Module handook 17 411 Engineering Science MSE Student Office MSE Technische Universität München http://www.tum.de/ https://www.engineering.mse.tum.de/studium/curriculum/ 23/04/2015 1 Module Description MA9801 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9801: Basic Mathematics (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 8 Total number of hours: 240 Self-study hours: 135 Contact hours: 105 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: None Contents: Basics and Notation in Linear Algebra and Analysis in IR. - Linear Algebra: Systems of linear equations, matrix factorization, eigenvalues, linear least squares, with emphasis on numerical algorithms and their implementation - Analysis in IR: limits, continuity, differentiation; Newton's method and further applications - Numerical methods: polynomials and polynomial interpolation Study goals: At the end of the module, the students are able to - understand basic mathematical problems and tools, - analyze fundamental concepts in Linear Algebra and Analysis in IR, - apply the basic vector and matrix calculus for solution of problems arising in applications - implement and test numerical algorithms for the solution of simple engineering problems in MATLAB or similar software. Teaching and learning methods: The Lecture is presented by blackboard, overhead or tablet. In the Tutorials students analyse the exercises by themselves. They have support by a tutor. Additionally in small student teams MATLAB (for numerical experiments) is used to deepen the mathematical skills. 23/04/2015 2 16.04.2015 13:55 Module Description MA9801 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: Homework assignments; Presentation of exercises; Programming with MATLAB. Solutions of the homework assignments are provided online. Literature: Ansorge, R., Oberle, H. J.: Mathematik für Ingenieure 1, Lineare Algebra und analytische Geometrie, Differential- und Integralrechnung einer Variablen, Wiley-VCH Verlag (2000). Arens, T., et al.: Mathematik, Spektrum Verlag (2008). Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). C. B. Moler: Numerical Computing with MATLAB, SIAM (2004). J. Stewart: Essential Calculus, Cengage Learning Services; Auflage: International Ed (20. Juni 2007). G. Strang: Introduction to Linear Algebra, Wellesley-Cambridge Press, 1993. Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555445 Generated on: 16.04.2015 13:55 23/04/2015 3 16.04.2015 13:55 Module Description MA9801 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9801: Basic Mathematics (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 8 Total number of hours: 240 Self-study hours: 135 Contact hours: 105 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: None Contents: Basics and Notation in Linear Algebra and Analysis in IR. - Linear Algebra: Systems of linear equations, matrix factorization, eigenvalues, linear least squares, with emphasis on numerical algorithms and their implementation - Analysis in IR: limits, continuity, differentiation; Newton's method and further applications - Numerical methods: polynomials and polynomial interpolation Study goals: At the end of the module, the students are able to - understand basic mathematical problems and tools, - analyze fundamental concepts in Linear Algebra and Analysis in IR, - apply the basic vector and matrix calculus for solution of problems arising in applications - implement and test numerical algorithms for the solution of simple engineering problems in MATLAB or similar software. Teaching and learning methods: The Lecture is presented by blackboard, overhead or tablet. In the Tutorials students analyse the exercises by themselves. They have support by a tutor. Additionally in small student teams MATLAB (for numerical experiments) is used to deepen the mathematical skills. 23/04/2015 4 16.04.2015 13:55 Module Description MA9801 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: Homework assignments; Presentation of exercises; Programming with MATLAB. Solutions of the homework assignments are provided online. Literature: Ansorge, R., Oberle, H. J.: Mathematik für Ingenieure 1, Lineare Algebra und analytische Geometrie, Differential- und Integralrechnung einer Variablen, Wiley-VCH Verlag (2000). Arens, T., et al.: Mathematik, Spektrum Verlag (2008). Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). C. B. Moler: Numerical Computing with MATLAB, SIAM (2004). J. Stewart: Essential Calculus, Cengage Learning Services; Auflage: International Ed (20. Juni 2007). G. Strang: Introduction to Linear Algebra, Wellesley-Cambridge Press, 1993. Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555445 Generated on: 16.04.2015 13:55 23/04/2015 5 16.04.2015 13:55 Module Description PH9021 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description PH9021: Physics (MSE) TUM Department of Physics Module level: Bachelor Language: German Module duration: two semesters Occurrence: winter/summer semester Credits*: 9 Total number of hours: 270 Self-study hours: 150 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: A written exam takes place at the end of the second term. This way, it is ensured that a problem is recognized within limited time and with limited auxiliary means and that ways to a correct solutions are found. The exam covers the entire content of the module. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Fundamental knowledge of physics and mathematics (Gymnasium). Contents: The module Physics imparts the fundamentals of experimental physics and thus belongs to the basic scientific education in engineering science. The lecture covers the following chapters (together with part II). Introduction Gravitation, Dynamics Newton's Laws. Forces. Energy. Oscillations. Collisions. Rigid Body Movements Deformable Bodies Gases, Statistical Mechanics, Brownian Motion; Diffusion Thermodynamics & Heat. Optics Electrostatics / Electrodynamics Quantum Physics Study goals: Students will have the ability to classify physical processes according to the categories presented in the lecture and to describe them correctly in a quantitative fashion at a level that corresponds to those of the individual chapters of the lecture. 23/04/2015 6 16.04.2015 13:57 Module Description PH9021 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: The learning results are worked out in several complementary building blocks. The lecture is supported by a presentation and the use of the blackboard. The presentation is provided in batches online before the lecture. The content of the lecture is engrossed in the exercise. There, solutions of the problems are worked out and are presented, which will prepare the students for the written exam. As a support, the consultation hours of the lecturer and the tutors are offered. Media formats: Lecture and exercise with presentation and use of blackboard. Moreover, the presentation of the lecture as well as problem sheets and solutions are provided online. Experiments. Literature: The presentation of the lecture as well as the problem sheets are provided. The following books are recommended: Demtröder, Physik D. Meschede: Gerthsen Physik, Springer Verlag Tipler: Physik für Wissenschaftler und Ingenieure, Spektrum Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=553619 Generated on: 16.04.2015 13:57 23/04/2015 7 16.04.2015 13:57 Module Description PH9021 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description PH9021: Physics (MSE) TUM Department of Physics Module level: Bachelor Language: German Module duration: two semesters Occurrence: winter/summer semester Credits*: 9 Total number of hours: 270 Self-study hours: 150 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: A written exam takes place at the end of the second term. This way, it is ensured that a problem is recognized within limited time and with limited auxiliary means and that ways to a correct solutions are found. The exam covers the entire content of the module. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Fundamental knowledge of physics and mathematics (Gymnasium). Contents: The module Physics imparts the fundamentals of experimental physics and thus belongs to the basic scientific education in engineering science. The lecture covers the following chapters (together with part II). Introduction Gravitation, Dynamics Newton's Laws. Forces. Energy. Oscillations. Collisions. Rigid Body Movements Deformable Bodies Gases, Statistical Mechanics, Brownian Motion; Diffusion Thermodynamics & Heat. Optics Electrostatics / Electrodynamics Quantum Physics Study goals: Students will have the ability to classify physical processes according to the categories presented in the lecture and to describe them correctly in a quantitative fashion at a level that corresponds to those of the individual chapters of the lecture. 