstrating the application of the concepts and methods. Questions of the students, are
answered in small group tutorials. In addition, the students are encouraged to process weekly homework exercises,
which are corrected individually. E-tests on the Moodle plattform are completing the module.
Media formats:
Chalkboard, Beamer Presentation, Animations
Literature:
Baehr, H.D., und Kabelac, S. 2012. Thermodynamik: Grundlagen und technische Anwendungen, Springer.
Cengel, Y.A., Boles, M.A., 2001. Thermodynamics: An Engineering Approach, 4th edition. ed. McGraw-Hill College.
Müller, I., Müller, W.H., 2009. Fundamentals of Thermodynamics and Applications: With Historical Annotations and
Many Citations from Avogadro to Zermelo, Springer.
Weigand, B., et al. (2013) Thermodynamik Kompakt 3rd edition, Springer.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556516
Generated on: 16.04.2015 14:16
23/04/2015
51
16.04.2015 14:16
Module Description MW1408
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1408: Engineering Thermodynamics
Associate Professorship of Thermo-Fluid Dynamics (Prof.
Polifke)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
90
Contact
hours:
60
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Marked Exam, Resources are allowed (Notes, Books, Formulary)
Exam type:
written
Exam duration
(min.):
90
Homework:
Possibility
No
of re-taking:
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
maths (analysis, vector analysis, divergence theorem, ordinary differential equations)
mechanics (force, work, kinetic and potential energy)
physics of heat (temperature, heat capacity, ...)
basic matlab
Contents:
The lecture is divided into five chapters:
1) Conservation laws for mass momentum and energy in general integral formulation; simple forms for closed and
steady open systems derived therefrom. Manifestations of work. First Law of Thermodynamics.
2) Thermodynamic state. State diagrams and state changes. Thermal and caloric equations of state and material
properties of ideal and non-ideal gases, incompressible liquids and solids a well as gas-liquid-solid systems of pure
substances (steam tables). Mass and energy balances for phase change.
3) State (point) and process (path) variables. Work and heat of reversible iso-processes. Thermodynamic efficiency of
reversible cycle processes (Carnot, Joule, ...).
4) Entropy and Second Law of Thermodynamics, TS diagrams, Gibbs' equation, entropy production of irreversible
processes, Guoy-Stodola theorem. Maximization of entropy in thermodynamic equilibriation. Thermodynamic
potentials. Statistical interpretation of entropy.
5) Exergy balances and irreversible processes. Polytropic state change. Van der Waals gas, Clausius-Clapeyron.
Study goals:
23/04/2015
52
16.04.2015 14:16
Module Description MW1408
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Upon completion of the module, students can:
- characterize the central thermodynamic terms like energy, internal energy, entropy and exergy.
- discriminate between temperature and heat as well as state and path variables.
- derive simplified conservation laws for special systems using appropriate approximations of the general integral
formulations (including convective transport and unsteady effects).
- identify different forms of work in different thermodynamic systems in order to set up fully specified balances for
total/ internal/ mechanical energy.
- describe simple quantitative state changes of ideal gases using the thermal and caloric equations of state.
- determine state changes involving phase changes of pure substances using steam tables.
- calculate state changes of incompressible liquids and solids with constant material properties.
- apply the conservation laws in order to determine work and heat transferred in simple processes.
- name the characteristics of the most important cycle processes (Carnot, Joule, Rankine, Otto, Diesel, ...).
- evaluate heat engines and other machines for energy transformation using the results for work and heat of iso- and
cycle processes.
- evaluate heat engines and other machines for energy transformation using thermodynamic diagrams (TV, pV, Ts, hs,
ph, etc.) or steam tables.
- determine irreversible entropy production and the corresponding loss in exergy by balance equations and
discrimintae between reversible and irreversible processes.
- evaluate simple processes using exergy flow balances.
Teaching and learning methods:
multimedia-supported
The concepts and methods of thermodynamics are introduced in the lecture. In order to deepen the knowledge, a
tutorial session is demonstrating the application of the concepts and methods. Questions of the students, are
answered in small group tutorials. In addition, the students are encouraged to process weekly homework exercises,
which are corrected individually. E-tests on the Moodle plattform are completing the module.
Media formats:
Chalkboard, Beamer Presentation, Animations
Literature:
Baehr, H.D., und Kabelac, S. 2012. Thermodynamik: Grundlagen und technische Anwendungen, Springer.
Cengel, Y.A., Boles, M.A., 2001. Thermodynamics: An Engineering Approach, 4th edition. ed. McGraw-Hill College.
Müller, I., Müller, W.H., 2009. Fundamentals of Thermodynamics and Applications: With Historical Annotations and
Many Citations from Avogadro to Zermelo, Springer.
Weigand, B., et al. (2013) Thermodynamik Kompakt 3rd edition, Springer.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556516
Generated on: 16.04.2015 14:16
23/04/2015
53
16.04.2015 14:16
Module Description EI2583
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI2583: Signal Representation (MSE)
TUM Department of Electrical and Computer Engineering
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
75
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The knowledge-based learning outcomes are tested in a 90-minute written exam. The lecture and exercises will
account for 80% of the exam. The remaining 20% will be covered by topics related to the practical course. In total, up
to 20% of the exam can be tested by means of multiple choice tasks.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
differential calculus, complex analysis, sets, Fourier integral.
The following modules should be completed before registering for this module:
- Analysis 1
- Analysis 2
Contents:
Signal Representation:
continuous-time and discrete-time signals, linear time-invariant systems (LTI systems), convolution, convolutional
integral and sum, impulse response of LTI systems, stability and causality, periodic signals, orthogonal function
systems, continuous-time Fourier Series (FS), continuous-time Fourier Transformation (FT), Fourier integral,
relationship between FS and FT, corresponding FT pairs, amplitude modulation and signal reconstruction, linear
differential equations and transfer functions, Bode diagram, introduction to filters, discrete-time Fourier
Transformation (DTFT), linear difference equations, discrete-time filters, sampling theorem, sampling and
reconstruction of signals, sampling in frequence domain, Laplace Transformation (LT), convergence properties of the
LT, z Transformation (ZT), residue theorem, discrete Fourier Transformation (DFT).
Study goals:
After completing this module, the students will be able to describe signals in a deterministic fashion. Furthermore,
students will acquire well-founded knowledge of classical integral transforms for signal representation in both time
and frequency domain.
Teaching and learning methods:
In addtion to the students' individual lerarning methods, it is intended that students actively take part in the exercises,
23/04/2015
54
16.04.2015 14:17
Module Description EI2583
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
improving their knowledge through the discussion of solutions.
The teaching method is based on direct lectures and global exercise lessons (discussion of solutions to posed
problems). Additionally, collaborative tutor sessions are offered on the material. By means of supplementing practical
programming tasks, the students are familiarized with the practical aspects of signal processing and are introduced to
programming in MATLAB. These practical tasks are distributed as a homework exercise and solved individually.
Media formats:
The following media are provided:
- lecture slides
- script
- exercise catalogue with solutions as download
- programming exercises as download
Literature:
A.V. Oppenheim and A.S. Wilsky. Signals and Systems. Prentice Hall Signal Processing Series, 2. Edition, 1996,
H.W. Schüssler: Digitale Signalverarbeitung, Springer-Verlag 1994
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1058722
Generated on: 16.04.2015 14:17
23/04/2015
55
16.04.2015 14:17
Module Description EI2583
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI2583: Signal Representation (MSE)
TUM Department of Electrical and Computer Engineering
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
75
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The knowledge-based learning outcomes are tested in a 90-minute written exam. The lecture and exercises will
account for 80% of the exam. The remaining 20% will be covered by topics related to the practical course. In total, up
to 20% of the exam can be tested by means of multiple choice tasks.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
differential calculus, complex analysis, sets, Fourier integral.
The following modules should be completed before registering for this module:
- Analysis 1
- Analysis 2
Contents:
Signal Representation:
continuous-time and discrete-time signals, linear time-invariant systems (LTI systems), convolution, convolutional
integral and sum, impulse response of LTI systems, stability and causality, periodic signals, orthogonal function
systems, continuous-time Fourier Series (FS), continuous-time Fourier Transformation (FT), Fourier integral,
relationship between FS and FT, corresponding FT pairs, amplitude modulation and signal reconstruction, linear
differential equations and transfer functions, Bode diagram, introduction to filters, discrete-time Fourier
Transformation (DTFT), linear difference equations, discrete-time filters, sampling theorem, sampling and
reconstruction of signals, sampling in frequence domain, Laplace Transformation (LT), convergence properties of the
LT, z Transformation (ZT), residue theorem, discrete Fourier Transformation (DFT).
Study goals:
After completing this module, the students will be able to describe signals in a deterministic fashion. Furthermore,
students will acquire well-founded knowledge of classical integral transforms for signal representation in both time
and frequency domain.
Teaching and learning methods:
In addtion to the students' individual lerarning methods, it is intended that students actively take part in the exercises,
23/04/2015
56
16.04.2015 14:17
Module Description EI2583
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
improving their knowledge through the discussion of solutions.
The teaching method is based on direct lectures and global exercise lessons (discussion of solutions to posed
problems). Additionally, collaborative tutor sessions are offered on the material. By means of supplementing practical
programming tasks, the students are familiarized with the practical aspects of signal processing and are introduced to
programming in MATLAB. These practical tasks are distributed as a homework exercise and solved individually.
Media formats:
The following media are provided:
- lecture slides
- script
- exercise catalogue with solutions as download
- programming exercises as download
Literature:
A.V. Oppenheim and A.S. Wilsky. Signals and Systems. Prentice Hall Signal Processing Series, 2. Edition, 1996,
H.W. Schüssler: Digitale Signalverarbeitung, Springer-Verlag 1994
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1058722
Generated on: 16.04.2015 14:17
23/04/2015
57
16.04.2015 14:17
Module Description MA9804
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9804: Numerical Treatment of Partial
Differential Equations (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam.
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
MA9801 Basic Mathematics,
MA9802 Differential- and Integral Calculus,
MA9803 Modeling and Simulation with Ordinary Differential Equations
Contents:
Numerical methods for partial differential equations (p.d.e.'s)
- type classification,well/ill-posedness
- heat equation:
Finite difference methods
methods of lines,
Fourier techniques
- conservation laws:
strong/weak formulation, entropy condition, limiter
(? finite volume methods)
- second order elliptic problems:
Finite difference methods
linear systems of equations, iterative solution methods,
weak (variational) formulation of elliptic p.d.e.'s
Finite element method
Study goals:
At the end of the module, students
- are familiar with basic types of p.d.e.'s
- understand some of the mathematical difficulties that arise in the
23/04/2015
58
16.04.2015 14:18
Module Description MA9804
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
modeling with p.d.e.´s
- know basic analytical and numerical methods for the solution of p.d.e´s.
Teaching and learning methods:
The Lecture is presented on blackboard, overhead or tablet.
In Tutorials, students analyze and solve exercises by themselves with support by a tutor. Students work in teams with
MATLAB or similar software on the numerical solution of p.d.e.'s.
Media formats:
Presentation of exercises; Solution of exercises;
Programming with MATLAB.
Solutions of exercises can be found in the Internet.
Literature:
Dahmen, W./Reusken, A.: Numerik für Ingenieure und
Naturwissenschaftler, Springer Verlag (2006).
LeVeque: Numerical Methods for Conservation Laws, Birkhäuser (1992).
Quarteroni, Valli: Numerical Approximation of Partial Differential Equations, Springer Verlag (1997).
Jung, Langer: Methode der finiten Elemente für Ingenieure, Teubner (2001).
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555432
Generated on: 16.04.2015 14:18
23/04/2015
59
16.04.2015 14:18
Module Description MA9804
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MA9804: Numerical Treatment of Partial
Differential Equations (MSE)
TUM Department of Mathematics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam is graded. No books, handwritten notes etc. are allowed in the exam.
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
MA9801 Basic Mathematics,
MA9802 Differential- and Integral Calculus,
MA9803 Modeling and Simulation with Ordinary Differential Equations
Contents:
Numerical methods for partial differential equations (p.d.e.'s)
- type classification,well/ill-posedness
- heat equation:
Finite difference methods
methods of lines,
Fourier techniques
- conservation laws:
strong/weak formulation, entropy condition, limiter
(? finite volume methods)
- second order elliptic problems:
Finite difference methods
linear systems of equations, iterative solution methods,
weak (variational) formulation of elliptic p.d.e.'s
Finite element method
Study goals:
At the end of the module, students
- are familiar with basic types of p.d.e.'s
- understand some of the mathematical difficulties that arise in the
23/04/2015
60
16.04.2015 14:18
Module Description MA9804
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
modeling with p.d.e.´s
- know basic analytical and numerical methods for the solution of p.d.e´s.
Teaching and learning methods:
The Lecture is presented on blackboard, overhead or tablet.
In Tutorials, students analyze and solve exercises by themselves with support by a tutor. Students work in teams with
MATLAB or similar software on the numerical solution of p.d.e.'s.
Media formats:
Presentation of exercises; Solution of exercises;
Programming with MATLAB.
Solutions of exercises can be found in the Internet.
Literature:
Dahmen, W./Reusken, A.: Numerik für Ingenieure und
Naturwissenschaftler, Springer Verlag (2006).
LeVeque: Numerical Methods for Conservation Laws, Birkhäuser (1992).
Quarteroni, Valli: Numerical Approximation of Partial Differential Equations, Springer Verlag (1997).
Jung, Langer: Methode der finiten Elemente für Ingenieure, Teubner (2001).
Responsible for the module:
Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555432
Generated on: 16.04.2015 14:18
23/04/2015
61
16.04.2015 14:18
Module Description BGU64009
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BGU64009: Material Science II (MSE)
Chair of Zerstörungsfreie Prüfung (Prof. Große)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam takes place at the end of the semester and verifies the knowledge acquired in lecture and exercise
course.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Attendance of the lecture Material Science I is required for Material Science II
Contents:
In general the lecture Material Science (MSI & MSII) covers all subareas of materials science from physical and
chemical fundamentals of substances and materials to the selection of construction materials, their design-specific
application and the characterization of parts. In Material Science II the fundamentals of materials science are
deepened by examining phenomena like phase transitions and material transport. Moreover, an understanding of
fracture mechanical processes and their testing will be reached based on mechanical properties on the material
scale. Finally, the various materials are examined against the background of the acquired physical and chemical
relations.
The particular contens are:
1. The real crystal
2. Phase transitions in solid materials
3. Material transport and diffusion
4. Mechanical properties on the material scale (deformation, strength, fracture processes, destructive and
non-destructive testing)
5. Materials (Metals, plastics, ceramics, biological substances, building materials, composites, fiber-reinforced
composites)
Study goals:
Students are enabled to select and apply materials with regard to parts and constructions. For this purpose physical,
chemical and engineering methods and criteria used to evaluate the characteristics of materials are conveyed.
Students know the most important building and construction materials as well as the methods of characterization of
materials and parts. Terms like tensile strength, corrosion resistance, hardness, ductility, brittleness or anisotropy are
understood and can be assigned to the respective materials.