23/04/2015 8 16.04.2015 13:57 Module Description PH9021 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: The learning results are worked out in several complementary building blocks. The lecture is supported by a presentation and the use of the blackboard. The presentation is provided in batches online before the lecture. The content of the lecture is engrossed in the exercise. There, solutions of the problems are worked out and are presented, which will prepare the students for the written exam. As a support, the consultation hours of the lecturer and the tutors are offered. Media formats: Lecture and exercise with presentation and use of blackboard. Moreover, the presentation of the lecture as well as problem sheets and solutions are provided online. Experiments. Literature: The presentation of the lecture as well as the problem sheets are provided. The following books are recommended: Demtröder, Physik D. Meschede: Gerthsen Physik, Springer Verlag Tipler: Physik für Wissenschaftler und Ingenieure, Spektrum Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=553619 Generated on: 16.04.2015 13:57 23/04/2015 9 16.04.2015 13:57 Module Description CH1204 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description CH1204: Chemistry TUM Department of Chemistry Module level: Bachelor Language: German/English Module duration: two semesters Occurrence: winter/summer semester Credits*: 7 Total number of hours: 210 Self-study hours: 135 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The course will be examined with a written exam after the 2nd semester, encompassing the contents from both semesters. In the exam one should be able to recognise and work out a problem to the right solution in a limited time, with limited tools available. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Basic knowledge of physics and chemistry (high school). Contents: 1st Semester: Introduction to Basic chemistry principles, Inorganic Chemistry and Inorganic Materials basic knowledge in: atomic structure and periodic table (of the elements); molecules: covalent bonding, chemical forces, ionic bonding, weak (intermolecular/interatomic) forces, structure and bonding in metals; chemical reactions: mass and energy conversion; reaction rates, chemical equilibrium: dissolution, acid-base and redox reactions; basic knowledge in electrochemistry: electrolysis, corrosion; chemistry of non-metal elements: basics; chemistry of metals:basics; inorganic solids/materials: basics. 2nd Semester: Introduction to Organic Chemistry, Organic Materials and Polymers Structures of organic compounds, classes of compounds, structural aspects of stereochemistry, aromaticity, reactivity of organic compunds (basics), polysaccharides, lipids, proteins and ezymatic catalysis, nucleic acids, petrochemistry, polymers Study goals: 23/04/2015 10 16.04.2015 13:57 Module Description CH1204 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... After participation in this course students will be able to categorize chemical compounds and retrace and classify their reactions. They have acquired basic knowledge of the chemistry of the most important elements, inorganic and organic materials and their main properties as a pre-condition for consolidation of skills in the following terms of their studies. Teaching and learning methods: The course will be taught using lectures. The course materials (powerpoint slides) will be provided online. You will have to make your own notes during the lectures. Depending on the topics, more or less time will be spend in the lecture to work through question and problems together. In addition to the lecture materials, set Questions and Problems will be provided online (including answers) to practise and get familiar with the material and subjects taught. Media formats: Notes during the lectures, powerpoint slides (online) Literature: 'Mark J Winter, John E Andrew, Foundations of Inorganic Chemistry, Oxford Chemistry Primer (No. 94), Oxford University Press, New York 2000. ISBN 0198792883; P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, 4th or 5th Edition, Oxford University Press, ISBN 019926463, 9780199264636; E. Riedel, C. Janiak. Allgemeine and Anorganische Chemie, 9. Auflage, de Gruyter, Berlin 2008. ISBN: 9783110202779; als online book in der CHE-Bibliothek. G. Kickelbick, Chemie fur Ingenieure, 1. Auflage, Pearson Studium 2008. ISBN: 9783827372673 C. E. Mortimer, Chemie: das Basiswissen, 9. Auflage, Thieme Verslag 2007, ISBN: 9783134843095 E. Riedel 'Anorganische Chemie', "Lehrbuch der Organischen Chemie" H. Beyer, W. Walter, W. Franke, S. Hirzel Verlag, Stuttgart; "Organische Chemie" K.P.C. Vollhardt, N.E. Schore; "Organic Chemistry" Wiley-VCH Verlag GmbH, Weinheim Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=705916 Generated on: 16.04.2015 13:57 23/04/2015 11 16.04.2015 13:57 Module Description CH1204 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description CH1204: Chemistry TUM Department of Chemistry Module level: Bachelor Language: German/English Module duration: two semesters Occurrence: winter/summer semester Credits*: 7 Total number of hours: 210 Self-study hours: 135 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The course will be examined with a written exam after the 2nd semester, encompassing the contents from both semesters. In the exam one should be able to recognise and work out a problem to the right solution in a limited time, with limited tools available. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Basic knowledge of physics and chemistry (high school). Contents: 1st Semester: Introduction to Basic chemistry principles, Inorganic Chemistry and Inorganic Materials basic knowledge in: atomic structure and periodic table (of the elements); molecules: covalent bonding, chemical forces, ionic bonding, weak (intermolecular/interatomic) forces, structure and bonding in metals; chemical reactions: mass and energy conversion; reaction rates, chemical equilibrium: dissolution, acid-base and redox reactions; basic knowledge in electrochemistry: electrolysis, corrosion; chemistry of non-metal elements: basics; chemistry of metals:basics; inorganic solids/materials: basics. 2nd Semester: Introduction to Organic Chemistry, Organic Materials and Polymers Structures of organic compounds, classes of compounds, structural aspects of stereochemistry, aromaticity, reactivity of organic compunds (basics), polysaccharides, lipids, proteins and ezymatic catalysis, nucleic acids, petrochemistry, polymers Study goals: 23/04/2015 12 16.04.2015 13:57 Module Description CH1204 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... After participation in this course students will be able to categorize chemical compounds and retrace and classify their reactions. They have acquired basic knowledge of the chemistry of the most important elements, inorganic and organic materials and their main properties as a pre-condition for consolidation of skills in the following terms of their studies. Teaching and learning methods: The course will be taught using lectures. The course materials (powerpoint slides) will be provided online. You will have to make your own notes during the lectures. Depending on the topics, more or less time will be spend in the lecture to work through question and problems together. In addition to the lecture materials, set Questions and Problems will be provided online (including answers) to practise and get familiar with the material and subjects taught. Media formats: Notes during the lectures, powerpoint slides (online) Literature: 'Mark J Winter, John E Andrew, Foundations of Inorganic Chemistry, Oxford Chemistry Primer (No. 94), Oxford University Press, New York 2000. ISBN 0198792883; P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, 4th or 5th Edition, Oxford University Press, ISBN 019926463, 9780199264636; E. Riedel, C. Janiak. Allgemeine and Anorganische Chemie, 9. Auflage, de Gruyter, Berlin 2008. ISBN: 9783110202779; als online book in der CHE-Bibliothek. G. Kickelbick, Chemie fur Ingenieure, 1. Auflage, Pearson Studium 2008. ISBN: 9783827372673 C. E. Mortimer, Chemie: das Basiswissen, 9. Auflage, Thieme Verslag 2007, ISBN: 9783134843095 E. Riedel 'Anorganische Chemie', "Lehrbuch der Organischen Chemie" H. Beyer, W. Walter, W. Franke, S. Hirzel Verlag, Stuttgart; "Organische Chemie" K.P.C. Vollhardt, N.E. Schore; "Organic Chemistry" Wiley-VCH Verlag GmbH, Weinheim Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=705916 Generated on: 16.04.2015 13:57 23/04/2015 13 16.04.2015 13:57 Module Description MW1406 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1406: Engineering Mechanics 1 (MSE) Associate Professorship of Mechanik auf Höchstleistungsrechnern (Prof. Gee) Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Abiturwissen Mathematik (Differentiation, Integration,...) und Physik (Kräfte, Hebelgesetz,...) Contents: Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit einhergehenden Kräften. Ruhende Körper als Teilgebiet der Mechanik werden in der (Elasto-)Statik beschrieben, deren Grundlagen in diesem Modul vermittelt werden. Dies erfolgt vor allem für starre Körper, gegen Ende der Veranstaltungen aber auch für elastische Körper. Die Schwerpunkte sind: Modellbildung in der Mechanik, allgemeine ebene und räumliche Tragwerke, Fachwerke, Balken, Rahmen- und Bogenträger, Prinzip der virtuellen Arbeit, Reibung, Seilstatik, Elastostatik kleiner Verzerrungen (Dehnstab), Arbeitsund Energiemethoden Study goals: Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics 1 sind die Studierenden in der Lage, ruhende Tragwerke in Natur und Technik zu erkennen. Sie können mechanische Modelle aus der Realität extrahieren, hinsichtlich der Analyse einordnen und statisch bestimmte sowie statisch unbestimmte Systeme mit den erlernten Methoden berechnen. Dies erfogt vor allem hinsichtlich auftretender Kräfte zwischen und in den starren Körpern. Auch sind sie in der Lage, Zusammenhänge der Elastostatik, also zwischen Kräften und Verformungen zu erkennen und diese für einfache Tragwerkstypen zu berechnen. Die erlernten grundlegenden Methoden tragen zur Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie selbstständig zu lösen. 23/04/2015 14 16.04.2015 14:04 Module Description MW1406 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können, neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung. Media formats: Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf Lernplattform. Literature: (1) Lückenskript zur Vorlesung. (2) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 1: Statik, Springer, Berlin, 2009. (3) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 2: Elastostatik, Springer, Berlin, 2009. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556512 Generated on: 16.04.2015 14:04 23/04/2015 15 16.04.2015 14:04 Module Description MW1406 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1406: Engineering Mechanics 1 (MSE) Associate Professorship of Mechanik auf Höchstleistungsrechnern (Prof. Gee) Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Abiturwissen Mathematik (Differentiation, Integration,...) und Physik (Kräfte, Hebelgesetz,...) Contents: Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit einhergehenden Kräften. Ruhende Körper als Teilgebiet der Mechanik werden in der (Elasto-)Statik beschrieben, deren Grundlagen in diesem Modul vermittelt werden. Dies erfolgt vor allem für starre Körper, gegen Ende der Veranstaltungen aber auch für elastische Körper. Die Schwerpunkte sind: Modellbildung in der Mechanik, allgemeine ebene und räumliche Tragwerke, Fachwerke, Balken, Rahmen- und Bogenträger, Prinzip der virtuellen Arbeit, Reibung, Seilstatik, Elastostatik kleiner Verzerrungen (Dehnstab), Arbeitsund Energiemethoden Study goals: Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics 1 sind die Studierenden in der Lage, ruhende Tragwerke in Natur und Technik zu erkennen. Sie können mechanische Modelle aus der Realität extrahieren, hinsichtlich der Analyse einordnen und statisch bestimmte sowie statisch unbestimmte Systeme mit den erlernten Methoden berechnen. Dies erfogt vor allem hinsichtlich auftretender Kräfte zwischen und in den starren Körpern. Auch sind sie in der Lage, Zusammenhänge der Elastostatik, also zwischen Kräften und Verformungen zu erkennen und diese für einfache Tragwerkstypen zu berechnen. Die erlernten grundlegenden Methoden tragen zur Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie selbstständig zu lösen. 23/04/2015 16 16.04.2015 14:04 Module Description MW1406 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können, neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung. Media formats: Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf Lernplattform. Literature: (1) Lückenskript zur Vorlesung. (2) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 1: Statik, Springer, Berlin, 2009. (3) D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 2: Elastostatik, Springer, Berlin, 2009. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556512 Generated on: 16.04.2015 14:04 23/04/2015 17 16.04.2015 14:04 Module Description IN8011 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8011: Engineering Informatics I (MSE) TUM Department of Informatics Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 75 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: not specified Contents: The lecture is presents basic concepts of object-oriented programming languages and fundamental techniques of programming. Control-constructs such as iteration, recursion as well as simple concepts for structuring programs by means of classes and inheritance are examplified for a modern object-oriented language such as Java. Simple data-structures such as arrays, lists, trees and hash maps are introduced and algorithms for solving fundamental problems such as sorting and searching are presented. At the beginning there is a compact introduction to tools for scientific computing such as Maple or Matlab. Study goals: Knowledge in object-oriented programming and experience with simple data structures and basic algorithms. The students should be able to independently solve simple programming tasks. Teaching and learning methods: lecture, exercise course, problems for individual study Media formats: slide show, blackboard, possibly online programming and/or animations Literature: Heinisch, Cornelia / Müller-Hofmann, Frank / Goll, Joachim: Java als erste Programmiersprache. 5., überarb. u. erw. Aufl. 2007. Deitel, Harvey / Deitel, Paul: How to program Java Prentice-Hall, 2005 Ullenboom, Christian: Java ist auch eine Insel. Gallileo Computing, 2009 (auch online) 23/04/2015 18 16.04.2015 14:08 Module Description IN8011 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Responsible for the module: Seidl, Helmut; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556992 Generated on: 16.04.2015 14:07 23/04/2015 19 16.04.2015 14:08 Module Description IN8011 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8011: Engineering Informatics I (MSE) TUM Department of Informatics Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 75 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: not specified Contents: The lecture is presents basic concepts of object-oriented programming languages and fundamental techniques of programming. Control-constructs such as iteration, recursion as well as simple concepts for structuring programs by means of classes and inheritance are examplified for a modern object-oriented language such as Java. Simple data-structures such as arrays, lists, trees and hash maps are introduced and algorithms for solving fundamental problems such as sorting and searching are presented. At the beginning there is a compact introduction to tools for scientific computing such as Maple or Matlab. Study goals: Knowledge in object-oriented programming and experience with simple data structures and basic algorithms. The students should be able to independently solve simple programming tasks. Teaching and learning methods: lecture, exercise course, problems for individual study Media formats: slide show, blackboard, possibly online programming and/or animations Literature: Heinisch, Cornelia / Müller-Hofmann, Frank / Goll, Joachim: Java als erste Programmiersprache. 5., überarb. u. erw. Aufl. 2007. Deitel, Harvey / Deitel, Paul: How to program Java Prentice-Hall, 2005 Ullenboom, Christian: Java ist auch eine Insel. Gallileo Computing, 2009 (auch online) 23/04/2015 20 16.04.2015 14:08 Module Description IN8011 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Responsible for the module: Seidl, Helmut; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556992 Generated on: 16.04.2015 14:07 23/04/2015 21 16.04.2015 14:08 Module Description MA9802 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9802: Differential and Integral Calculus (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 8 Total number of hours: 240 Self-study hours: 135 Contact hours: 105 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: MA9801 Basic Mathematics Contents: Analysis in IR and IRn - Analysis in IR: Riemann quadrature; main theorem of integral and differential calculus Laplace and Fourier transformation Fast Fourier Transform (FFT) - Analysis in IR : partial and total derivative mean value theorem Taylor expansion Gradient, Hessian matrix Extremal problems Newton's Method in IRn - Integration in IR: Vector Analysis - linear o. d. e.