23/04/2015
62
16.04.2015 14:19
Module Description BGU64009
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
The module consists of a lecture and an accompanying exercise course. The contents of the lecture are conveyed by
speech and presentations. Accompanying the lecture, students are expected to work through a textbook which can
be supplemented by additional literature for further deepening. In the exercise course the contents of the lecture are
illustrated by calculations and practical experiments.
Media formats:
The media used in the lecture are presentations, videos and blackboard sketches
Literature:
textbook accompanying the lecture:
Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010;
additional:
Askeland, Donald R., Materialwissenschaften, 1. Aufl., Spektrum Akandem. Verlag 2010;
The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006;
Roos, E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008;
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=622577
Generated on: 16.04.2015 14:19
23/04/2015
63
16.04.2015 14:19
Module Description BGU64009
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BGU64009: Material Science II (MSE)
Chair of Zerstörungsfreie Prüfung (Prof. Große)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
105
Contact
hours:
75
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The written exam takes place at the end of the semester and verifies the knowledge acquired in lecture and exercise
course.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Attendance of the lecture Material Science I is required for Material Science II
Contents:
In general the lecture Material Science (MSI & MSII) covers all subareas of materials science from physical and
chemical fundamentals of substances and materials to the selection of construction materials, their design-specific
application and the characterization of parts. In Material Science II the fundamentals of materials science are
deepened by examining phenomena like phase transitions and material transport. Moreover, an understanding of
fracture mechanical processes and their testing will be reached based on mechanical properties on the material
scale. Finally, the various materials are examined against the background of the acquired physical and chemical
relations.
The particular contens are:
1. The real crystal
2. Phase transitions in solid materials
3. Material transport and diffusion
4. Mechanical properties on the material scale (deformation, strength, fracture processes, destructive and
non-destructive testing)
5. Materials (Metals, plastics, ceramics, biological substances, building materials, composites, fiber-reinforced
composites)
Study goals:
Students are enabled to select and apply materials with regard to parts and constructions. For this purpose physical,
chemical and engineering methods and criteria used to evaluate the characteristics of materials are conveyed.
Students know the most important building and construction materials as well as the methods of characterization of
materials and parts. Terms like tensile strength, corrosion resistance, hardness, ductility, brittleness or anisotropy are
understood and can be assigned to the respective materials.
23/04/2015
64
16.04.2015 14:19
Module Description BGU64009
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching and learning methods:
The module consists of a lecture and an accompanying exercise course. The contents of the lecture are conveyed by
speech and presentations. Accompanying the lecture, students are expected to work through a textbook which can
be supplemented by additional literature for further deepening. In the exercise course the contents of the lecture are
illustrated by calculations and practical experiments.
Media formats:
The media used in the lecture are presentations, videos and blackboard sketches
Literature:
textbook accompanying the lecture:
Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010;
additional:
Askeland, Donald R., Materialwissenschaften, 1. Aufl., Spektrum Akandem. Verlag 2010;
The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006;
Roos, E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008;
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=622577
Generated on: 16.04.2015 14:19
23/04/2015
65
16.04.2015 14:19
Module Description WZ8101
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
WZ8101: Biomimetics
TUM School of Life Sciences Weihenstephan
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
90
Contact
hours:
60
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Written exam (60 min.). Central element of the exam is the lecture material. Students are free to provide a mid-term
performance. The mid-term performance consists of the preparation and presentation of a scientific poster.
Preparation of the poster will be done within the excercise of this module. In case that the poster is prepared in
groupwork (max. 4 students), every student of the group has to present at least a part of the poster. The mid-term
performance will be marked in a bonus regulation. The overall module mark can be upgraded by 0,3 if the overall
impression better characterizes the study results of the student. This bonus regulation has no influence on passing
the module exam. In case of a re-examination the bonus regulation can be considerd for upgrading the module mark.
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
The course requires basic knowledge in mathematics, physics, chemistry and technical mechanics.
Contents:
Based on the previously imparted knowledges in mathematics and physics, the students are teached in the basic
principles and properties of biological systems.
Content: Overview of Biology, molecular based design, self-organization, packaging technologies, material properties,
surfaces, construction, biomechanics, information processing.
Study goals:
After attending the course, the students are able to:
1. understand biological systems in their functional context
2. understand the approach of biological studies
3. analyse biological systems by the use of engineering methods to extract relevant parameters
4. understand the transfer from biological data sets into technical applications
5. evaluate the bio-inspired applications
6. apply the transfer from biological data into technical applications
Teaching and learning methods:
Learning results will be worked out in two complementary components. The lecture (power-point, blackboard, videos)
introduces the students to basic principles of biology and the implementation of biological systems into technical
23/04/2015
66
16.04.2015 14:20
Module Description WZ8101
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
applications. Acquired knowledge will be deepened in the subsequent excercise. The students compile a scientific
poster on a biomimetic topic. The main objective is to apply acquried engineering methods to biometic sollutions and
to evaluate existing biomimetic applications in respect to feasibility and market potential.
Media formats:
Powerpoint-Presentation, Blackboard and Videos.
Literature:
Students will be provided with powerpoint slides one week before each lecture via Moodle. Additional references will
introduced at the first date of the lecture and at appropriate dates for special topics.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
Tobias Kohl ([email protected]) (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=558964
Generated on: 16.04.2015 14:20
23/04/2015
67
16.04.2015 14:20
Module Description WZ8101
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
WZ8101: Biomimetics
TUM School of Life Sciences Weihenstephan
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
90
Contact
hours:
60
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Written exam (60 min.). Central element of the exam is the lecture material. Students are free to provide a mid-term
performance. The mid-term performance consists of the preparation and presentation of a scientific poster.
Preparation of the poster will be done within the excercise of this module. In case that the poster is prepared in
groupwork (max. 4 students), every student of the group has to present at least a part of the poster. The mid-term
performance will be marked in a bonus regulation. The overall module mark can be upgraded by 0,3 if the overall
impression better characterizes the study results of the student. This bonus regulation has no influence on passing
the module exam. In case of a re-examination the bonus regulation can be considerd for upgrading the module mark.
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
The course requires basic knowledge in mathematics, physics, chemistry and technical mechanics.
Contents:
Based on the previously imparted knowledges in mathematics and physics, the students are teached in the basic
principles and properties of biological systems.
Content: Overview of Biology, molecular based design, self-organization, packaging technologies, material properties,
surfaces, construction, biomechanics, information processing.
Study goals:
After attending the course, the students are able to:
1. understand biological systems in their functional context
2. understand the approach of biological studies
3. analyse biological systems by the use of engineering methods to extract relevant parameters
4. understand the transfer from biological data sets into technical applications
5. evaluate the bio-inspired applications
6. apply the transfer from biological data into technical applications
Teaching and learning methods:
Learning results will be worked out in two complementary components. The lecture (power-point, blackboard, videos)
introduces the students to basic principles of biology and the implementation of biological systems into technical
23/04/2015
68
16.04.2015 14:20
Module Description WZ8101
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
applications. Acquired knowledge will be deepened in the subsequent excercise. The students compile a scientific
poster on a biomimetic topic. The main objective is to apply acquried engineering methods to biometic sollutions and
to evaluate existing biomimetic applications in respect to feasibility and market potential.
Media formats:
Powerpoint-Presentation, Blackboard and Videos.
Literature:
Students will be provided with powerpoint slides one week before each lecture via Moodle. Additional references will
introduced at the first date of the lecture and at appropriate dates for special topics.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
Tobias Kohl ([email protected]) (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=558964
Generated on: 16.04.2015 14:20
23/04/2015
69
16.04.2015 14:20
Module Description BV410014
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BV410014: Fluid and Structural Mechanics
Associate Professorship of Hydromechanics (Prof. Manhart)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
94
Contact
hours:
56
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The module will be validated by a written exam covering all topics of the lectures and tutorials. The exam will be split
into two parts: first part (60 min.): Fluid Mechanics; second part (60 min.): Structural Mechanics. Further details will be
ancounced in the lecture and on the board.
Exam type:
written
Exam duration
(min.):
120
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Mathematische Grundlagen, Engineering Mechanics I and II, Continuum Mechanics
Contents:
The module Fluid and Structural Mechanics (FSM) deepens the fundamental mechanics taught in the previous
semesters, e.g. from mathematics, engineering mechanics and continuum mechanics. More advanced mechanical
theory is addressed as well as more complex applications in the different fields of engineering science. Content of the
module:
Part 1 - Fluids: (i) Momentum theorem (ii) Bernoulli equation (iii) Pipe flow (iv) Potential flow;
Part 2 - Structures : (i) Advanced structural analysis (2d/3d), (ii) nonlinear structural analysis, (iii) discretisation
techniques for structural analysis
Study goals:
After successful termination of the first part of the module, the students will be able to (i) analyse simple flow
situations with classical engineering methods, (ii) analyse pipe flow system problems and (iii) describe flow problems
of ideal fluids via the potential theory. The second part enables them to apply advanced analytical methods for linear
and nonlinear structural analysis for typical engineering problems. In addition they will understand basic numerical
approaches for structural analysis.
Teaching and learning methods:
Lecture: PowerPoint presentation, case studies on the blackboard, other presentation techniques; Tutorial: Problem
solving exercises either group based or individual. Introduction into software for fluids and structures based on special
student versions and laptops of the students.
Media formats:
23/04/2015
70
16.04.2015 14:21
Module Description BV410014
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Presentations, case studies, problem solving, lab demonstrations. The lectures will be partially supported by software
demonstrations in class.
Literature:
Lecture notes, tutorial scripts, exercises, Books (e.g. Fluid Mechanics from Kundu & Cohen)
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=706001
Generated on: 16.04.2015 14:21
23/04/2015
71
16.04.2015 14:21
Module Description BV410014
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BV410014: Fluid and Structural Mechanics
Associate Professorship of Hydromechanics (Prof. Manhart)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
94
Contact
hours:
56
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The module will be validated by a written exam covering all topics of the lectures and tutorials. The exam will be split
into two parts: first part (60 min.): Fluid Mechanics; second part (60 min.): Structural Mechanics. Further details will be
ancounced in the lecture and on the board.
Exam type:
written
Exam duration
(min.):
120
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Mathematische Grundlagen, Engineering Mechanics I and II, Continuum Mechanics
Contents:
The module Fluid and Structural Mechanics (FSM) deepens the fundamental mechanics taught in the previous
semesters, e.g. from mathematics, engineering mechanics and continuum mechanics. More advanced mechanical
theory is addressed as well as more complex applications in the different fields of engineering science. Content of the
module:
Part 1 - Fluids: (i) Momentum theorem (ii) Bernoulli equation (iii) Pipe flow (iv) Potential flow;
Part 2 - Structures : (i) Advanced structural analysis (2d/3d), (ii) nonlinear structural analysis, (iii) discretisation
techniques for structural analysis
Study goals:
After successful termination of the first part of the module, the students will be able to (i) analyse simple flow
situations with classical engineering methods, (ii) analyse pipe flow system problems and (iii) describe flow problems
of ideal fluids via the potential theory. The second part enables them to apply advanced analytical methods for linear
and nonlinear structural analysis for typical engineering problems. In addition they will understand basic numerical
approaches for structural analysis.
Teaching and learning methods:
Lecture: PowerPoint presentation, case studies on the blackboard, other presentation techniques; Tutorial: Problem
solving exercises either group based or individual. Introduction into software for fluids and structures based on special
student versions and laptops of the students.
Media formats:
23/04/2015
72
16.04.2015 14:21
Module Description BV410014
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Presentations, case studies, problem solving, lab demonstrations. The lectures will be partially supported by software
demonstrations in class.
Literature:
Lecture notes, tutorial scripts, exercises, Books (e.g. Fluid Mechanics from Kundu & Cohen)
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=706001
Generated on: 16.04.2015 14:21
23/04/2015
73
16.04.2015 14:21
Module Description MW1410
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1410: Heat Transfer (MSE)
Associate Professorship of Raumfahrtantriebe (Prof. Haidn)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Schriftliche Abschlussklausur, Hilfsmittel sind erlaubt (Mitschriften, Bücher, Formelsammlung)
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Thermodynamik, Fluid- und Festkörpermechanik
Contents:
" Einführung in Mechanismen der Wärmeübertragung
" Grundlagen der Wärmeleitung: Fouriersches Gesetz Fouriersche Differentialgleichung - Randbedingungen
" Stationäre Wärmeleitung: Péclet-Gleichung für ebene, zylindrische und sphärische Geometrien Formfaktoren für 2D
- Leitung
" Wärmetransport durch Strahlung: Schwarzkörperstrahlung, Emission und Absorption von grauen Körpern ,
Kirchhoffsches Gesetz, Wärmeaustausch zwischen Körpern durch Strahlung, spektrale Eigenschaften von
strahlenden Oberflächen
" Wärmeüberetrager: NTU-efficiency & Log-averaged temperature methods
" Convective Heat Transfer: physical phenomena of convective heat transfer - similarity theory and dimensionless
groups - correlations for the Nußelt-numbers in configurations of applied interest.
" Ähnlichkeitstheorie: Theorem von Buckingham Identifikation dimensionloser Gruppen Auslegung von Experimenten,
Präsentation of experimentellen Ergebissen Reynolds-Analogie
" Freie Konvektion: laminare Konvektion an einer isothermen, vertikalen Oberfläche, Boussinesq-Approximation der
Grenzschichtgleichungen - dimensionlose Gruppen - Nußelt-Korrelationen für die isotherme Wand.
" Transiente Wärmeübertragung: Biot-Zahl halb-unendlicher Raum - Fourier Serien für Platte, Zylinder und Kugel,
Ähnlichkeitslösungen
Study goals:
Mit der Vorlesung ""Wärmeübertragung"" soll den Studenten mit grundlegenden Konzepten und Werkzeugen der
Wäreübertragung vertraut gemacht werden.
Teaching and learning methods:
In der Vorlesung werden die Lehrinhalte anhand von Vortrag und Präsentation vermittelt. Begriffe und
23/04/2015
74
16.04.2015 14:22
Module Description MW1410
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Grundbeziehungen werden vorgestellt und in den Übungen anhand von realen Anwendungen oder Rechenbeispielen
vertieft. Die Präsentationfolien der Vorlesung, die Übungsaufgaben mit dazugehörigen Musterlösungen und ein
Fragenkatalog zur eigenständigen Bearbeitung werden über die TUM-Lernplattform zur Verfügung gestellt.
Individuelle Fragen können direkt nach der Vorlesung mit den Dozenten oder in der Assistentensprechstunde (Termin
nach Vereinbarung) diskutiert werden.