´s with constant coefficients and source terms Study goals: At the end of the module students - understand the essential concepts of one - and multidimensional calculus - are able to apply the analytical methods and concepts - have the basic tools for the treatment of advanced engineering problems. 23/04/2015 22 16.04.2015 14:09 Module Description MA9802 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: The Lecture is presented on blackboard, overhead or tablet. In tutorials, students solve exercises by themselves supported by a tutor. To deepen the intuitive understanding, students work in teams using MATLAB or similar software to solve small problems. Media formats: Presentation of exercises; Solution of exercises; Programming with MATLAB. Solutions of exercises can be found in the Internet. Literature: Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 1 Lineare Algebra und analytische Geometrie, Differential- und Integralrechnung einer Variablen, Wiley-VCH Verlag (2000). Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 2 Differential- und Integralrechnung mehrerer Variabler, gewöhnliche und partielle Differentialgleichungen, Integraltransformationen, ..., Wiley-VCH Verlag (2003). Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). J. Stewart: Essential Calculus, Cengage Learning Services; Auflage: International Ed (20. Juni 2007). Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555436 Generated on: 16.04.2015 14:09 23/04/2015 23 16.04.2015 14:09 Module Description MA9802 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9802: Differential and Integral Calculus (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 8 Total number of hours: 240 Self-study hours: 135 Contact hours: 105 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: MA9801 Basic Mathematics Contents: Analysis in IR and IRn - Analysis in IR: Riemann quadrature; main theorem of integral and differential calculus Laplace and Fourier transformation Fast Fourier Transform (FFT) - Analysis in IR : partial and total derivative mean value theorem Taylor expansion Gradient, Hessian matrix Extremal problems Newton's Method in IRn - Integration in IR: Vector Analysis - linear o. d. e.´s with constant coefficients and source terms Study goals: At the end of the module students - understand the essential concepts of one - and multidimensional calculus - are able to apply the analytical methods and concepts - have the basic tools for the treatment of advanced engineering problems. 23/04/2015 24 16.04.2015 14:09 Module Description MA9802 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: The Lecture is presented on blackboard, overhead or tablet. In tutorials, students solve exercises by themselves supported by a tutor. To deepen the intuitive understanding, students work in teams using MATLAB or similar software to solve small problems. Media formats: Presentation of exercises; Solution of exercises; Programming with MATLAB. Solutions of exercises can be found in the Internet. Literature: Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 1 Lineare Algebra und analytische Geometrie, Differential- und Integralrechnung einer Variablen, Wiley-VCH Verlag (2000). Ansorge, R./Oberle, H. J.: Mathematik für Ingenieure 2 Differential- und Integralrechnung mehrerer Variabler, gewöhnliche und partielle Differentialgleichungen, Integraltransformationen, ..., Wiley-VCH Verlag (2003). Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). J. Stewart: Essential Calculus, Cengage Learning Services; Auflage: International Ed (20. Juni 2007). Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555436 Generated on: 16.04.2015 14:09 23/04/2015 25 16.04.2015 14:09 Module Description MW1409 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1409: Engineering Mechanics 2 (MSE) Associate Professorship of Mechanik auf Höchstleistungsrechnern (Prof. Gee) Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Engineering Mechanics I Contents: Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit einhergehenden Kräften. Im Modul Engineering Mechanics I wurden zeitunabhängige Kräfte und Verfomungen betrachtet (ruhende Körper), die Engineering Mechanics II handeln nun von zeitlich bewegten Körpern. Die Schwerpunkte sind: Kinematik von Punkten und Starrkörpern in festen und auch in bewegten Koordinatensystemen (Relativkinematik), Kinetik von Punktmassen und Starrkörpern, Stoßphänomene, Schwingungen. Study goals: Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics II sind die Studierenden in der Lage, auftretende Bewegungen in Natur und Technik geometrisch (kinematisch) zu beschreiben. Sie verstehen weiter das Zusammenspiel von Kräften und Bewegungen und können dieses mit den erlernten Methoden analysieren und berechnen. Auch sind sie in der Lage, Schwingungssysteme zu berechen. Die erlernten grundlegenden Methoden tragen zur Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie selbstständig zu lösen. Teaching and learning methods: Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können, 23/04/2015 26 16.04.2015 14:11 Module Description MW1409 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung. Media formats: Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf Lernplattform Literature: Lückenskript zur Vorlesung; D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 3: Kinetik, Springer, Berlin, 2010 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556514 Generated on: 16.04.2015 14:10 23/04/2015 27 16.04.2015 14:11 Module Description MW1409 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1409: Engineering Mechanics 2 (MSE) Associate Professorship of Mechanik auf Höchstleistungsrechnern (Prof. Gee) Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Begleitend zu Vorlesung, Übung und Tutorium in diesem Modul sind im Abstand von ca. zwei Wochen Hausaufgaben zum aktuellen Themengebiet angeboten. Sie sind von geringem Umfang und dienen dem Studierenden als Rückmeldung über seinen fortschreitenden Wissensstand. Am Ende des Semesters werden die Lernergebnisse in den verschiedenen Themengebieten des Moduls im Rahmen einer schriftlichen Prüfung abgeprüft. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Engineering Mechanics I Contents: Die Mechanik als Teilgebiet der Physik ist eine grundlegende Disziplin in den Ingenieurwissenschaften. Sie beschäftigt sich mit der Beschreibung und Vorherbestimmung der Bewegungen von Körpern und mit den damit einhergehenden Kräften. Im Modul Engineering Mechanics I wurden zeitunabhängige Kräfte und Verfomungen betrachtet (ruhende Körper), die Engineering Mechanics II handeln nun von zeitlich bewegten Körpern. Die Schwerpunkte sind: Kinematik von Punkten und Starrkörpern in festen und auch in bewegten Koordinatensystemen (Relativkinematik), Kinetik von Punktmassen und Starrkörpern, Stoßphänomene, Schwingungen. Study goals: Nach der erfolgreichen Teilnahme an der Modulveranstaltung Engineering Mechanics II sind die Studierenden in der Lage, auftretende Bewegungen in Natur und Technik geometrisch (kinematisch) zu beschreiben. Sie verstehen weiter das Zusammenspiel von Kräften und Bewegungen und können dieses mit den erlernten Methoden analysieren und berechnen. Auch sind sie in der Lage, Schwingungssysteme zu berechen. Die erlernten grundlegenden Methoden tragen zur Entwicklung der Fähigkeit bei, mechanische Fragestellungen in Ingenieurproblemen zu formulieren und sie selbstständig zu lösen. Teaching and learning methods: Die Vorlesung findet als Vortrag statt. Wichtige Inhalte der Vorlesung werden am Tablet-PC angeschrieben, die die Studierenden in ihr Lückenskript übertragen können. In den Übungen werden Beispielaufgaben vorgerechnet und weitere, wöchentliche Übungsaufgaben verteilt. Die Bearbeitung ist freiwillig. Fragen zu diesen Aufgaben können, 23/04/2015 28 16.04.2015 14:11 Module Description MW1409 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... neben weiteren allgemeinen Fragen, in den Tutorien in Kleingruppen gestellt werden. Schriftliche Hausaufgaben werden ca. alle zwei Wochen auf der Lernplattform bereitgestellt. Sie können zu Hause bearbeitet und anschließend abgegeben werden. Die Studierenden erhalten nach erfolgter Korrektur Rückmeldung über ihre Bewertung. Media formats: Vortrag, Präsentation mit Tablet-PC, Lückenskript in Vorlesung, Lernmaterialien auf Lernplattform, Hausaufgaben auf Lernplattform Literature: Lückenskript zur Vorlesung; D. Gross, W. Hauger, J. Schröder und W.A. Wall, Technische Mechanik Band 3: Kinetik, Springer, Berlin, 2010 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556514 Generated on: 16.04.2015 14:10 23/04/2015 29 16.04.2015 14:11 Module Description EI4381 