Media formats:
Folien, Tafelanschrieb
Literature:
Literatur:
1. Baehr, H.D. ; Stephan, K.: Wärme-und Stoffübertragung, Springer Verlag, Berlin, Heidelberg, New York, 1994
2. Eckert, E.R.G. ; Drake, R.M.: Analysis of Heat and Mass Transfer, McGraw - Hill Book Co., New York, 1959
3. Gebhart, B.: Heat Transfer, McGraw - Hill Book Co., New York, 1961
4. Grigull, U. ; Sandner, H.: Wärmeleitung, Springer Verlag, Berlin, Heidelberg, New York, 1979
5. Gröber, H. ; Erk, S. ; Grigull, U.: Die Grundgesetze der Wärmeübertragung, 3. Aufl., 3. Neudruck (Reprint) Springer
Verlag, Berlin, Heidelberg, New York, 1981
6. Incropera, F.P. ; DeWitt, D.P.: Introduction to Heat Transfer, 2nd edition, John Wiley & sons, New York, 1990
7. Jakob, M.: Heat Transfer, Vol. 1, 2 8th printing, J. Wiley and Sons, New York, 1962
8. McAdams, W.H.: Heat Transmission, 3rd edition, McGraw - Hill Book Co., New York, 1954
9. Mayinger, F.: Strömung und Wärmeübergang in Gas-Flüssigkeitsgemischen, Springer Verlag, Wien, NewYork,
1982
10. Mills, A.F.: Heat and Mass Transfer, Irwin , 1995
11. Siegel, R. ; Howell, J.R. ; Lorengel, J.: Wärmeübertragung durch Strahlung, Teil I: Grundlagen und
Materialeigenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1988
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556522
Generated on: 16.04.2015 14:22
23/04/2015
75
16.04.2015 14:22
Module Description MW1410
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1410: Heat Transfer (MSE)
Associate Professorship of Raumfahrtantriebe (Prof. Haidn)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Schriftliche Abschlussklausur, Hilfsmittel sind erlaubt (Mitschriften, Bücher, Formelsammlung)
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Thermodynamik, Fluid- und Festkörpermechanik
Contents:
" Einführung in Mechanismen der Wärmeübertragung
" Grundlagen der Wärmeleitung: Fouriersches Gesetz Fouriersche Differentialgleichung - Randbedingungen
" Stationäre Wärmeleitung: Péclet-Gleichung für ebene, zylindrische und sphärische Geometrien Formfaktoren für 2D
- Leitung
" Wärmetransport durch Strahlung: Schwarzkörperstrahlung, Emission und Absorption von grauen Körpern ,
Kirchhoffsches Gesetz, Wärmeaustausch zwischen Körpern durch Strahlung, spektrale Eigenschaften von
strahlenden Oberflächen
" Wärmeüberetrager: NTU-efficiency & Log-averaged temperature methods
" Convective Heat Transfer: physical phenomena of convective heat transfer - similarity theory and dimensionless
groups - correlations for the Nußelt-numbers in configurations of applied interest.
" Ähnlichkeitstheorie: Theorem von Buckingham Identifikation dimensionloser Gruppen Auslegung von Experimenten,
Präsentation of experimentellen Ergebissen Reynolds-Analogie
" Freie Konvektion: laminare Konvektion an einer isothermen, vertikalen Oberfläche, Boussinesq-Approximation der
Grenzschichtgleichungen - dimensionlose Gruppen - Nußelt-Korrelationen für die isotherme Wand.
" Transiente Wärmeübertragung: Biot-Zahl halb-unendlicher Raum - Fourier Serien für Platte, Zylinder und Kugel,
Ähnlichkeitslösungen
Study goals:
Mit der Vorlesung ""Wärmeübertragung"" soll den Studenten mit grundlegenden Konzepten und Werkzeugen der
Wäreübertragung vertraut gemacht werden.
Teaching and learning methods:
In der Vorlesung werden die Lehrinhalte anhand von Vortrag und Präsentation vermittelt. Begriffe und
23/04/2015
76
16.04.2015 14:22
Module Description MW1410
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Grundbeziehungen werden vorgestellt und in den Übungen anhand von realen Anwendungen oder Rechenbeispielen
vertieft. Die Präsentationfolien der Vorlesung, die Übungsaufgaben mit dazugehörigen Musterlösungen und ein
Fragenkatalog zur eigenständigen Bearbeitung werden über die TUM-Lernplattform zur Verfügung gestellt.
Individuelle Fragen können direkt nach der Vorlesung mit den Dozenten oder in der Assistentensprechstunde (Termin
nach Vereinbarung) diskutiert werden.
Media formats:
Folien, Tafelanschrieb
Literature:
Literatur:
1. Baehr, H.D. ; Stephan, K.: Wärme-und Stoffübertragung, Springer Verlag, Berlin, Heidelberg, New York, 1994
2. Eckert, E.R.G. ; Drake, R.M.: Analysis of Heat and Mass Transfer, McGraw - Hill Book Co., New York, 1959
3. Gebhart, B.: Heat Transfer, McGraw - Hill Book Co., New York, 1961
4. Grigull, U. ; Sandner, H.: Wärmeleitung, Springer Verlag, Berlin, Heidelberg, New York, 1979
5. Gröber, H. ; Erk, S. ; Grigull, U.: Die Grundgesetze der Wärmeübertragung, 3. Aufl., 3. Neudruck (Reprint) Springer
Verlag, Berlin, Heidelberg, New York, 1981
6. Incropera, F.P. ; DeWitt, D.P.: Introduction to Heat Transfer, 2nd edition, John Wiley & sons, New York, 1990
7. Jakob, M.: Heat Transfer, Vol. 1, 2 8th printing, J. Wiley and Sons, New York, 1962
8. McAdams, W.H.: Heat Transmission, 3rd edition, McGraw - Hill Book Co., New York, 1954
9. Mayinger, F.: Strömung und Wärmeübergang in Gas-Flüssigkeitsgemischen, Springer Verlag, Wien, NewYork,
1982
10. Mills, A.F.: Heat and Mass Transfer, Irwin , 1995
11. Siegel, R. ; Howell, J.R. ; Lorengel, J.: Wärmeübertragung durch Strahlung, Teil I: Grundlagen und
Materialeigenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1988
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556522
Generated on: 16.04.2015 14:22
23/04/2015
77
16.04.2015 14:22
Module Description IN8012
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8012: Engineering Informatics II (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE)
Contents:
Modeling, object-oriented design methods with UML, software engineering basics (analysis, system design and
detailed design), object-relational mappings (ORM) to relational query languages (SQL), data integrity, basis of
exception handling and multi-user systems, security aspects (access control, authorisation); depending on the focus
of the concrete lecture more content in software engineering (e.g. testing and implementation of large software
systems, design patterns) or in databases (e.g. physical design for relational databases, recovery / backup).
Study goals:
Students master important concepts of software engineering as well as of relational databases and are able to apply
them systematically. They are able use software engineering methods to convert an informal problem description into
a formal model.
Furthermore, they are able to formulate, analyze, and design models with the object-oriented modeling language
UML. In addition the students are able to apply these concepts in designing applications. Depending on the focus of
the concrete lecture more stress is laid on software engineering aspects (e.g. design patterns, mobile systems) or
database aspects (e.g. database application programming, relational database design theory).
Teaching and learning methods:
lecture, web interface for self-study
Media formats:
Lecture with animated slides
Literature:
- B. Brügge, A. Dutoit: Objektorientierte Softwaretechnik. Mit Entwurfsmustern, UML und Java, Pearson Verlag, 2004.
23/04/2015
78
16.04.2015 14:23
Module Description IN8012
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
- B. Brügge, A. Dutoit: Object-Oriented Software Engineering: Using UML, Patterns and Java, Prentice Hall, 3rd
Edition, 2009.
- Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung. 8., aktualisierte und erweiterte Auflage,
Oldenbourg Verlag, 2011
- A. Kemper, M. Wimmer: Übungsbuch: Datenbanksysteme. 3. Auflage Oldenbourg Verlag, 2012
Responsible for the module:
Kemper, Alfons; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556994
Generated on: 16.04.2015 14:23
23/04/2015
79
16.04.2015 14:23
Module Description IN8012
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8012: Engineering Informatics II (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE)
Contents:
Modeling, object-oriented design methods with UML, software engineering basics (analysis, system design and
detailed design), object-relational mappings (ORM) to relational query languages (SQL), data integrity, basis of
exception handling and multi-user systems, security aspects (access control, authorisation); depending on the focus
of the concrete lecture more content in software engineering (e.g. testing and implementation of large software
systems, design patterns) or in databases (e.g. physical design for relational databases, recovery / backup).
Study goals:
Students master important concepts of software engineering as well as of relational databases and are able to apply
them systematically. They are able use software engineering methods to convert an informal problem description into
a formal model.
Furthermore, they are able to formulate, analyze, and design models with the object-oriented modeling language
UML. In addition the students are able to apply these concepts in designing applications. Depending on the focus of
the concrete lecture more stress is laid on software engineering aspects (e.g. design patterns, mobile systems) or
database aspects (e.g. database application programming, relational database design theory).
Teaching and learning methods:
lecture, web interface for self-study
Media formats:
Lecture with animated slides
Literature:
- B. Brügge, A. Dutoit: Objektorientierte Softwaretechnik. Mit Entwurfsmustern, UML und Java, Pearson Verlag, 2004.
23/04/2015
80
16.04.2015 14:23
Module Description IN8012
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
- B. Brügge, A. Dutoit: Object-Oriented Software Engineering: Using UML, Patterns and Java, Prentice Hall, 3rd
Edition, 2009.
- Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung. 8., aktualisierte und erweiterte Auflage,
Oldenbourg Verlag, 2011
- A. Kemper, M. Wimmer: Übungsbuch: Datenbanksysteme. 3. Auflage Oldenbourg Verlag, 2012
Responsible for the module:
Kemper, Alfons; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556994
Generated on: 16.04.2015 14:23
23/04/2015
81
16.04.2015 14:23
Module Description EI5182
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI5182: Control Theory (MSE)
TUM Department of Electrical and Computer Engineering
Module level:
not specified
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
75
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
written exam
Exam type:
written
Exam duration
(min.):
90min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Modellierung und Simulation mit gewöhnlichen Differentialgleichungen
Contents:
Systems: Definitions and Properties
Stability
Lyapunov Stability, Lyapunov function, I/O-Stability, Linearisation
Analysis of linear systems
Normal forms, Stability, Controllability, Observability, state feedback, observers
Linear SISO systems
Laplace transformation, transfer functions, Block diagrams, Nyquist criterium, Bode diagram, root locus, controller
design
Study goals:
Control theory is introduced with focus on linear systems. Students will be able to analyze a system, select an
appropriate controller and parameterize this controller.
Teaching and learning methods:
lecture
tutorial
Homework
Media formats:
The following media is used:
23/04/2015
82
16.04.2015 14:24
Module Description EI5182
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
- Black board
- Slides
- Exercises
Literature:
Literature:
- E. Sontag: Mathematical Control Theory, Springer 1998.
- K.J. Aström/R.M. Murray: Analysis and Design of Feedback Systems, Princeton University Press, 2010.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556410
Generated on: 16.04.2015 14:24
23/04/2015
83
16.04.2015 14:24
Module Description EI5182
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI5182: Control Theory (MSE)
TUM Department of Electrical and Computer Engineering
Module level:
not specified
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
75
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
written exam
Exam type:
written
Exam duration
(min.):
90min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Modellierung und Simulation mit gewöhnlichen Differentialgleichungen
Contents:
Systems: Definitions and Properties
Stability
Lyapunov Stability, Lyapunov function, I/O-Stability, Linearisation
Analysis of linear systems
Normal forms, Stability, Controllability, Observability, state feedback, observers
Linear SISO systems
Laplace transformation, transfer functions, Block diagrams, Nyquist criterium, Bode diagram, root locus, controller
design
Study goals:
Control theory is introduced with focus on linear systems. Students will be able to analyze a system, select an
appropriate controller and parameterize this controller.
Teaching and learning methods:
lecture
tutorial
Homework
Media formats:
The following media is used:
23/04/2015
84
16.04.2015 14:24
Module Description EI5182
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
- Black board
- Slides
- Exercises
Literature:
Literature:
- E. Sontag: Mathematical Control Theory, Springer 1998.
- K.J. Aström/R.M. Murray: Analysis and Design of Feedback Systems, Princeton University Press, 2010.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556410
Generated on: 16.04.2015 14:24
23/04/2015
85
16.04.2015 14:24
Module Description EI4282
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI4282: Digital Integrated Circuit in Engineering
(MSE)
TUM Department of Electrical and Computer Engineering
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
60
Contact
hours:
60
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Schriftliche Prüfung von 60 Minuten Dauer
Exam type:
written
Exam duration
(min.):
60min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
high school maths and physics
Contents:
In this course, students shall learn ...
basic concepts of digital logic circuits and functional blocks; optimized design of Finite-State-Machines using
pipelining principles; technical and economical aspects of integrated circuit hardware platforms; introduction to
semiconductor memory; introduction to multi-criteria circuit optimization problems: area vs. performance vs. power
The content of the course covers Moore's Law of semiconductor
integration, basic MOSFET operation, systematic design of combinatorial
and sequential logic (Finite-State-Machines, synchronous circuits,
pipelining), IC hardware platforms (ASIC,
FPGA), arithmetic building blocks (adder, multiplier).
Study goals:
Objective of the course is to convey a basic understanding of basic concepts of digital logic and function blocks, to be
able to optimize finite automata by applying pipelining and to understand technical and economic implications in the
selection of IC hardware platforms. Additional the participants will get a basic understanding of MOS transistors and
CMOS circuits
Teaching and learning methods:
The teaching methods are in the lecture teacher-centered presentations and in the exercises the presentation of
in-class examples.
In addition to the individual methods of the students deepening of knowledge is reached by repetitive calculation of
exercise examples in either central or tutor classes.
23/04/2015
86
16.04.2015 14:26
Module Description EI4282
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
Folgende Medienformen finden Verwendung:
- PPT-Präsentationen mit handschriftlichen Ergänzungen
- Skript
- Übungsaufgaben mit Lösungen als Download im Internet
Literature:
- J. Rabaey, "Digital Integrated Circuits", Prentice Hall
- N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design",Addison Wesley
- Synthesis and Optimization of Digital Circuits; De Micheli, Giovanni; McGraw-Hill, 1994.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556403
Generated on: 16.04.2015 14:26
23/04/2015
87
16.04.2015 14:26
Module Description EI4282
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
EI4282: Digital Integrated Circuit in Engineering
(MSE)
TUM Department of Electrical and Computer Engineering
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
60
Contact
hours:
60
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Schriftliche Prüfung von 60 Minuten Dauer
Exam type:
written
Exam duration
(min.):
60min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
high school maths and physics
Contents:
In this course, students shall learn ...
basic concepts of digital logic circuits and functional blocks; optimized design of Finite-State-Machines using
pipelining principles; technical and economical aspects of integrated circuit hardware platforms; introduction to
semiconductor memory; introduction to multi-criteria circuit optimization problems: area vs. performance vs. power
The content of the course covers Moore's Law of semiconductor
integration, basic MOSFET operation, systematic design of combinatorial
and sequential logic (Finite-State-Machines, synchronous circuits,
pipelining), IC hardware platforms (ASIC,
FPGA), arithmetic building blocks (adder, multiplier).
Study goals:
Objective of the course is to convey a basic understanding of basic concepts of digital logic and function blocks, to be
able to optimize finite automata by applying pipelining and to understand technical and economic implications in the
selection of IC hardware platforms. Additional the participants will get a basic understanding of MOS transistors and
CMOS circuits
Teaching and learning methods:
The teaching methods are in the lecture teacher-centered presentations and in the exercises the presentation of
in-class examples.
In addition to the individual methods of the students deepening of knowledge is reached by repetitive calculation of
exercise examples in either central or tutor classes.
23/04/2015
88
16.04.2015 14:26
Module Description EI4282
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
Folgende Medienformen finden Verwendung:
- PPT-Präsentationen mit handschriftlichen Ergänzungen
- Skript
- Übungsaufgaben mit Lösungen als Download im Internet
Literature:
- J. Rabaey, "Digital Integrated Circuits", Prentice Hall
- N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design",Addison Wesley
- Synthesis and Optimization of Digital Circuits; De Micheli, Giovanni; McGraw-Hill, 1994.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556403
Generated on: 16.04.2015 14:26
23/04/2015
89
16.04.2015 14:26
Module Description WI100809
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
WI100809: Entrepreneurial Idea Development
Chair of Entrepreneurship (Prof. Patzelt)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
90
Contact
hours:
30
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The grading is based on presentations (40% of grade) and a term paper (60% of grade).
Exam type:
written and oral
Exam duration
(min.):
30 min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
Yes
Conversation:
Yes
Written paper:
Yes
(Recommended) requirements:
None
Contents:
The course offers an introduction to entrepreneurship theory and practice. First students will learn in lectures about
theoretical approaches to entrepreneurship and important topics such as entrepreneurial decision making and
psychology, opportunity recognition, entrepreneurial finance, and strategy. The second part of the course is a "handson-experience" where student teams will work out an opportunity assessment plan based on innovative business
ideas they develop.
Study goals:
After course participation students are able to understand the processes associated with the recognition and
development of entrepreneurial opportunities. In addition, they are able to develop an opportunity assessment plan.
Teaching and learning methods:
The module consists of introductory lectures including cases and class discussion. In group work students develop
business ideas and present the opportunity assessment plans they developed.
Media formats:
PowerPoint, Flipchart.
Literature:
Hisrich, R. D./Peters, M. P./Shepherd, D. A.: Entrepreneurship, 8th edition, McGraw-Hill, 2010
Responsible for the module:
not specified: not specified
23/04/2015
90
16.04.2015 14:32
Module Description WI100809
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1070625
Generated on: 16.04.2015 14:32
23/04/2015
91
16.04.2015 14:32
Module Description WI100809
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
WI100809: Entrepreneurial Idea Development
Chair of Entrepreneurship (Prof. Patzelt)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
4
Total number
of hours:
120
Self-study
hours:
90
Contact
hours:
30
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The grading is based on presentations (40% of grade) and a term paper (60% of grade).
Exam type:
written and oral
Exam duration
(min.):
30 min
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
Yes
Conversation:
Yes
Written paper:
Yes
(Recommended) requirements:
None
Contents:
The course offers an introduction to entrepreneurship theory and practice. First students will learn in lectures about
theoretical approaches to entrepreneurship and important topics such as entrepreneurial decision making and
psychology, opportunity recognition, entrepreneurial finance, and strategy. The second part of the course is a "handson-experience" where student teams will work out an opportunity assessment plan based on innovative business
ideas they develop.
Study goals:
After course participation students are able to understand the processes associated with the recognition and
development of entrepreneurial opportunities. In addition, they are able to develop an opportunity assessment plan.
Teaching and learning methods:
The module consists of introductory lectures including cases and class discussion. In group work students develop
business ideas and present the opportunity assessment plans they developed.
Media formats:
PowerPoint, Flipchart.
Literature:
Hisrich, R. D./Peters, M. P./Shepherd, D. A.: Entrepreneurship, 8th edition, McGraw-Hill, 2010
Responsible for the module:
not specified: not specified
23/04/2015
92
16.04.2015 14:32
Module Description WI100809
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1070625
Generated on: 16.04.2015 14:32
23/04/2015
93
16.04.2015 14:32
Module Description SE0004
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0004: Introduction into Scientific Research
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
60
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Eine oder mehrere Prüfungen zu Lehrveranstaltungen oder Studienleistungen aus dem Themenbereich
"Wissenschaftliches Arbeiten". Dabei müssen einzelne (Teil-)Prüfungsleistungen mind. 2 ECTS umfassen. Es kann
maximal eine englischsprachige Prüfungsleistung eingebracht werden. Anerkannte Prüfungen zur Erfüllung des
Moduls sind auf der MSE-Homepage in Form einer Lehrveranstaltungsübersicht veröffentlicht und werden
regelmäßig aktualisiert (http://www.engineering.mse.tum.de/studium/studienleistungen/).
Im Rahmen des Moduls kann zudem als Teilprüfungsleistung ein Bericht oder Poster über ein abgeleistetes
Forschungspraktikums in Höhe von 4 ECTS anerkannt werden. Der Bericht oder das Poster zum
Forschungspraktikum muss von einem Prüfer der am Studiengang beteiligten Fakultäten bewertet sein.
Informationen zum Forschungspraktikum sind auf der MSE-Homepager veröfftentlicht und werden regelmäßig
aktualisiert (http://www.engineering.mse.tum.de/studium/forschungspraktikum/).
Exam type:
written or oral
Exam duration
(min.):
30 bis 60 Minuten
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
Yes
Conversation:
Yes
Written paper:
Yes
Homework:
Yes
(Recommended) requirements:
Regelmäßige und aktive Teilnahme
Contents:
Seminare bieten z.B. eine Einführung in grundlegende wissenschaftliche Arbeitstechniken. Insbesondere sollen
Studierende bei der Erstellung ihrer Bachelorarbeit begleitet und unterstützt werden, z.B. durch Auseinandersetzung
mit gängigen Theorien, Konzepten und Denkansätzen; dem Erkennen von wissenschaftlichem Forschungsbedarf und
praktischer Relevanz; der Strukturierung des Themas; der Literaturrecherche und -verarbeitung. Das
Forschungspraktikum bietet erste Einblicke in die Welt der Forschung. In Begleitung erfahrener wissenschaftlicher
Mitarbeiter/-innen erhalten die Studierenden Einblick in laufende Forschungsprojekte an den Lehrstühlen der TUM,
bei gleichgestellten Forschungseinrichtungen oder bei einem externen Anbieter und arbeiten an aktuellen
Fragestellungen mit. Mögliche Tätigkeiten sind: Mitarbeit beim Aufbau und Betrieb von Versuchsanlagen, Erfassen
und Dokumentieren von Forschungsergebnissen, Vorbereitung, Durchführung und Auswertung von Versuchen,
Mitarbeitbeit bei der Organisation und Durchführung von Kolloquien und Symposien, Literaturrecherche und Erstellen
von Literaturlisten.
Study goals:
Die eigenständige wissenschaftliche Arbeit /einen Bericht/eine Abschlussarbeit entwickeln; Kenntnisse über
23/04/2015
94
16.04.2015 14:32
Module Description SE0004
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Vorgehen, Ziele und Methoden der wissenschaftlichen Arbeitsweise aneignen; Mitarbeit bei der Organisation und
Durchführung von Fachseminaren, Kolloquien und Kongressen; Literatur- und Patentrecherche und Erstellen von
Literaturlisten mit den ethischen und psychologischen Fragen des wissenschaftlichen Arbeitens umgehen;
Forschungsideen/-vorhaben präsentieren; über Forschungsthemen diskutieren; Mitarbeit beim Aufbau und Betrieb
von Versuchsanlagen; Erfassen und Dokumentieren von Forschungsergebnissen usw.
Teaching and learning methods:
Vortrag, Übung, Präsentation, Referat, Einzel- Partner- und Gruppenarbeit, Forschungsaktivitäten
Media formats:
Die Medienformen sind für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung)
Literature:
Die Literatur ist für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung)
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=804670
Generated on: 16.04.2015 14:32
23/04/2015
95
16.04.2015 14:32
Module Description SE0004
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0004: Introduction into Scientific Research
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
6
Total number
of hours:
180
Self-study
hours:
60
Contact
hours:
120
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Eine oder mehrere Prüfungen zu Lehrveranstaltungen oder Studienleistungen aus dem Themenbereich
"Wissenschaftliches Arbeiten". Dabei müssen einzelne (Teil-)Prüfungsleistungen mind. 2 ECTS umfassen. Es kann
maximal eine englischsprachige Prüfungsleistung eingebracht werden. Anerkannte Prüfungen zur Erfüllung des
Moduls sind auf der MSE-Homepage in Form einer Lehrveranstaltungsübersicht veröffentlicht und werden
regelmäßig aktualisiert (http://www.engineering.mse.tum.de/studium/studienleistungen/).
Im Rahmen des Moduls kann zudem als Teilprüfungsleistung ein Bericht oder Poster über ein abgeleistetes
Forschungspraktikums in Höhe von 4 ECTS anerkannt werden. Der Bericht oder das Poster zum
Forschungspraktikum muss von einem Prüfer der am Studiengang beteiligten Fakultäten bewertet sein.
Informationen zum Forschungspraktikum sind auf der MSE-Homepager veröfftentlicht und werden regelmäßig
aktualisiert (http://www.engineering.mse.tum.de/studium/forschungspraktikum/).
Exam type:
written or oral
Exam duration
(min.):
30 bis 60 Minuten
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
Yes
Conversation:
Yes
Written paper:
Yes
Homework:
Yes
(Recommended) requirements:
Regelmäßige und aktive Teilnahme
Contents:
Seminare bieten z.B. eine Einführung in grundlegende wissenschaftliche Arbeitstechniken. Insbesondere sollen
Studierende bei der Erstellung ihrer Bachelorarbeit begleitet und unterstützt werden, z.B. durch Auseinandersetzung
mit gängigen Theorien, Konzepten und Denkansätzen; dem Erkennen von wissenschaftlichem Forschungsbedarf und
praktischer Relevanz; der Strukturierung des Themas; der Literaturrecherche und -verarbeitung. Das
Forschungspraktikum bietet erste Einblicke in die Welt der Forschung. In Begleitung erfahrener wissenschaftlicher
Mitarbeiter/-innen erhalten die Studierenden Einblick in laufende Forschungsprojekte an den Lehrstühlen der TUM,
bei gleichgestellten Forschungseinrichtungen oder bei einem externen Anbieter und arbeiten an aktuellen
Fragestellungen mit. Mögliche Tätigkeiten sind: Mitarbeit beim Aufbau und Betrieb von Versuchsanlagen, Erfassen
und Dokumentieren von Forschungsergebnissen, Vorbereitung, Durchführung und Auswertung von Versuchen,
Mitarbeitbeit bei der Organisation und Durchführung von Kolloquien und Symposien, Literaturrecherche und Erstellen
von Literaturlisten.
Study goals:
Die eigenständige wissenschaftliche Arbeit /einen Bericht/eine Abschlussarbeit entwickeln; Kenntnisse über
23/04/2015
96
16.04.2015 14:32
Module Description SE0004
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Vorgehen, Ziele und Methoden der wissenschaftlichen Arbeitsweise aneignen; Mitarbeit bei der Organisation und
Durchführung von Fachseminaren, Kolloquien und Kongressen; Literatur- und Patentrecherche und Erstellen von
Literaturlisten mit den ethischen und psychologischen Fragen des wissenschaftlichen Arbeitens umgehen;
Forschungsideen/-vorhaben präsentieren; über Forschungsthemen diskutieren; Mitarbeit beim Aufbau und Betrieb
von Versuchsanlagen; Erfassen und Dokumentieren von Forschungsergebnissen usw.
Teaching and learning methods:
Vortrag, Übung, Präsentation, Referat, Einzel- Partner- und Gruppenarbeit, Forschungsaktivitäten
Media formats:
Die Medienformen sind für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung)
Literature:
Die Literatur ist für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung)
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=804670
Generated on: 16.04.2015 14:32
23/04/2015
97
16.04.2015 14:32
Module Description SE0007
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0007: World of Engineering (MSE)
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
more semesters
Occurrence:
winter/summer semester
Credits*:
2
Total number
of hours:
60
Self-study
hours:
44
Contact
hours:
16
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
no written or oral exam In each lecture, students need to confirm their attendance with their signature on a designated
list. The course is passed on condition of regular attendance.
Exam type:
written
Exam duration
(min.):
not specified
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
Yes
Homework:
No
(Recommended) requirements:
None
Contents:
The lecture series gives a broad overview of current research topics and trends in engineering practice by inviting
guest speakers from all fields of engineering (automotive, aerospace, biomedical, electrical, civil, etc.). This gives
students the possibility to obtain useful information about potential working areas and professional careers in
engineering and in the applied sciences already at an early stage of their studies.
Study goals:
After successful completion of the module World of Engineering, students are able to recognize connections between
their theoretical knowledge and engineering practice. They have obtained a first overview of current research trends
and can profitably use this knowledge for their further study and career plans. The topics of the lecture series also
enable students to analyze current and future developments in engineering as well as to evaluate the potentials of
such developments.
Teaching and learning methods:
The module consists of a series of lectures with integrated workshop type parts. Theoretical knowledge and case
studies are presented by the guest speakers in the form of lectures and Powerpoint slides. To some extent, students
are required to do independent literature research. The obtained knowledge is deepened in corresponding
discussions.
Media formats:
Presentation, notes on PC,
learning material published on the electronic learning platform
Literature:
23/04/2015
98
16.04.2015 14:33
Module Description SE0007
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
--Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=627418
Generated on: 16.04.2015 14:33
23/04/2015
99
16.04.2015 14:33
Module Description SE0007
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0007: World of Engineering (MSE)
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
more semesters
Occurrence:
winter/summer semester
Credits*:
2
Total number
of hours:
60
Self-study
hours:
44
Contact
hours:
16
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
no written or oral exam In each lecture, students need to confirm their attendance with their signature on a designated
list. The course is passed on condition of regular attendance.
Exam type:
written
Exam duration
(min.):
not specified
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
Yes
Homework:
No
(Recommended) requirements:
None
Contents:
The lecture series gives a broad overview of current research topics and trends in engineering practice by inviting
guest speakers from all fields of engineering (automotive, aerospace, biomedical, electrical, civil, etc.). This gives
students the possibility to obtain useful information about potential working areas and professional careers in
engineering and in the applied sciences already at an early stage of their studies.
Study goals:
After successful completion of the module World of Engineering, students are able to recognize connections between
their theoretical knowledge and engineering practice. They have obtained a first overview of current research trends
and can profitably use this knowledge for their further study and career plans. The topics of the lecture series also
enable students to analyze current and future developments in engineering as well as to evaluate the potentials of
such developments.
Teaching and learning methods:
The module consists of a series of lectures with integrated workshop type parts. Theoretical knowledge and case
studies are presented by the guest speakers in the form of lectures and Powerpoint slides. To some extent, students
are required to do independent literature research. The obtained knowledge is deepened in corresponding
discussions.