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI4381: Electronic Design Automation for Integrated Circuits (MSE) TUM Department of Electrical and Computer Engineering Module level: Bachelor Language: German/English Module duration: one semester Occurrence: summer semester Credits*: 4 Total number of hours: 120 Self-study hours: 75 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Abschlussprüfung. Unbewertete Semestralklausur kann optional angeboten werden. Sofern Projektarbeit integriert wird (noch nicht final entschieden), könnte diese auch in die Note einfließen. Exam type: written Exam duration (min.): 60min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: Yes (Recommended) requirements: Vorlesung "Digitale Schaltungen" (kann auch parallel gehört werden); Kenntnis diskreter Mathematik hilfreich, wird aber nicht vorausgesetzt. Contents: Logiksynthese: Grundlagen der Logiksynthese; Binäre Boolesche Funktionen; Synthese von kombinatorischen Schaltungen mit zwei Ebenen; Heuristische Minimierung von kombinatorischen Schaltungen mit zwei Ebenen; Synthese von kombinatorischen Schaltungen mit mehr als zwei Ebenen; Ordered Binary Decision Diagrams; Synthese von sequentiellen Schaltungen mittels endlicher Automaten Simulation digitaler Schaltungen: Grundlagen Digitalsimulation; Werterepräsentation; Simulation des Zeitverhaltens Weitere Themen: Layoutentwurf; Testverfahren (zu entscheiden in Abstimmung mit anderen Dozenten) Study goals: Studierende kennen Grundlagen von Algorithmen zu Synthese, Simulation und Testentwurf digitaler Schaltungen und sind mit der Anwendung von Verfahren der diskreten Mathematik zur Beschreibung und Optimierung von Schaltungen vertraut; Studierende können digitale Schaltungen mittels Boolescher Funktionen beschreiben und verschiedene Darstellungsformen Boolescher Funktionen (SOP-Formen, Kubengraph, Reduced Ordered Binary Decision Diagram) interpretieren, erstellen und ineinander überführen; Studierende können Logikoptimierung durch verschiedene Verfahren durchführen: Minimierung Boolescher Funktionen nach Quine/McCluskey, mittels Resolventen-Methode, heuristische Ansätze; Studierende sind vertraut mit Beschreibung unnd Zustandsminimierung von endlichen Automaten (Finite State Machines); Studierende kennen die Grundlagen der Simulation digitialer Schlaltungen auf dem Computer. 23/04/2015 30 16.04.2015 14:11 Module Description EI4381 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: Wird noch ergänzt Media formats: Primär Tafelanschrieb oder Tablet PC. In geringem Umfang PowerPoint-Folien (primär für Themeneinführungen) Vorlesungsinhalte sollen den Studierenden auch als Unterlagen zur Verfügung gestellt werden. Evtl. Unterstützung durch Online-Aufgaben. Literature: TBD Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556405 Generated on: 16.04.2015 14:11 23/04/2015 31 16.04.2015 14:11 Module Description EI4381 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI4381: Electronic Design Automation for Integrated Circuits (MSE) TUM Department of Electrical and Computer Engineering Module level: Bachelor Language: German/English Module duration: one semester Occurrence: summer semester Credits*: 4 Total number of hours: 120 Self-study hours: 75 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Abschlussprüfung. Unbewertete Semestralklausur kann optional angeboten werden. Sofern Projektarbeit integriert wird (noch nicht final entschieden), könnte diese auch in die Note einfließen. Exam type: written Exam duration (min.): 60min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: Yes (Recommended) requirements: Vorlesung "Digitale Schaltungen" (kann auch parallel gehört werden); Kenntnis diskreter Mathematik hilfreich, wird aber nicht vorausgesetzt. Contents: Logiksynthese: Grundlagen der Logiksynthese; Binäre Boolesche Funktionen; Synthese von kombinatorischen Schaltungen mit zwei Ebenen; Heuristische Minimierung von kombinatorischen Schaltungen mit zwei Ebenen; Synthese von kombinatorischen Schaltungen mit mehr als zwei Ebenen; Ordered Binary Decision Diagrams; Synthese von sequentiellen Schaltungen mittels endlicher Automaten Simulation digitaler Schaltungen: Grundlagen Digitalsimulation; Werterepräsentation; Simulation des Zeitverhaltens Weitere Themen: Layoutentwurf; Testverfahren (zu entscheiden in Abstimmung mit anderen Dozenten) Study goals: Studierende kennen Grundlagen von Algorithmen zu Synthese, Simulation und Testentwurf digitaler Schaltungen und sind mit der Anwendung von Verfahren der diskreten Mathematik zur Beschreibung und Optimierung von Schaltungen vertraut; Studierende können digitale Schaltungen mittels Boolescher Funktionen beschreiben und verschiedene Darstellungsformen Boolescher Funktionen (SOP-Formen, Kubengraph, Reduced Ordered Binary Decision Diagram) interpretieren, erstellen und ineinander überführen; Studierende können Logikoptimierung durch verschiedene Verfahren durchführen: Minimierung Boolescher Funktionen nach Quine/McCluskey, mittels Resolventen-Methode, heuristische Ansätze; Studierende sind vertraut mit Beschreibung unnd Zustandsminimierung von endlichen Automaten (Finite State Machines); Studierende kennen die Grundlagen der Simulation digitialer Schlaltungen auf dem Computer. 23/04/2015 32 16.04.2015 14:11 Module Description EI4381 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: Wird noch ergänzt Media formats: Primär Tafelanschrieb oder Tablet PC. In geringem Umfang PowerPoint-Folien (primär für Themeneinführungen) Vorlesungsinhalte sollen den Studierenden auch als Unterlagen zur Verfügung gestellt werden. Evtl. Unterstützung durch Online-Aufgaben. Literature: TBD Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556405 Generated on: 16.04.2015 14:11 23/04/2015 33 16.04.2015 14:11 Module Description BGU65007T4 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BGU65007T4: Computer Aided Modeling of Products and Processes Chair of Computer-assisted Modeling and Simulation (Prof. Borrmann) Module level: Bachelor Language: German Module duration: two semesters Occurrence: winter/summer semester Credits*: 8 Total number of hours: 240 Self-study hours: 120 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The module examination consists of a combination of a written examination and coursework assignments. There is a written exam at the end of the winter semester; auxiliary means are not allowed. Coursework assignments are part of the module examination: 18 assignments over 2 semesters, 14 have to be passed. At least half of the assignments are verified via an oral examination in front of the computer. Exam type: written Exam duration (min.): 2 * 60 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Prerequisits for attending the module are: Completion of the module 'Engineering Informatics I'. Most important prerequisits are basic programming skills as well as knowledge in basic data structures. Contents: A) Basics: Introduction to Modeling in Engineering, Basic of Geometric Modeling, Geometric Transformations, Introduction to Graph Theory, Databases, Process Modeling, Discrete Event Modeling, Petri Nets B) Applications on Products and Processes in Engineering: Elementary CAD Modeling in 2D and 3D, Product Models, Process Models, Models in Product Lifecycle, Concurrent Engineering, Parametric Modelling, Feature-based Modeling, Systems Modeling Language, Virtual Prototypes Study goals: After completion of the module the students will be able to: - structure engineering tasks according to the goal of completing them using computational models and methods - assess different computational methods with respect to their applicability to the development of products and processes - plan their usage for concrete, interdisciplinary applications in engineering science, 23/04/2015 34 16.04.2015 14:12 Module Description BGU65007T4 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... - verify, validate and analyze computational models and methods, - assess software products with respect to their suitability for supporting the design of products and processes, - use selected software products for concrete design tasks Teaching and learning methods: The teaching results of the module are achieved by multiple coordinated components. The lectures are supported by powerpoint presentations, blackboard scripts and movies illustrating computer simulations. The lecture contents are completed by exercises in the lecture hall. Here, the methods required for completing the assignments are demonstrated live using the computer. The students work on the assignments in the practicals where they are supported by student tutors. Media formats: Lectures and exercises: In the lecture hall, using powerpoint presentations, blackboard script and software examples on the computer. Practicals: in the computer pool. The contents of lectures, exercises and practicals are coordinated with each other. Literature: Lecture notes with extensive references. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1067215 Generated on: 16.04.2015 14:12 23/04/2015 35 16.04.2015 14:12 Module Description BGU65007T4 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BGU65007T4: Computer Aided Modeling of Products and Processes Chair of Computer-assisted Modeling and Simulation (Prof. Borrmann) Module level: Bachelor Language: German Module duration: two semesters Occurrence: winter/summer semester Credits*: 8 Total number of hours: 240 Self-study hours: 120 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The module examination consists of a combination of a written examination and coursework assignments. There is a written exam at the end of the winter semester; auxiliary means are not allowed. Coursework assignments are part of the module examination: 18 assignments over 2 semesters, 14 have to be passed. At least half of the assignments are verified via an oral examination in front of the computer. Exam type: written Exam duration (min.): 2 * 60 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Prerequisits for attending the module are: Completion of the module 'Engineering Informatics I'. Most important prerequisits are basic programming skills as well as knowledge in basic data structures. Contents: A) Basics: Introduction to Modeling in Engineering, Basic of Geometric Modeling, Geometric Transformations, Introduction to Graph Theory, Databases, Process Modeling, Discrete Event Modeling, Petri Nets B) Applications on Products and Processes in Engineering: Elementary CAD Modeling in 2D and 3D, Product Models, Process Models, Models in Product Lifecycle, Concurrent Engineering, Parametric Modelling, Feature-based Modeling, Systems Modeling Language, Virtual Prototypes Study goals: After completion of the module the students will be able to: - structure engineering tasks according to the goal of completing them using computational models and methods - assess different computational methods with respect to their applicability to the development of products and processes - plan their usage for concrete, interdisciplinary applications in engineering science, 23/04/2015 36 16.04.2015 14:12 Module Description BGU65007T4 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... - verify, validate and analyze computational models and methods, - assess software products with respect to their suitability for supporting the design of products and processes, - use selected software products for concrete design tasks Teaching and learning methods: The teaching results of the module are achieved by multiple coordinated components. The lectures are supported by powerpoint presentations, blackboard scripts and movies illustrating computer simulations. The lecture contents are completed by exercises in the lecture hall. Here, the methods required for completing the assignments are demonstrated live using the computer. The students work on the assignments in the practicals where they are supported by student tutors. Media formats: Lectures and exercises: In the lecture hall, using powerpoint presentations, blackboard script and software examples on the computer. Practicals: in the computer pool. The contents of lectures, exercises and practicals are coordinated with each other. Literature: Lecture notes with extensive references. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1067215 Generated on: 16.04.2015 14:12 23/04/2015 37 16.04.2015 14:12 Module Description MA9803 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9803: Modeling and Simulation with Ordinary Differential Equations (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Prüfungsart: Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: MA9801 Basic Mathematics, MA9802 Differential and Integral Calculus Contents: Initial value problems for ordinary differential equations (o.d.e.s): - Analysis: existence, uniqueness, stability - Numerical methods: Runge-Kutta methods BDF methods stiffness (A-stability) - Modeling and simulation with o.d.e's Mathematical modeling of engineering problems with o.d.e's numerical simulation, introduction to MATLAB o.d.e. Solvers Study goals: At the end of the module students - understand the essential concepts in mathematical modeling with o.d.e's - are able to formulate initial value problems and solve them by numerical methods - can visualize parameter dependent solutions. Teaching and learning methods: The Lecture is presented on blackboard, overhead or tablet. In tutorials, students solve exercises by themselves with support by a tutor. 23/04/2015 38 16.04.2015 14:13 Module Description MA9803 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... To deepen the mathematical intuition, students work in teams on the solution of small problems using MATLAB or similar software packages. Media formats: Presentation of exercises; Solution of exercises; Programming with MATLAB. Solutions of exercises can be found in the Internet. Literature: Deuflhard, Bornemann: Scientific Computing with Ordinary Differential Equations, Springer Verlag (2004). Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). Stoer/Bulirsch: Numerische Mathematik II, 4. Auflage, Springer, Berlin (2000). Quarteroni, Sacco, Saleri: Numerical Mathematics, Springer Verlag (2000). Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555434 Generated on: 16.04.2015 14:13 23/04/2015 39 16.04.2015 14:13 Module Description MA9803 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9803: Modeling and Simulation with Ordinary Differential Equations (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Prüfungsart: Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: MA9801 Basic Mathematics, MA9802 Differential and Integral Calculus Contents: Initial value problems for ordinary differential equations (o.d.e.s): - Analysis: existence, uniqueness, stability - Numerical methods: Runge-Kutta methods BDF methods stiffness (A-stability) - Modeling and simulation with o.d.e's Mathematical modeling of engineering problems with o.d.e's numerical simulation, introduction to MATLAB o.d.e. Solvers Study goals: At the end of the module students - understand the essential concepts in mathematical modeling with o.d.e's - are able to formulate initial value problems and solve them by numerical methods - can visualize parameter dependent solutions. Teaching and learning methods: The Lecture is presented on blackboard, overhead or tablet. In tutorials, students solve exercises by themselves with support by a tutor. 23/04/2015 40 16.04.2015 14:13 Module Description MA9803 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... To deepen the mathematical intuition, students work in teams on the solution of small problems using MATLAB or similar software packages. Media formats: Presentation of exercises; Solution of exercises; Programming with MATLAB. Solutions of exercises can be found in the Internet. Literature: Deuflhard, Bornemann: Scientific Computing with Ordinary Differential Equations, Springer Verlag (2004). Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). Stoer/Bulirsch: Numerische Mathematik II, 4. Auflage, Springer, Berlin (2000). Quarteroni, Sacco, Saleri: Numerical Mathematics, Springer Verlag (2000). Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555434 Generated on: 16.04.2015 14:13 23/04/2015 41 16.04.2015 14:13 Module Description CH1205 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description CH1205: Material Science I TUM Department of Chemistry Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam at the end of the semester covers the knowledge aquired in the lecture and Exercises. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Fundamentals of mathematics, physics and chemistry that are taught in the first and second semester of "Engineering Science": Mathematical basics 1 and 2 (Linear Algebra, Analysis), Experiamental Physics 1 and 2, Chemistry 1 and 2 (Basic chemistry of Inorganic and Organic Materials) Contents: In general, the lecture "Material Science" (MS1 & MS2) discusses all subdomains of materials sciences starting with physical and chemical basics of matter resp. materials up to the selection of materials, their design-specific application and the characterisation of construction elements. MS1 covers the physical and chemical basics necessary to understand the structure of materials and their properties such as tensile strength, corrosion resistance, hardness, ductility, brittleness and anisotropy. Based on fundamental interactions in solids the structural features and the structure determination by phyicochemical methods will be explained. Major aspects of selected substance classes will be discussed with the focus on the technical relevance in Materials Science and its Structure-Property relations. Topics of the lecture: Introduction: Binding forces in solids 1. Atomic structure of solids (crystal structures, reciprocal lattice, diffraction and spectroscopic techniques) 2. Classes of materials (metals/alloys, compound semiconductors, ceramics, oxides, zeolites, polymers,nanomaterials) 3. Atomic-scale physical Properties of materials(mechanical, thermal, electrical, magneticand optical properties) Study goals: At the end of the module Material Science I the students understand the physical and chemical structure of materials on an atomic scale and know methods to examin it. Furthermore, the students are able to identify and characterise the classes of materials that are commonly used in engineering as well as define the different physical properties of materials. They are able to differ the different substance classes in Materials Science and they can classify compounds based on their knowlegde. Students are able to answer questions to the synthesis, reactivity and stabiltiy 23/04/2015 42 16.04.2015 14:14 Module Description CH1205 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... of materials based on the interconnection between the atomic strucutre odf solids, the chemical bonding and the basic knowlegde in materials chemisty. After visiting the lecture Materials Science I the students are ready to discuss structural features and are able to understand structure (and symmetry)-property relations of solids. Teaching and learning methods: The module consists of a lecture and exercises. The knowledge of the lecture is imparted by talks and presentations. The students should read an accompanying textbook which can be supplemented by additional literature. In the practical, the content of the lecture is demonstrated in practical tests. Media formats: The media used in the lecture are: presentations, videos, blackboard sketches. Literature: As textbook: Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010 (ebook); additional: Askeland, Donald R., The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006 ; Roos, E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008; Chemical section: Englisch literaure: A. Burrows, J. Holman, A. Parsons, G. Pilling, G. Price, Chemistry, Oxford University press 2009, ISBN 978-0-19-927789-6; C. E. Housecroft, E. Constable, Chemistry, Pearson Education Limited Harlow, 3rd edition 2006, ISBN 978-0-131-27567; P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, Oxford University press, 4th edition 2006, ISBN 978-0-19-926463-6; German literature: E. Riedel, Allgemeine und Anorganische Chemie, de Gruyter, 10. Auflage 2010, ISBN 978-3-11-022781-9; M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham Allgemeine und Anorganische Chemie, Spektrum Akademische Verlag Heidelberg, 1. Auflage 2004, ISBN 3-8274-0208-5; U. Müller, Inorganic Structure Chemistry, Whiley,Second Edition, ISBN 978-0470018651 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=774103 Generated on: 16.04.2015 14:14 23/04/2015 43 16.04.2015 14:14 Module Description CH1205 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description CH1205: Material Science I TUM Department of Chemistry Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam at the end of the semester covers the knowledge aquired in the lecture and Exercises. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Fundamentals of mathematics, physics and chemistry that are taught in the first and second semester of "Engineering Science": Mathematical basics 1 and 2 (Linear Algebra, Analysis), Experiamental Physics 1 and 2, Chemistry 1 and 2 (Basic chemistry of Inorganic and Organic Materials) Contents: In general, the lecture "Material Science" (MS1 & MS2) discusses all subdomains of materials sciences starting with physical and chemical basics of matter resp. materials up to the selection of materials, their design-specific application and the characterisation of construction elements. MS1 covers the physical and chemical basics necessary to understand the structure of materials and their properties such as tensile strength, corrosion resistance, hardness, ductility, brittleness and anisotropy. Based on fundamental interactions in solids the structural features and the structure determination by phyicochemical methods will be explained. Major aspects of selected substance classes will be discussed with the focus on the technical relevance in Materials Science and its Structure-Property relations. Topics of the lecture: Introduction: Binding forces in solids 1. Atomic structure of solids (crystal structures, reciprocal lattice, diffraction and spectroscopic techniques) 2. Classes of materials (metals/alloys, compound semiconductors, ceramics, oxides, zeolites, polymers,nanomaterials) 3. Atomic-scale physical Properties of materials(mechanical, thermal, electrical, magneticand optical properties) Study goals: At the end of the module Material Science I the students understand the physical and chemical structure of materials on an atomic scale and know methods to examin it. Furthermore, the students are able to identify and characterise the classes of materials that are commonly used in engineering as well as define the different physical properties of materials. They are able to differ the different substance classes in Materials Science and they can classify compounds based on their knowlegde. Students are able to answer questions to the synthesis, reactivity and stabiltiy 23/04/2015 44 16.04.2015 14:14 Module Description CH1205 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... of materials based on the interconnection between the atomic strucutre odf solids, the chemical bonding and the basic knowlegde in materials chemisty. After visiting the lecture Materials Science I the students are ready to discuss structural features and are able to understand structure (and symmetry)-property relations of solids. Teaching and learning methods: The module consists of a lecture and exercises. The knowledge of the lecture is imparted by talks and presentations. The students should read an accompanying textbook which can be supplemented by additional literature. In the practical, the content of the lecture is demonstrated in practical tests. Media formats: The media used in the lecture are: presentations, videos, blackboard sketches. Literature: As textbook: Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010 (ebook); additional: Askeland, Donald R., The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006 ; Roos, E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008; Chemical section: Englisch literaure: A. Burrows, J. Holman, A. Parsons, G. Pilling, G. Price, Chemistry, Oxford University press 2009, ISBN 978-0-19-927789-6; C. E. Housecroft, E. Constable, Chemistry, Pearson Education Limited Harlow, 3rd edition 2006, ISBN 978-0-131-27567; P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, Oxford University press, 4th edition 2006, ISBN 978-0-19-926463-6; German literature: E. Riedel, Allgemeine und Anorganische Chemie, de Gruyter, 10. Auflage 2010, ISBN 978-3-11-022781-9; M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham Allgemeine und Anorganische Chemie, Spektrum Akademische Verlag Heidelberg, 1. Auflage 2004, ISBN 3-8274-0208-5; U. Müller, Inorganic Structure Chemistry, Whiley,Second Edition, ISBN 978-0470018651 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=774103 Generated on: 16.04.2015 14:14 23/04/2015 45 16.04.2015 14:14 Module Description MW1405 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1405: Continuum Mechanics (MSE) Associate Professorship of Continuum Mechanics (Prof. Koutsourelakis) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 7 Total number of hours: 210 Self-study hours: 90 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam consists of two parts: a) a short-question (theory) part and b) a problem-solving (calculation) part. The exam covers the whole course material and is intentionally intensive. A voluntary, midterm exam is offered half-way during the semester that does not count towards the final grade but can be used by the students to familiarize themselves with the final exam's content and structure. Exam type: written Exam duration (min.): 120 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Differential an Integral Calculus of functions of several variables, Partial and Ordinary differential equations, Technical Mechanics I & II Contents: The module offers a unified description of fluids and solids under the paradigm of continuum mechanics. The module discusses: 