Media formats:
Presentation, notes on PC,
learning material published on the electronic learning platform
Literature:
23/04/2015
100
16.04.2015 14:33
Module Description SE0007
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
--Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=627418
Generated on: 16.04.2015 14:33
23/04/2015
101
16.04.2015 14:33
Module Description SE0006
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0006: Soft Skills
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
2
Total number
of hours:
60
Self-study
hours:
30
Contact
hours:
30
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Lernergebnisse der Studienleistung werden vorwiegend in Form einer schriftlichen Hausarbeit und/oder eines
Vortrags/Referats am Ende der Lehrveranstaltung geprüft. Die Prüfungsleistung muss mindestens 2 ECTS umfassen.
Anerkannte Prüfungen zur Erfüllung des Moduls "Schlüsselqualifikationen" sind in Form einer
Veranstaltungsübersicht der Carl-von-Linde Akademie auf der MSE-Homepage veröffentlicht und werden regelmäßig
aktualisiert: http://www.engineering.mse.tum.de/studium/studienleistungen/
Darüber hinaus können auch andere Prüfungsleistungen nach vorheriger Genehmigung des Studienbüros sowohl an
der TUM als auch an einer anderen Hochschule erbracht werden.
Exam type:
written or oral
Exam duration
(min.):
30 bis 60 Min.
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
Yes
Conversation:
Yes
Written paper:
Yes
Homework:
Yes
(Recommended) requirements:
Regelmäßige und aktive Teilnahme
Contents:
Schlüsselqualifikationen, auch bezeichnet als Soft Skills, sind Werkzeuge , welche die im Studiengang zu
erlernenden Kompetenzen (Hard Skills - fachliche Qualifikation) durch überfachliche, soziale und (selbst-)
organisatorische Fähigkeiten ergänzen. Im Rahmen einer solchen Lehrveranstaltung können a.u.
Kommunikationsstärke, Teamfähigkeit, Konfliktlösungeskompetenz trainiert oder Instrumente zur
Entscheidungsfindung, zum Projekt- und Zeitmanagement sowie Fähigkeiten für Effektives Lernen, Effektives Lesen,
Wissenschaftliches Arbeiten, Referieren und Präsentieren vor größeren Gruppen, Stressbewältigung usw. erlernt
werden. Des Weiteren können Veranstaltungen mit interdisziplinären, philosophischen oder interkulturellen Inhalten
eingebracht werden.
Study goals:
Angestrebte Lernziele des Moduls sind u.a.: Kommunikationskompetenzen (Veranstaltungen
zu den Themen: Rhetorik, Auftreten u.s.w.)
Führungskompetenzen (Veranstaltungen zu den Themen: Beherrschung von Instrumenten zur
Entscheidungsfindung, Projekt- und Zeitmanagement, Stressbewältigung u.s.w.).
Medien- und Methodenkompetenzen (Veranstaltungen zu den Themen: Effektives Lernen, Effektives Lesen,
Referieren und Präsentieren vor größeren Gruppen u.s.w.).
Soziale und persönliche Kompetenzen (Veranstaltungen zu den Themen: Interkulturelle Kommunikation,
23/04/2015
102
16.04.2015 14:34
Module Description SE0006
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Konfliktbewältigung, Vermittlung der Erkenntnisse an die Öffentlichkeit u.s.w.)
Teaching and learning methods:
Im Rahmen dieses Moduls sind Seminaren, Workshops oder Vorlesungen als Veranstaltungsformen möglich.
Dadurch werden unterschiedliche Lern- und Lehrmethoden eingesetzt (z.B. Referate, Präsentationen, Diskussionen
u.s.w.), um theoretisches Wissen zu vertiefen.
Media formats:
Die Medienformen sind für jede LV individuell (siehe LV-Beschreibung)
Literature:
Die Literatur ist für jede LV individuell (siehe LV-Beschreibung)
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=772843
Generated on: 16.04.2015 14:34
23/04/2015
103
16.04.2015 14:34
Module Description SE0006
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0006: Soft Skills
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
2
Total number
of hours:
60
Self-study
hours:
30
Contact
hours:
30
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Lernergebnisse der Studienleistung werden vorwiegend in Form einer schriftlichen Hausarbeit und/oder eines
Vortrags/Referats am Ende der Lehrveranstaltung geprüft. Die Prüfungsleistung muss mindestens 2 ECTS umfassen.
Anerkannte Prüfungen zur Erfüllung des Moduls "Schlüsselqualifikationen" sind in Form einer
Veranstaltungsübersicht der Carl-von-Linde Akademie auf der MSE-Homepage veröffentlicht und werden regelmäßig
aktualisiert: http://www.engineering.mse.tum.de/studium/studienleistungen/
Darüber hinaus können auch andere Prüfungsleistungen nach vorheriger Genehmigung des Studienbüros sowohl an
der TUM als auch an einer anderen Hochschule erbracht werden.
Exam type:
written or oral
Exam duration
(min.):
30 bis 60 Min.
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
Yes
Conversation:
Yes
Written paper:
Yes
Homework:
Yes
(Recommended) requirements:
Regelmäßige und aktive Teilnahme
Contents:
Schlüsselqualifikationen, auch bezeichnet als Soft Skills, sind Werkzeuge , welche die im Studiengang zu
erlernenden Kompetenzen (Hard Skills - fachliche Qualifikation) durch überfachliche, soziale und (selbst-)
organisatorische Fähigkeiten ergänzen. Im Rahmen einer solchen Lehrveranstaltung können a.u.
Kommunikationsstärke, Teamfähigkeit, Konfliktlösungeskompetenz trainiert oder Instrumente zur
Entscheidungsfindung, zum Projekt- und Zeitmanagement sowie Fähigkeiten für Effektives Lernen, Effektives Lesen,
Wissenschaftliches Arbeiten, Referieren und Präsentieren vor größeren Gruppen, Stressbewältigung usw. erlernt
werden. Des Weiteren können Veranstaltungen mit interdisziplinären, philosophischen oder interkulturellen Inhalten
eingebracht werden.
Study goals:
Angestrebte Lernziele des Moduls sind u.a.: Kommunikationskompetenzen (Veranstaltungen
zu den Themen: Rhetorik, Auftreten u.s.w.)
Führungskompetenzen (Veranstaltungen zu den Themen: Beherrschung von Instrumenten zur
Entscheidungsfindung, Projekt- und Zeitmanagement, Stressbewältigung u.s.w.).
Medien- und Methodenkompetenzen (Veranstaltungen zu den Themen: Effektives Lernen, Effektives Lesen,
Referieren und Präsentieren vor größeren Gruppen u.s.w.).
Soziale und persönliche Kompetenzen (Veranstaltungen zu den Themen: Interkulturelle Kommunikation,
23/04/2015
104
16.04.2015 14:34
Module Description SE0006
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Konfliktbewältigung, Vermittlung der Erkenntnisse an die Öffentlichkeit u.s.w.)
Teaching and learning methods:
Im Rahmen dieses Moduls sind Seminaren, Workshops oder Vorlesungen als Veranstaltungsformen möglich.
Dadurch werden unterschiedliche Lern- und Lehrmethoden eingesetzt (z.B. Referate, Präsentationen, Diskussionen
u.s.w.), um theoretisches Wissen zu vertiefen.
Media formats:
Die Medienformen sind für jede LV individuell (siehe LV-Beschreibung)
Literature:
Die Literatur ist für jede LV individuell (siehe LV-Beschreibung)
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=772843
Generated on: 16.04.2015 14:34
23/04/2015
105
16.04.2015 14:34
Module Description ED0085
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
ED0085: Philosophy of Engineering
TUM School of Education
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
2
Total number
of hours:
60
Self-study
hours:
30
Contact
hours:
30
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The course achievement is determined by an exam which is not graded. Questions and exercises concern the whole
content of the course. No resources besides pen and paper are allowed.
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
None
Contents:
First we will introduce fundamental concepts of model and systems theory which are central for the natural and
engineering sciences: What is a dynamical system? Which applications exist in physics, chemistry, biology, and
electrical engineering? What distinguishes linear from non-linear dynamics? What is the connection between
causality and control? What is the meaning of determinism, stochastics, and probability? How are evolution and
technology linked up? Besides the methodological-epistemological foundations of natural and engineering sciences
we will cover the historical and sociological development of science and technology: How do technological-scientific
discoveries and inventions arise? What is the connection between technological-scientific innovation dynamics and
economical-social development in the age of globalization? To what extent does the engineer bear responsibility?
How can the impacts of technology be assessed?
Study goals:
Students are trained in analytical thinking and are provided with a profound understanding of logical, abstract, and
systems-oriented questions in combination with the ability to independently establish interdisciplinary connections.
Also, students are made aware of ethical-social issues in engineering practice.
Teaching and learning methods:
The module consists of lectures with integrated parts of a more seminar-like nature. Theoretical knowledge is
conveyed by the professors in terms of lectures and PowerPoint presentations or will be acquired by students through
independent reading. In discussions and small exercises the theoretical knowledge is deepened and applied.
Media formats:
PowerPoint presentations, documents online
23/04/2015
106
16.04.2015 14:44
Module Description ED0085
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Literature:
Bucciarelli L.L. (2003): Engineering Philosophy, Delft University Press, Delft; Mainzer K. (2007): Thinking in
Complexity, Springer: New York 5. Aufl.; Mainzer K. (2008): Komplexität, UTB-Profile: Paderborn
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555254
Generated on: 16.04.2015 14:44
23/04/2015
107
16.04.2015 14:44
Module Description ED0085
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
ED0085: Philosophy of Engineering
TUM School of Education
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
2
Total number
of hours:
60
Self-study
hours:
30
Contact
hours:
30
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
The course achievement is determined by an exam which is not graded. Questions and exercises concern the whole
content of the course. No resources besides pen and paper are allowed.
Exam type:
written
Exam duration
(min.):
60
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
None
Contents:
First we will introduce fundamental concepts of model and systems theory which are central for the natural and
engineering sciences: What is a dynamical system? Which applications exist in physics, chemistry, biology, and
electrical engineering? What distinguishes linear from non-linear dynamics? What is the connection between
causality and control? What is the meaning of determinism, stochastics, and probability? How are evolution and
technology linked up? Besides the methodological-epistemological foundations of natural and engineering sciences
we will cover the historical and sociological development of science and technology: How do technological-scientific
discoveries and inventions arise? What is the connection between technological-scientific innovation dynamics and
economical-social development in the age of globalization? To what extent does the engineer bear responsibility?
How can the impacts of technology be assessed?
Study goals:
Students are trained in analytical thinking and are provided with a profound understanding of logical, abstract, and
systems-oriented questions in combination with the ability to independently establish interdisciplinary connections.
Also, students are made aware of ethical-social issues in engineering practice.
Teaching and learning methods:
The module consists of lectures with integrated parts of a more seminar-like nature. Theoretical knowledge is
conveyed by the professors in terms of lectures and PowerPoint presentations or will be acquired by students through
independent reading. In discussions and small exercises the theoretical knowledge is deepened and applied.
Media formats:
PowerPoint presentations, documents online
23/04/2015
108
16.04.2015 14:44
Module Description ED0085
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Literature:
Bucciarelli L.L. (2003): Engineering Philosophy, Delft University Press, Delft; Mainzer K. (2007): Thinking in
Complexity, Springer: New York 5. Aufl.; Mainzer K. (2008): Komplexität, UTB-Profile: Paderborn
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555254
Generated on: 16.04.2015 14:44
23/04/2015
109
16.04.2015 14:44
Module Description BV440001
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BV440001: Partial Differential Equations: An
Algorithmic Approach
Chair of Computation in Engineering (Prof. Rank)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
120
Self-study
hours:
75
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Written exam, where the developed software-project w.r.t. its theoretical basis and practical implementation enters.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
Yes
Written paper:
Yes
(Recommended) requirements:
Contents of the modules Mathematics I - III, Continuum Mechanics, Fluid and Structural Mechanics, Numerics for
engineers, Computer Aided Modeling of Products and Processes
Contents:
The module presents an introduction to algorithms for the numerical solution of partial differential equations applied to
engineering problems. Finite-difference-methods and the finite element method in one and two dimensions are
discussed for e.g. the potential equation, convective-diffusive problems and the wave equation. Whereas all methods
are presented in a generic algorithmic setting, they are all motivated from concrete problems in engineering sciences.
The following topics are treated: Stencils, weak formulation, energy functionals, element matrices, matrix assemby,
solution of sparse systems, mesh generation, profile/bandwidth optimization, method of lines, h-, p-convergence.
Concrete implementation of the algorithms plays a central role in this module. The software-development is
performed in an accompanying project work, where a comprehensive computer program in Matlab is developed by
individual students and small teams, and where some modules are provided by the tutors.
Study goals:
After finishing this module the student is proficient in basic algorithms for linear elliptic, parabolic and hyperbolic
partial differential equations. He/she is able to transfer these basic methods to various engineering tasks.
The exemplary implementation of important algorithms in the accompanying software-project enables for an extended
software-development for complex partial differential equations.
Teaching and learning methods:
Learning outcomes of this module are achieved by several coordinated components. Whereas the lecture is
23/04/2015
110
16.04.2015 14:50
Module Description BV440001
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
supported by Powerpoint-presentations, implemented algorithms are directly accessed on the computer. Central
topics are conveyed by project work, where first a suitable software structure is designed. Individual students and
small teams then develop algorithmic components which finally are integrated into the overall system.
In addition to the consulting of the lecturers students are supported by tutors.
Media formats:
Lecture supported by powerpoint-presentations, white-board and online software presentation. Software-development
on desktop computers.
Additional material will be available online.
Literature:
English lecture notes with additional references will be available.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=564044
Generated on: 16.04.2015 14:50
23/04/2015
111
16.04.2015 14:50
Module Description BV440001
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BV440001: Partial Differential Equations: An
Algorithmic Approach
Chair of Computation in Engineering (Prof. Rank)
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
120
Self-study
hours:
75
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Written exam, where the developed software-project w.r.t. its theoretical basis and practical implementation enters.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
Yes
Written paper:
Yes
(Recommended) requirements:
Contents of the modules Mathematics I - III, Continuum Mechanics, Fluid and Structural Mechanics, Numerics for
engineers, Computer Aided Modeling of Products and Processes
Contents:
The module presents an introduction to algorithms for the numerical solution of partial differential equations applied to
engineering problems. Finite-difference-methods and the finite element method in one and two dimensions are
discussed for e.g. the potential equation, convective-diffusive problems and the wave equation. Whereas all methods
are presented in a generic algorithmic setting, they are all motivated from concrete problems in engineering sciences.
The following topics are treated: Stencils, weak formulation, energy functionals, element matrices, matrix assemby,
solution of sparse systems, mesh generation, profile/bandwidth optimization, method of lines, h-, p-convergence.
Concrete implementation of the algorithms plays a central role in this module. The software-development is
performed in an accompanying project work, where a comprehensive computer program in Matlab is developed by
individual students and small teams, and where some modules are provided by the tutors.
Study goals:
After finishing this module the student is proficient in basic algorithms for linear elliptic, parabolic and hyperbolic
partial differential equations. He/she is able to transfer these basic methods to various engineering tasks.
The exemplary implementation of important algorithms in the accompanying software-project enables for an extended
software-development for complex partial differential equations.
Teaching and learning methods:
Learning outcomes of this module are achieved by several coordinated components. Whereas the lecture is
23/04/2015
112
16.04.2015 14:50
Module Description BV440001
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
supported by Powerpoint-presentations, implemented algorithms are directly accessed on the computer. Central
topics are conveyed by project work, where first a suitable software structure is designed. Individual students and
small teams then develop algorithmic components which finally are integrated into the overall system.
In addition to the consulting of the lecturers students are supported by tutors.
Media formats:
Lecture supported by powerpoint-presentations, white-board and online software presentation. Software-development
on desktop computers.
Additional material will be available online.
Literature:
English lecture notes with additional references will be available.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=564044
Generated on: 16.04.2015 14:50
23/04/2015
113
16.04.2015 14:50
Module Description IN8013
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8013: Geometric Modelling and Visualization
(MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: Yes
Lecture:
No
Conversation:
No
Written paper:
No
Homework:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Mathematics I and II, Computer
Aided Modeling of Products and Processes
Contents:
This lecture provides an introduction to the fundamentals of computer graphics, with the focus on techniques
frequently used in engineering applications. The lecture is split into three parts:
1) Geometric Modelling, including polygonal surface representations, surface reconstruction, operations on surfaces,
and subdivision surfaces.
2) Rendering, including an introduction to the GPU based graphics pipeline as well as basic techniques for image
synthesis like lighting, shading, texture mapping, and transformations. 3) Scientific Visualization, including techniques
for visualizing volumetric scalar fields and flow fields.
Study goals:
At the end of the module, students are able to:
- understand the basic graphics algorithms used by modern modelling and visualization software,
- decide for which classes of objects to use these algorithms,
- use available software systems supporting these algorithms.
In the practical exercise, students are introduced to some available software systems, and they are supposed to work
with these systems on their own initiative to learn how these systems work and what kind of functionality they provide.
Teaching and learning methods:
The lecture is accompanied by online demonstrations of commonly used software systems for geometric modelling,
rendering and visualization. By demonstrating the discussed algorithms in action, the students obtain a deep
understanding of what can be achieved today. The students have access to computers to use the demonstrated tools
23/04/2015
114
16.04.2015 14:52
Module Description IN8013
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
and to work on their own with these tools.
Media formats:
Lecture slides, on-board demonstrations, online-tutorials, online computer demonstrations using open access
software systems
Literature:
- Foley, Van Dam, Feiner, Hughes: Computer Graphics: Principles and Practice, Addison-Wesley, 3rd edition
- Bungartz, Griebel, Zenger: Einführung in die Computergraphik - Grundlagen, Geometrische Modellierung,
Algorithmen; Vieweg
- Encarnaçao, Klein, Strasser: Graphische Datenverarbeitung, 4. Auflage, Oldenburg Verlag
Responsible for the module:
Westermann, Rüdiger; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557065
Generated on: 16.04.2015 14:52
23/04/2015
115
16.04.2015 14:52
Module Description IN8013
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8013: Geometric Modelling and Visualization
(MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: Yes
Lecture:
No
Conversation:
No
Written paper:
No
Homework:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Mathematics I and II, Computer
Aided Modeling of Products and Processes
Contents:
This lecture provides an introduction to the fundamentals of computer graphics, with the focus on techniques
frequently used in engineering applications. The lecture is split into three parts:
1) Geometric Modelling, including polygonal surface representations, surface reconstruction, operations on surfaces,
and subdivision surfaces.
2) Rendering, including an introduction to the GPU based graphics pipeline as well as basic techniques for image
synthesis like lighting, shading, texture mapping, and transformations. 3) Scientific Visualization, including techniques
for visualizing volumetric scalar fields and flow fields.
Study goals:
At the end of the module, students are able to:
- understand the basic graphics algorithms used by modern modelling and visualization software,
- decide for which classes of objects to use these algorithms,
- use available software systems supporting these algorithms.
In the practical exercise, students are introduced to some available software systems, and they are supposed to work
with these systems on their own initiative to learn how these systems work and what kind of functionality they provide.
Teaching and learning methods:
The lecture is accompanied by online demonstrations of commonly used software systems for geometric modelling,
rendering and visualization. By demonstrating the discussed algorithms in action, the students obtain a deep
understanding of what can be achieved today. The students have access to computers to use the demonstrated tools
23/04/2015
116
16.04.2015 14:52
Module Description IN8013
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
and to work on their own with these tools.
Media formats:
Lecture slides, on-board demonstrations, online-tutorials, online computer demonstrations using open access
software systems
Literature:
- Foley, Van Dam, Feiner, Hughes: Computer Graphics: Principles and Practice, Addison-Wesley, 3rd edition
- Bungartz, Griebel, Zenger: Einführung in die Computergraphik - Grundlagen, Geometrische Modellierung,
Algorithmen; Vieweg
- Encarnaçao, Klein, Strasser: Graphische Datenverarbeitung, 4. Auflage, Oldenburg Verlag
Responsible for the module:
Westermann, Rüdiger; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557065
Generated on: 16.04.2015 14:52
23/04/2015
117
16.04.2015 14:52
Module Description PH9027
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
PH9027: Nanofabrication and Nanoanalytics
TUM Department of Physics
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In a written exam the learning success is checked using comprehension questions and calculation problems.
Exam type:
written or oral
Exam duration
(min.):
60-90
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
Homework:
No
(Recommended) requirements:
Basics in Solid State Physics
Contents:
The lecture focuses on various methods of nanofabrication (optical, electron beam lithography, focused ion beam)
and newer emerging techni¬ques (x-ray lithography, nanoimprint, etc.). In particular the physical principles are
discussed and limitations for the various methods given. Various synthesis and crystal growth methods for advanced
semiconductor nanostructures will be further introduced such as chemical and physical vapor phase epitaxial
techniques (MOVPE, MBE, etc.) and the physical growth principles of 0D,1D, and 2D materials highlighted. Examples
will be given where these low-dimensional nanostructures are implemented into cutting-edge technological
applications. The second part of this lecture deals with specific nanoanalytical methods required for characterization
of structural, surface and atomic properties of nanofabricated and synthesized materials. These include electron
microscopy, surface analytical methods, ion beam analytical techniques, x-ray techniques, and some new
sophisticated techniques, such as atom probe tomography, etc.
Study goals:
After successful participation and engagement in the lecture "Material Modelling" students will have gained:
1. basic knowledge in nanofabrication and analysis of mainly semiconductor-based devices,
2. the capability to select and evaluate specific nanofabrication methods relevant for nanotechnological applications,
3. the possibility to explore the limits of the various methodologies,
4. the capability for structural, atomic and interface specific analysis of nanostructured materials, and
5. the important knowledge in understanding the complex interplay between material synthesis, structural and
electronic properties of materials, and their effect on functionalities in cutting-edge device applications.
Teaching and learning methods:
Vorlesung: Darbietendes Lehrverfahren
Media formats:
23/04/2015
118
16.04.2015 14:53
Module Description PH9027
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Präsentation, Laborbesichtigung
Literature:
Vorlesungsfolien und darin enthaltene Referenzen
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1057381
Generated on: 16.04.2015 14:53
23/04/2015
119
16.04.2015 14:53
Module Description PH9027
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
PH9027: Nanofabrication and Nanoanalytics
TUM Department of Physics
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In a written exam the learning success is checked using comprehension questions and calculation problems.
Exam type:
written or oral
Exam duration
(min.):
60-90
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
Homework:
No
(Recommended) requirements:
Basics in Solid State Physics
Contents:
The lecture focuses on various methods of nanofabrication (optical, electron beam lithography, focused ion beam)
and newer emerging techni¬ques (x-ray lithography, nanoimprint, etc.). In particular the physical principles are
discussed and limitations for the various methods given. Various synthesis and crystal growth methods for advanced
semiconductor nanostructures will be further introduced such as chemical and physical vapor phase epitaxial
techniques (MOVPE, MBE, etc.) and the physical growth principles of 0D,1D, and 2D materials highlighted. Examples
will be given where these low-dimensional nanostructures are implemented into cutting-edge technological
applications. The second part of this lecture deals with specific nanoanalytical methods required for characterization
of structural, surface and atomic properties of nanofabricated and synthesized materials. These include electron
microscopy, surface analytical methods, ion beam analytical techniques, x-ray techniques, and some new
sophisticated techniques, such as atom probe tomography, etc.
Study goals:
After successful participation and engagement in the lecture "Material Modelling" students will have gained:
1. basic knowledge in nanofabrication and analysis of mainly semiconductor-based devices,
2. the capability to select and evaluate specific nanofabrication methods relevant for nanotechnological applications,
3. the possibility to explore the limits of the various methodologies,
4. the capability for structural, atomic and interface specific analysis of nanostructured materials, and
5. the important knowledge in understanding the complex interplay between material synthesis, structural and
electronic properties of materials, and their effect on functionalities in cutting-edge device applications.
Teaching and learning methods:
Vorlesung: Darbietendes Lehrverfahren
Media formats:
23/04/2015
120
16.04.2015 14:53
Module Description PH9027
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Präsentation, Laborbesichtigung
Literature:
Vorlesungsfolien und darin enthaltene Referenzen
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1057381
Generated on: 16.04.2015 14:53
23/04/2015
121
16.04.2015 14:53
Module Description MW1407
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1407: Computational Solid and Fluid
Dynamics (MSE)
Chair of Aerodynamics and Fluid mechanics (Prof. Adams)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Die Prüfungsleistungen werden in Form schriftlicher Klausuren erbracht. Damit soll nachgewiesen werden, daß in
begrenzter Zeit und mit begrenzten Hilfsmitteln ein Problem erkannt wird und Wege zur korrekten Lösung gefunden
werden. Der Prüfungsinhalt erstreckt sich üb er den gesamten Vorlesungsinhalt. Fakten- und Zusammenhangswissen
werden in einem Kurzfragenteil überprüft, Problemlösungskompetenz in einem Rechenaufgabenteil.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
Yes
Written paper:
Yes
(Recommended) requirements:
Mathematische Grundlagen, Differential- und Integralrechnung, Modellierung und Simulation mit gewöhnlichen
Differentialgleichungen, Kontinuumsmechanik, Numerische Behandlung partieller Differentialgleichungen
Contents:
Das Modul Rechnergestützte Festkörper- und Fluiddynamik vermittelt die Grundlagen der numerischen Modellierung
und Berechnung des Verhaltens fester und flüssiger Kontinua und gehört somit zur erweiterten
ingenieurwissenschaftlichen Grundlagenausbildung in der klassischen Mechanik. Die Vorlesung bildet auch eine
Grundlage weiterführender Vorlesungen zur numerischen Simulation in Masterstudiengängen. Inhalte: (1)
Grundlagen der numerischen Simulation in der Kontinuumsmechanik, (2) Mathematische und physikalische
Eigenschaften der Grundtypen partieller Differentialgleichungen, (3) Diskretisierungsverfahren für partielle
Differentialgleichungen, (4) Konsistenz, Stabilität und Konvergenz, (5) Lösungsverfahren.
Study goals:
Die Studierenden verfügen nach erfolgreichem Bestehen des Moduls Rechnergestützte Festkörper- und
Fluidmechanik über: (1) Grundkenntnisse in den numerischen Verfahren zur Simulation in der Kontinuumsmechanik,
(2) die Fähgikeit zur mathematischen und physikalischen Beurteilung von Grundtypen partieller
Differentialgleichungen, (3) die Fähigkeit zur dynamischen Analyse Kontinua anhand der Erhaltungsgesetze für
Masse, Impuls und Energie, (4) Kenntnis über die elementaren grundlegenden Diskretisierungsverfahren, (5) die
Fähigkeit zur Beurteilung und Analyse der Stabilität, Konsistenz und Konvergenz numerischer Verfahren.
Teaching and learning methods:
23/04/2015
122
16.04.2015 14:54
Module Description MW1407
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Vorlesung: Darbietendes Lehrverfahren. Übung: Darbietendes und erarbeitendes Lehrverfahren.
Media formats:
Präsentation, Skript, Fälle und Lösungen
Literature:
Vorlesungsmanuskript, Übungsunterlagen
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556530
Generated on: 16.04.2015 14:54
23/04/2015
123
16.04.2015 14:54
Module Description MW1407
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW1407: Computational Solid and Fluid
Dynamics (MSE)
Chair of Aerodynamics and Fluid mechanics (Prof. Adams)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Die Prüfungsleistungen werden in Form schriftlicher Klausuren erbracht. Damit soll nachgewiesen werden, daß in
begrenzter Zeit und mit begrenzten Hilfsmitteln ein Problem erkannt wird und Wege zur korrekten Lösung gefunden
werden. Der Prüfungsinhalt erstreckt sich üb er den gesamten Vorlesungsinhalt. Fakten- und Zusammenhangswissen
werden in einem Kurzfragenteil überprüft, Problemlösungskompetenz in einem Rechenaufgabenteil.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
Yes
Written paper:
Yes
(Recommended) requirements:
Mathematische Grundlagen, Differential- und Integralrechnung, Modellierung und Simulation mit gewöhnlichen
Differentialgleichungen, Kontinuumsmechanik, Numerische Behandlung partieller Differentialgleichungen
Contents:
Das Modul Rechnergestützte Festkörper- und Fluiddynamik vermittelt die Grundlagen der numerischen Modellierung
und Berechnung des Verhaltens fester und flüssiger Kontinua und gehört somit zur erweiterten
ingenieurwissenschaftlichen Grundlagenausbildung in der klassischen Mechanik. Die Vorlesung bildet auch eine
Grundlage weiterführender Vorlesungen zur numerischen Simulation in Masterstudiengängen. Inhalte: (1)
Grundlagen der numerischen Simulation in der Kontinuumsmechanik, (2) Mathematische und physikalische
Eigenschaften der Grundtypen partieller Differentialgleichungen, (3) Diskretisierungsverfahren für partielle
Differentialgleichungen, (4) Konsistenz, Stabilität und Konvergenz, (5) Lösungsverfahren.
Study goals:
Die Studierenden verfügen nach erfolgreichem Bestehen des Moduls Rechnergestützte Festkörper- und
Fluidmechanik über: (1) Grundkenntnisse in den numerischen Verfahren zur Simulation in der Kontinuumsmechanik,
(2) die Fähgikeit zur mathematischen und physikalischen Beurteilung von Grundtypen partieller
Differentialgleichungen, (3) die Fähigkeit zur dynamischen Analyse Kontinua anhand der Erhaltungsgesetze für
Masse, Impuls und Energie, (4) Kenntnis über die elementaren grundlegenden Diskretisierungsverfahren, (5) die
Fähigkeit zur Beurteilung und Analyse der Stabilität, Konsistenz und Konvergenz numerischer Verfahren.
Teaching and learning methods:
23/04/2015
124
16.04.2015 14:54
Module Description MW1407
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Vorlesung: Darbietendes Lehrverfahren. Übung: Darbietendes und erarbeitendes Lehrverfahren.
Media formats:
Präsentation, Skript, Fälle und Lösungen
Literature:
Vorlesungsmanuskript, Übungsunterlagen
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556530
Generated on: 16.04.2015 14:54
23/04/2015
125
16.04.2015 14:54
Module Description MW2142
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW2142: Biotechnology for Engineers
Associate Professorship of Selective Seperation Technology
(Prof. Berensmeier)
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Die angestrebten Lernergebnisse werden durch Verständnisfragen zu ausgewählten Inhalten des Moduls und durch
Rechenaufgaben überprüft (zugelassenes Hilfsmittel: Taschenrechner).
Exam type:
written
Exam duration
(min.):
90 Minuten
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Voraussetzungen für die erfolgreiche Teilnahme sind ein Interesse an interdisziplinären Fragestellungen der Biologie,
Chemie und Verfahrenstechnik.
Contents:
Diese Lehrveranstaltung soll Ingenieuren einen Einstieg in die Biotechnolgie geben. Ca. 1/3 der Lehrveranstaltung
werden unterschiedliche biotechnologisch genutzte Systeme vorgestellt und deren biochemischen Hintergrund kurz
erläutert. Der Schwerpunkt der Vorlesung liegt in der Beschreibung unterschiedlicher industrieller Prozesse und
deren verfahrenstechnischen Umsetzung. Neben dem biotechnologischen Produktionsprozess (Enzymkatalyse,
Fermentation, Zellkultur) selber wird der Gesamtprozess mit Upstream- (Medien-/ Stammoptimierung;
Hochdurchsatzverfahren) und Downstream (Reinigung der Zielmoleküle durch Zellaufschluss, Zentrifugation,
Chromatographie, Membranverfahren und Extraktion) behandelt.
Study goals:
Nach der Teilnahme an der Modulveranstaltung kennen die Studierenden unterschiedliche biologische Systeme und
ihre Eigenschaften, die in der Biotechnologie industriell eingesetzt werden. Sie sind in der Lage einen kompletten
Prozess abhängig vom biologischen System darzustellen und kennen die Schnittstellen zu anderen
Wissenschaftsdisziplinen der Genetik, Biologie, Chemie und Verfahrenstechnik. Die Studierenden sind in der Lage,
biologische Reaktionen in kontrollierten Modellbioreaktoren (Wachstum, Substrataufnahme und Produktbildung von
Mikroorganismen und Zellen) in der Basis zu analysieren und Prozessverläufe zu bewerten. Zusätzlich sind sie in der
Lage mehrere Verfahrensschritte zum Aufreiningen der Zielprodukte zu kombinieren und als kompletten Prozess
darzustellen.
Teaching and learning methods:
Die Inhalte des Moduls werden in der Vorlesung (2 SWS) mit Hilfe von Powerpoint-Präsentationen theoretisch
23/04/2015
126
16.04.2015 14:55
Module Description MW2142
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
vermittelt, wobei die Folien auf Englisch sind. Unterrichtssprache ist Deutsch.
Media formats:
Die in der Vorlesung verwendeten Folien werden den angemeldenten Studierenden über TUMonline rechtzeitig
zugänglich gemacht.
Literature:
Als Einführung empfiehlt sich: Horst Chmiehl: Bioprozesstechnik. Elsevier GmbH, München.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=957126
Generated on: 16.04.2015 14:55
23/04/2015
127
16.04.2015 14:55
Module Description MW2142
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW2142: Biotechnology for Engineers
Associate Professorship of Selective Seperation Technology
(Prof. Berensmeier)
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Die angestrebten Lernergebnisse werden durch Verständnisfragen zu ausgewählten Inhalten des Moduls und durch
Rechenaufgaben überprüft (zugelassenes Hilfsmittel: Taschenrechner).
Exam type:
written
Exam duration
(min.):
90 Minuten
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Voraussetzungen für die erfolgreiche Teilnahme sind ein Interesse an interdisziplinären Fragestellungen der Biologie,
Chemie und Verfahrenstechnik.
Contents:
Diese Lehrveranstaltung soll Ingenieuren einen Einstieg in die Biotechnolgie geben. Ca. 1/3 der Lehrveranstaltung
werden unterschiedliche biotechnologisch genutzte Systeme vorgestellt und deren biochemischen Hintergrund kurz
erläutert. Der Schwerpunkt der Vorlesung liegt in der Beschreibung unterschiedlicher industrieller Prozesse und
deren verfahrenstechnischen Umsetzung. Neben dem biotechnologischen Produktionsprozess (Enzymkatalyse,
Fermentation, Zellkultur) selber wird der Gesamtprozess mit Upstream- (Medien-/ Stammoptimierung;
Hochdurchsatzverfahren) und Downstream (Reinigung der Zielmoleküle durch Zellaufschluss, Zentrifugation,
Chromatographie, Membranverfahren und Extraktion) behandelt.
Study goals:
Nach der Teilnahme an der Modulveranstaltung kennen die Studierenden unterschiedliche biologische Systeme und
ihre Eigenschaften, die in der Biotechnologie industriell eingesetzt werden. Sie sind in der Lage einen kompletten
Prozess abhängig vom biologischen System darzustellen und kennen die Schnittstellen zu anderen
Wissenschaftsdisziplinen der Genetik, Biologie, Chemie und Verfahrenstechnik. Die Studierenden sind in der Lage,
biologische Reaktionen in kontrollierten Modellbioreaktoren (Wachstum, Substrataufnahme und Produktbildung von
Mikroorganismen und Zellen) in der Basis zu analysieren und Prozessverläufe zu bewerten. Zusätzlich sind sie in der
Lage mehrere Verfahrensschritte zum Aufreiningen der Zielprodukte zu kombinieren und als kompletten Prozess
darzustellen.
Teaching and learning methods:
Die Inhalte des Moduls werden in der Vorlesung (2 SWS) mit Hilfe von Powerpoint-Präsentationen theoretisch
23/04/2015
128
16.04.2015 14:55
Module Description MW2142
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
vermittelt, wobei die Folien auf Englisch sind. Unterrichtssprache ist Deutsch.
Media formats:
Die in der Vorlesung verwendeten Folien werden den angemeldenten Studierenden über TUMonline rechtzeitig
zugänglich gemacht.
Literature:
Als Einführung empfiehlt sich: Horst Chmiehl: Bioprozesstechnik. Elsevier GmbH, München.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=957126
Generated on: 16.04.2015 14:55
23/04/2015
129
16.04.2015 14:55
Module Description IN8014
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8014: Embedded Distributed Systems (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of
Products and Processes
Contents:
Introduction to distributed systems and system software, modeling and programming of concurrent systems,
synchronisation and messaging (semaphores), micro controller, real-time bus (CAN, Flexray), sensor and actuators,
physical and logical architecture.
Study goals:
The students know the most important concepts of networked embedded systems. They are able to apply the
methods and concepts systematically to program concurrent systems.
Teaching and learning methods:
lecture, exercise course, problems for individual study
Media formats:
Online Presentation
Literature:
A. Tanenbaum, Modern Operating Systems, Prentice Hall, 2009 (deutsche Übersetzung Moderne Betriebssysteme,
Pearson Studium, 2009)
A. Tanenbaum, Computer Networks, Prentice Hall, 2002 (deutsche Übersetzung Computer Netzwerke, Pearson
Studium, 2003)
Responsible for the module:
Knoll, Alois Christian; Prof. Dr.-Ing. habil.: [email protected]
23/04/2015
130
16.04.2015 14:56
Module Description IN8014
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557070
Generated on: 16.04.2015 14:56
23/04/2015
131
16.04.2015 14:56
Module Description IN8014
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8014: Embedded Distributed Systems (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of
Products and Processes
Contents:
Introduction to distributed systems and system software, modeling and programming of concurrent systems,
synchronisation and messaging (semaphores), micro controller, real-time bus (CAN, Flexray), sensor and actuators,
physical and logical architecture.
Study goals:
The students know the most important concepts of networked embedded systems. They are able to apply the
methods and concepts systematically to program concurrent systems.
Teaching and learning methods:
lecture, exercise course, problems for individual study
Media formats:
Online Presentation
Literature:
A. Tanenbaum, Modern Operating Systems, Prentice Hall, 2009 (deutsche Übersetzung Moderne Betriebssysteme,
Pearson Studium, 2009)
A. Tanenbaum, Computer Networks, Prentice Hall, 2002 (deutsche Übersetzung Computer Netzwerke, Pearson
Studium, 2003)
Responsible for the module:
Knoll, Alois Christian; Prof. Dr.-Ing. habil.: [email protected]
23/04/2015
132
16.04.2015 14:56
Module Description IN8014
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557070
Generated on: 16.04.2015 14:56
23/04/2015
133
16.04.2015 14:56
Module Description IN8015
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8015: Systems Engineering (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of
Products and Processes, Software Engineering
Contents:
Introduction in systems engineering, systems modeling, development methods, phase models, project management,
requirement evaluation and analysis, gateways, specification, systems design, architecture and gateway
specification, module-, integration and systems check, version- and configuration management, software? and
system maintenance
Study goals:
The students can handle the most important concepts, models, methods and processes of systems engineering.
Teaching and learning methods:
lecture, exercise course, problems for individual study
Media formats:
not specified
Literature:
Tim Weilkiens: Systems Engineering with SysML/UML. Morgan Kaufmann Publishers Inc, 2008 Alexander Kossiakoff
und William N. Sweet: Systems Engineering Principles and Practice (Wiley Series in Systems Engineering and
Management) von von John Wiley & Sons 2002
Responsible for the module:
Pretschner, Alexander; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
23/04/2015
134
16.04.2015 14:57
Module Description IN8015
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=563556
Generated on: 16.04.2015 14:57
23/04/2015
135
16.04.2015 14:57
Module Description IN8015
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
IN8015: Systems Engineering (MSE)
TUM Department of Informatics
Module level:
Bachelor
Language:
German
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
In the written exam students should prove to be able to identify a given problem and find solutions within limited time.
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of
Products and Processes, Software Engineering
Contents:
Introduction in systems engineering, systems modeling, development methods, phase models, project management,
requirement evaluation and analysis, gateways, specification, systems design, architecture and gateway
specification, module-, integration and systems check, version- and configuration management, software? and
system maintenance
Study goals:
The students can handle the most important concepts, models, methods and processes of systems engineering.
Teaching and learning methods:
lecture, exercise course, problems for individual study
Media formats:
not specified
Literature:
Tim Weilkiens: Systems Engineering with SysML/UML. Morgan Kaufmann Publishers Inc, 2008 Alexander Kossiakoff
und William N. Sweet: Systems Engineering Principles and Practice (Wiley Series in Systems Engineering and
Management) von von John Wiley & Sons 2002
Responsible for the module:
Pretschner, Alexander; Prof. Dr.: [email protected]
Courses (Type, SH) Lecturer:
23/04/2015
136
16.04.2015 14:57
Module Description IN8015
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=563556
Generated on: 16.04.2015 14:57
23/04/2015
137
16.04.2015 14:57
Module Description BGU43014
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BGU43014: Engineering Models in Structural
Dynamics and Vibroacoustics
Chair of Structural Mechanics (Prof. Müller)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
not specified
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Fundamentals of Mathematics (MA9801), Physics (PH9021) Mechanics I (MW1406), Mechanics II (MW1409),
Differential and Integral Calculus (MA9802), Modeling and Simulation with ordinary differential equations (MA9803)
Contents:
The content of the module is the modeling of structures in the field of civil engineering and mechanical engineering for
dynamic problems. Interfaces and subsystems are defined for a product in the appropriate manner described by
differential equations. Impedances and transfer functions are determined and aspects of insulation and damping are
discussed. Measures like elastic support and damping aspects are explained. The effectiveness of measures at
interfaces is explained via the measure of insertion loss.
Modeling techniques for different frequency ranges are discussed, where the limits of the individual model are
discussed using wave approaches.
Study goals:
After a successful participation in the course, the students are able to analyze structures for dynamic problems
defining engineering models and suitable substructures with clear interfaces. Students apply various methods for
solving the respective differential equations and discuss the solutions regarding dynamic characteristics. Students
can evaluate the methods and their applicability for modeling in the low-, mid- and high-frequency range.
Teaching and learning methods:
lecture with exercises
- Lecture (with experiments)
- integrated exercises
- numerical examples with computer algebra systems
- measurement devices
23/04/2015
138
16.04.2015 14:58
Module Description BGU43014
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
- Tablet PC
- Notebook-exercises
- Lecture Notes
Literature:
Lecture Notes with links to further literature
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=965385
Generated on: 16.04.2015 14:58
23/04/2015
139
16.04.2015 14:58
Module Description BGU43014
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
BGU43014: Engineering Models in Structural
Dynamics and Vibroacoustics
Chair of Structural Mechanics (Prof. Müller)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
not specified
Exam type:
written
Exam duration
(min.):
90
Possibility
Homework:
of re-taking:
Yes
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Fundamentals of Mathematics (MA9801), Physics (PH9021) Mechanics I (MW1406), Mechanics II (MW1409),
Differential and Integral Calculus (MA9802), Modeling and Simulation with ordinary differential equations (MA9803)
Contents:
The content of the module is the modeling of structures in the field of civil engineering and mechanical engineering for
dynamic problems. Interfaces and subsystems are defined for a product in the appropriate manner described by
differential equations. Impedances and transfer functions are determined and aspects of insulation and damping are
discussed. Measures like elastic support and damping aspects are explained. The effectiveness of measures at
interfaces is explained via the measure of insertion loss.
Modeling techniques for different frequency ranges are discussed, where the limits of the individual model are
discussed using wave approaches.
Study goals:
After a successful participation in the course, the students are able to analyze structures for dynamic problems
defining engineering models and suitable substructures with clear interfaces. Students apply various methods for
solving the respective differential equations and discuss the solutions regarding dynamic characteristics. Students
can evaluate the methods and their applicability for modeling in the low-, mid- and high-frequency range.
Teaching and learning methods:
lecture with exercises
- Lecture (with experiments)
- integrated exercises
- numerical examples with computer algebra systems
- measurement devices
23/04/2015
140
16.04.2015 14:58
Module Description BGU43014
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
- Tablet PC
- Notebook-exercises
- Lecture Notes
Literature:
Lecture Notes with links to further literature
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=965385
Generated on: 16.04.2015 14:58
23/04/2015
141
16.04.2015 14:58
Module Description MW2086
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW2086: Uncertainty Modeling in Engineering
(MSE)
Associate Professorship of Continuum Mechanics (Prof.
Koutsourelakis)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Es wird eine Klausur am Ende der Vorlesung gestellt.
Exam type:
written
Exam duration
(min.):
120
Homework:
Possibility
Yes
of re-taking:
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Mathematical foundations (calculus), Engineering Informatics 1 / 2
Contents:
Engineers are constantly faced with the task of producing quantitative estimates and making decisions regarding the
safety, reliability and performance of various systems. More often than not, these tasks must be carried out under
limited information and significant uncertainty. Despite the progress in mathematical modeling and advances in
numerical simulation techniques, our actual predictive ability has not commensurately increased. Engineers must
account for the various sources of uncertainty (e.g. environmental effects, physical properties, model parameters) in
order to reach rational conclusions. This course presents the necessary tools and methodological framework for
dealing with uncertainty.
Study goals:
Introduce the basic mathematical framework in probability and statistics for analyzing problems exhibiting random
variability. Introduce the basic methods for parameter estimation, reliability analysis, decision-making and design in
the presence of uncertainty. Enable students to use statistical methods during their professional careers & further
study.
Teaching and learning methods:
The learning outcomes of this module will be developed based on several coordinated teaching components. The
lecture is supported when necessary by animation and software examples online on the computer. Additionally the
course includes practice examples to deepen the course content. Methods required for finishing the problems will be
presented online on the computer. Furthermore, there will be homework for personal study at home. Tutors are
available to answer questions of students.
23/04/2015
142
16.04.2015 14:58
Module Description MW2086
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
Lecture slides and several readings from various sources will be provided throughout the semester
Literature:
not specified
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=821207
Generated on: 16.04.2015 14:58
23/04/2015
143
16.04.2015 14:58
Module Description MW2086
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW2086: Uncertainty Modeling in Engineering
(MSE)
Associate Professorship of Continuum Mechanics (Prof.
Koutsourelakis)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
summer semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Es wird eine Klausur am Ende der Vorlesung gestellt.
Exam type:
written
Exam duration
(min.):
120
Homework:
Possibility
Yes
of re-taking:
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Mathematical foundations (calculus), Engineering Informatics 1 / 2
Contents:
Engineers are constantly faced with the task of producing quantitative estimates and making decisions regarding the
safety, reliability and performance of various systems. More often than not, these tasks must be carried out under
limited information and significant uncertainty. Despite the progress in mathematical modeling and advances in
numerical simulation techniques, our actual predictive ability has not commensurately increased. Engineers must
account for the various sources of uncertainty (e.g. environmental effects, physical properties, model parameters) in
order to reach rational conclusions. This course presents the necessary tools and methodological framework for
dealing with uncertainty.
Study goals:
Introduce the basic mathematical framework in probability and statistics for analyzing problems exhibiting random
variability. Introduce the basic methods for parameter estimation, reliability analysis, decision-making and design in
the presence of uncertainty. Enable students to use statistical methods during their professional careers & further
study.
Teaching and learning methods:
The learning outcomes of this module will be developed based on several coordinated teaching components. The
lecture is supported when necessary by animation and software examples online on the computer. Additionally the
course includes practice examples to deepen the course content. Methods required for finishing the problems will be
presented online on the computer. Furthermore, there will be homework for personal study at home. Tutors are
available to answer questions of students.
23/04/2015
144
16.04.2015 14:58
Module Description MW2086
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Media formats:
Lecture slides and several readings from various sources will be provided throughout the semester
Literature:
not specified
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=821207
Generated on: 16.04.2015 14:58
23/04/2015
145
16.04.2015 14:58
Module Description MW2149
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW2149: Introduction to Wind Energy
Chair of Wind Energy (Prof. Bottasso)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Examination with the following elements:
- Written or oral examination at the end of lectures (100%),
depending on the number of attendees.
- During the lecture period an optional seminar talks may be
presented.
Exam type:
written or oral
Exam duration
(min.):
90 min. written or 30 min.
oral, respectively.
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
Yes
Conversation:
No
Written paper:
No
Homework:
No
(Recommended) requirements:
Basic knowledge in engineering mechanics and aerodynamics.
Contents:
" Introduction to wind energy, the wind resource and its characteristics.
" Wind turbine types, configurations, components, design of machines and wind farms.
" Wind turbine aerodynamics.
" Dynamics, aeroservoelasticity and control of wind turbines.
" Introduction to off-shore wind, the off-shore environment, support structures, dynamics.
" Introduction to electrical systems and grid integration.
Study goals:
During the course, students will be introduced to the wind energy resource, and will learn the basic principles
underlying the energy conversion process from wind, with a particular emphasis on a multidisciplinary view of the
problem. At the successful completion of the course, students will achieve a basic solid understanding of the
aerodynamics, dynamics and control of wind turbines, as well as of their design and operation, with a good overall
knowledge of all principal aspects of wind energy technology.
Teaching and learning methods:
Learning method:
In addition to the individual methods of the students consolidated knowledge is aspired by repeated lessons in
exercises and tutorials.
23/04/2015
146
16.04.2015 14:59
Module Description MW2149
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching method:
During the lectures students are instructed in a teacher-centered style. The exercises are held in a student-centered
way.
Media formats:
The following kinds of media are used:
- Class room lectures
- Lecture notes (handouts)
- Exercises with solutions as download
Literature:
Course material will be provided by the instructor.
Additional recommended literature:
" T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook, Wiley, 2011.
" J. F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained, Theory, Design and Application, Wiley, 2012.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=938956
Generated on: 16.04.2015 14:59
23/04/2015
147
16.04.2015 14:59
Module Description MW2149
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
MW2149: Introduction to Wind Energy
Chair of Wind Energy (Prof. Bottasso)
Module level:
Bachelor
Language:
English
Module duration:
one semester
Occurrence:
winter semester
Credits*:
5
Total number
of hours:
150
Self-study
hours:
105
Contact
hours:
45
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Examination with the following elements:
- Written or oral examination at the end of lectures (100%),
depending on the number of attendees.
- During the lecture period an optional seminar talks may be
presented.
Exam type:
written or oral
Exam duration
(min.):
90 min. written or 30 min.
oral, respectively.
Possibility
of re-taking:
In the next semester: No
At the end of the
semester: No
Lecture:
Yes
Conversation:
No
Written paper:
No
Homework:
No
(Recommended) requirements:
Basic knowledge in engineering mechanics and aerodynamics.
Contents:
" Introduction to wind energy, the wind resource and its characteristics.
" Wind turbine types, configurations, components, design of machines and wind farms.
" Wind turbine aerodynamics.
" Dynamics, aeroservoelasticity and control of wind turbines.
" Introduction to off-shore wind, the off-shore environment, support structures, dynamics.
" Introduction to electrical systems and grid integration.
Study goals:
During the course, students will be introduced to the wind energy resource, and will learn the basic principles
underlying the energy conversion process from wind, with a particular emphasis on a multidisciplinary view of the
problem. At the successful completion of the course, students will achieve a basic solid understanding of the
aerodynamics, dynamics and control of wind turbines, as well as of their design and operation, with a good overall
knowledge of all principal aspects of wind energy technology.
Teaching and learning methods:
Learning method:
In addition to the individual methods of the students consolidated knowledge is aspired by repeated lessons in
exercises and tutorials.
23/04/2015
148
16.04.2015 14:59
Module Description MW2149
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Teaching method:
During the lectures students are instructed in a teacher-centered style. The exercises are held in a student-centered
way.
Media formats:
The following kinds of media are used:
- Class room lectures
- Lecture notes (handouts)
- Exercises with solutions as download
Literature:
Course material will be provided by the instructor.
Additional recommended literature:
" T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook, Wiley, 2011.
" J. F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained, Theory, Design and Application, Wiley, 2012.
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=938956
Generated on: 16.04.2015 14:59
23/04/2015
149
16.04.2015 14:59
Module Description SE0001
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0001: Bachelor's Thesis
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
12
Total number
of hours:
360
Self-study
hours:
360
Contact
hours:
not specified
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Schriftliche Ausarbeitung einer Bachelor's Thesis in deutscher oder englischer Sprache, die von einem
Hochschullehrer, der am Studiengang beteiligten Fakultäten ausgegeben und betreut wird. Die Bearbeitungsdauer
beträgt 6 Monate. Die schriftliche Ausarbeitung soll sinngemäß folgende Abschnitte enthalten: Einleitung,
Problemstellung und Zielsetzung, Theoretische Grundlagen, Methoden, Ergebnisse, Zusammenfassung und Anhang
mit Literaturverzeichnis. Details zur Auführung und Bearbeitung sind im "Leitfaden zur Bachlor`s Thesis und Bachelor
Prüfung" geregelt (siehe Homepage: http://www.engineering.mse.tum.de/studium/pruefungsangelegenheiten/ )
Exam type:
written
Exam duration
(min.):
not specified
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Vor dem Beginn der Bachelor's Thesis müssen mindestens 147 ECTS durch den Studierenden nachgewiesen
werden.
Contents:
Diese Lehrveranstaltung soll dazu dienen, die Studierenden anhand einer vom Betreuer definierten
wissenschaftlichen Fragestellung aus den Ingenieurwissenschaften an die wissenschaftliche Arbeitsweise
heranzuführen und zum selbstständigen wissenschaftlichen Arbeiten unter Nutzung der Methoden der
Ingenieurwissenschaften anzuleiten. Die begleitende schriftliche Ausarbeitung des Studierenden fasst die
wesentlichen Aspekte des behandelten Teilgebiets zusammen, diskutiert den entwickelten Lösungsansatz und
beschreibt die durch den Studenten erarbeitete Lösung. Die Studierenden müssen bei der Bearbeitung der
Bachelor's Thesis die jeweiligen Richtlinien und Standards des betreuenden Lehrstuhls beachten.
Study goals:
Die Teilnehmer sind nach der Bearbeitung der Bachelor's Thesis in der Lage, sich rasch in Themengebiete
einzuarbeiten und innerhalb eines vorgegebenen Zeitrahmens selbstständig wissenschaftliche Fragestellungen zu
erarbeiten. Sie haben gelernt, sich mit konkreten Fragestellungen auseinanderzusetzen und deren
Lösungsspezifikation in dem Bereich zu verstehen. Sie können eine Lösung realisieren und diese auch präzise
beschreiben.
Teaching and learning methods:
Unter Anleitung eines Betreuers werden die methodischen Grundlagen zur Ausarbeitung einer Bachelor's Thesis
23/04/2015
150
16.04.2015 15:00
Module Description SE0001
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
selbstständig erarbeitet (Messmethoden und Aufbau von Versuchsanlagen bei praktischen Arbeiten, sowie
spezifische theoretische Grundlagen und Software bei theoretischen Arbeiten). Die Studierenden lernen zum einen
sich selbstständig Informationen zu beschaffen, die für die Erarbeitung des Themas notwendig sind. Zum anderen
werden sie angeleitet, ein Laborbuch (Arbeitstagebuch) zu führen. Die Studierenden lernen unter Anleitung ihre
wissenschaftliche Fragestellung in einzelne Arbeitspakete zu zerlegen, um unter den gegebenen
Rahmenbedingungen ihr Ziel zu erreichen (Projektmanagement).
Media formats:
Die Studierenden erhalten Zugang zu allen für die Ausarbeitung der jeweils individuellen Bachelor's Thesis
erforderlicher Hilfsmittel (Literatur, Messinsturmente und Versuchsanlagen in Laboren und Technika, Rechner und
Software) für den geplanten Bearbeitungszeitraum.
Literature:
Individuell je nach Themengebiet; Eigenrecherche
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=770107
Generated on: 16.04.2015 15:00
23/04/2015
151
16.04.2015 15:00
Module Description SE0001
1 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
Module Description
SE0001: Bachelor's Thesis
Department MSE
Module level:
Bachelor
Language:
German/English
Module duration:
one semester
Occurrence:
winter/summer semester
Credits*:
12
Total number
of hours:
360
Self-study
hours:
360
Contact
hours:
not specified
* The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance
Record.
Description of achievement and assessment methods:
Schriftliche Ausarbeitung einer Bachelor's Thesis in deutscher oder englischer Sprache, die von einem
Hochschullehrer, der am Studiengang beteiligten Fakultäten ausgegeben und betreut wird. Die Bearbeitungsdauer
beträgt 6 Monate. Die schriftliche Ausarbeitung soll sinngemäß folgende Abschnitte enthalten: Einleitung,
Problemstellung und Zielsetzung, Theoretische Grundlagen, Methoden, Ergebnisse, Zusammenfassung und Anhang
mit Literaturverzeichnis. Details zur Auführung und Bearbeitung sind im "Leitfaden zur Bachlor`s Thesis und Bachelor
Prüfung" geregelt (siehe Homepage: http://www.engineering.mse.tum.de/studium/pruefungsangelegenheiten/ )
Exam type:
written
Exam duration
(min.):
not specified
Possibility
Homework:
of re-taking:
No
In the next semester: Yes
At the end of the
semester: No
Lecture:
No
Conversation:
No
Written paper:
No
(Recommended) requirements:
Vor dem Beginn der Bachelor's Thesis müssen mindestens 147 ECTS durch den Studierenden nachgewiesen
werden.
Contents:
Diese Lehrveranstaltung soll dazu dienen, die Studierenden anhand einer vom Betreuer definierten
wissenschaftlichen Fragestellung aus den Ingenieurwissenschaften an die wissenschaftliche Arbeitsweise
heranzuführen und zum selbstständigen wissenschaftlichen Arbeiten unter Nutzung der Methoden der
Ingenieurwissenschaften anzuleiten. Die begleitende schriftliche Ausarbeitung des Studierenden fasst die
wesentlichen Aspekte des behandelten Teilgebiets zusammen, diskutiert den entwickelten Lösungsansatz und
beschreibt die durch den Studenten erarbeitete Lösung. Die Studierenden müssen bei der Bearbeitung der
Bachelor's Thesis die jeweiligen Richtlinien und Standards des betreuenden Lehrstuhls beachten.
Study goals:
Die Teilnehmer sind nach der Bearbeitung der Bachelor's Thesis in der Lage, sich rasch in Themengebiete
einzuarbeiten und innerhalb eines vorgegebenen Zeitrahmens selbstständig wissenschaftliche Fragestellungen zu
erarbeiten. Sie haben gelernt, sich mit konkreten Fragestellungen auseinanderzusetzen und deren
Lösungsspezifikation in dem Bereich zu verstehen. Sie können eine Lösung realisieren und diese auch präzise
beschreiben.
Teaching and learning methods:
Unter Anleitung eines Betreuers werden die methodischen Grundlagen zur Ausarbeitung einer Bachelor's Thesis
23/04/2015
152
16.04.2015 15:00
Module Description SE0001
2 von 2
https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor...
selbstständig erarbeitet (Messmethoden und Aufbau von Versuchsanlagen bei praktischen Arbeiten, sowie
spezifische theoretische Grundlagen und Software bei theoretischen Arbeiten). Die Studierenden lernen zum einen
sich selbstständig Informationen zu beschaffen, die für die Erarbeitung des Themas notwendig sind. Zum anderen
werden sie angeleitet, ein Laborbuch (Arbeitstagebuch) zu führen. Die Studierenden lernen unter Anleitung ihre
wissenschaftliche Fragestellung in einzelne Arbeitspakete zu zerlegen, um unter den gegebenen
Rahmenbedingungen ihr Ziel zu erreichen (Projektmanagement).
Media formats:
Die Studierenden erhalten Zugang zu allen für die Ausarbeitung der jeweils individuellen Bachelor's Thesis
erforderlicher Hilfsmittel (Literatur, Messinsturmente und Versuchsanlagen in Laboren und Technika, Rechner und
Software) für den geplanten Bearbeitungszeitraum.
Literature:
Individuell je nach Themengebiet; Eigenrecherche
Responsible for the module:
not specified: not specified
Courses (Type, SH) Lecturer:
not specified (Displayed soon!)
For further information about this module and its allocation to the curriculum see:
https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=770107
Generated on: 16.04.2015 15:00
23/04/2015
153
16.04.2015 15:00