1) the motivation, foundation and limitations of continuum descriptions 2) the fundamental mathematical tools and in particular the algebra and calculus of tensors 3) Kinematics, 4) Conservation Laws of mass, momentum and energy, 5) invariants and symmetries, 6) Isothermal Fluid Mechanics, (7) Linear Elasticity in Solid Mechanics. Study goals: Students who successfully complete this module will: 1) know the conceptual basis and essential quantities of Continuum Mechanics 2) be proficient in the essential mathematics i.e. algebra and calculus of tensors 3) know the mathematical description of motion and deformation for continua 4) know the fundamental conservation laws of mass , momentum and energy that govern the behavior of continua 5) understand the role of constitutive equations and models in the description of fluids and solids 6) have the the ability to solve analytically basic problems in fluids and solids 7) acquire the enecessary foundation in order to follow advanced modules and lecture topics in the subsequent semesters. Teaching and learning methods: 23/04/2015 46 16.04.2015 14:15 Module Description MW1405 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Lecture involving theory and examples, Problem-solving sessions, Sample solutions, Suggested readings Media formats: Lecture slides, Manuscript, Short Movies and Animations Literature: 1) "Introduction to Continuum Mechanics", 4th Edition, by W Michael Lai, David Rubin, Erhard Krempl (Author) 2) Manuscript containing a list of over 20 additional textbooks Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: H.J. Kaltenbach, P.S. Koutsourelakis (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556526 Generated on: 16.04.2015 14:15 23/04/2015 47 16.04.2015 14:15 Module Description MW1405 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1405: Continuum Mechanics (MSE) Associate Professorship of Continuum Mechanics (Prof. Koutsourelakis) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 7 Total number of hours: 210 Self-study hours: 90 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam consists of two parts: a) a short-question (theory) part and b) a problem-solving (calculation) part. The exam covers the whole course material and is intentionally intensive. A voluntary, midterm exam is offered half-way during the semester that does not count towards the final grade but can be used by the students to familiarize themselves with the final exam's content and structure. Exam type: written Exam duration (min.): 120 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Differential an Integral Calculus of functions of several variables, Partial and Ordinary differential equations, Technical Mechanics I & II Contents: The module offers a unified description of fluids and solids under the paradigm of continuum mechanics. The module discusses: 1) the motivation, foundation and limitations of continuum descriptions 2) the fundamental mathematical tools and in particular the algebra and calculus of tensors 3) Kinematics, 4) Conservation Laws of mass, momentum and energy, 5) invariants and symmetries, 6) Isothermal Fluid Mechanics, (7) Linear Elasticity in Solid Mechanics. Study goals: Students who successfully complete this module will: 1) know the conceptual basis and essential quantities of Continuum Mechanics 2) be proficient in the essential mathematics i.e. algebra and calculus of tensors 3) know the mathematical description of motion and deformation for continua 4) know the fundamental conservation laws of mass , momentum and energy that govern the behavior of continua 5) understand the role of constitutive equations and models in the description of fluids and solids 6) have the the ability to solve analytically basic problems in fluids and solids 7) acquire the enecessary foundation in order to follow advanced modules and lecture topics in the subsequent semesters. Teaching and learning methods: 23/04/2015 48 16.04.2015 14:15 Module Description MW1405 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Lecture involving theory and examples, Problem-solving sessions, Sample solutions, Suggested readings Media formats: Lecture slides, Manuscript, Short Movies and Animations Literature: 1) "Introduction to Continuum Mechanics", 4th Edition, by W Michael Lai, David Rubin, Erhard Krempl (Author) 2) Manuscript containing a list of over 20 additional textbooks Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: H.J. Kaltenbach, P.S. Koutsourelakis (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556526 Generated on: 16.04.2015 14:15 23/04/2015 49 16.04.2015 14:15 Module Description MW1408 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1408: Engineering Thermodynamics Associate Professorship of Thermo-Fluid Dynamics (Prof. Polifke) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 90 Contact hours: 60 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Marked Exam, Resources are allowed (Notes, Books, Formulary) Exam type: written Exam duration (min.): 90 Homework: Possibility No of re-taking: In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: maths (analysis, vector analysis, divergence theorem, ordinary differential equations) mechanics (force, work, kinetic and potential energy) physics of heat (temperature, heat capacity, ...) basic matlab Contents: The lecture is divided into five chapters: 1) Conservation laws for mass momentum and energy in general integral formulation; simple forms for closed and steady open systems derived therefrom. Manifestations of work. First Law of Thermodynamics. 2) Thermodynamic state. State diagrams and state changes. Thermal and caloric equations of state and material properties of ideal and non-ideal gases, incompressible liquids and solids a well as gas-liquid-solid systems of pure substances (steam tables). Mass and energy balances for phase change. 3) State (point) and process (path) variables. Work and heat of reversible iso-processes. Thermodynamic efficiency of reversible cycle processes (Carnot, Joule, ...). 4) Entropy and Second Law of Thermodynamics, TS diagrams, Gibbs' equation, entropy production of irreversible processes, Guoy-Stodola theorem. Maximization of entropy in thermodynamic equilibriation. Thermodynamic potentials. Statistical interpretation of entropy. 5) Exergy balances and irreversible processes. Polytropic state change. Van der Waals gas, Clausius-Clapeyron. Study goals: 23/04/2015 50 16.04.2015 14:16 Module Description MW1408 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Upon completion of the module, students can: - characterize the central thermodynamic terms like energy, internal energy, entropy and exergy. - discriminate between temperature and heat as well as state and path variables. - derive simplified conservation laws for special systems using appropriate approximations of the general integral formulations (including convective transport and unsteady effects). - identify different forms of work in different thermodynamic systems in order to set up fully specified balances for total/ internal/ mechanical energy. - describe simple quantitative state changes of ideal gases using the thermal and caloric equations of state. - determine state changes involving phase changes of pure substances using steam tables. - calculate state changes of incompressible liquids and solids with constant material properties. - apply the conservation laws in order to determine work and heat transferred in simple processes. - name the characteristics of the most important cycle processes (Carnot, Joule, Rankine, Otto, Diesel, ...). - evaluate heat engines and other machines for energy transformation using the results for work and heat of iso- and cycle processes. - evaluate heat engines and other machines for energy transformation using thermodynamic diagrams (TV, pV, Ts, hs, ph, etc.) or steam tables. - determine irreversible entropy production and the corresponding loss in exergy by balance equations and discrimintae between reversible and irreversible processes. - evaluate simple processes using exergy flow balances. Teaching and learning methods: multimedia-supported The concepts and methods of thermodynamics are introduced in the lecture. In order to deepen the knowledge, a tutorial session is demonstrating the application of the concepts and methods. Questions of the students, are answered in small group tutorials. In addition, the students are encouraged to process weekly homework exercises, which are corrected individually. E-tests on the Moodle plattform are completing the module. Media formats: Chalkboard, Beamer Presentation, Animations Literature: Baehr, H.D., und Kabelac, S. 2012. Thermodynamik: Grundlagen und technische Anwendungen, Springer. Cengel, Y.A., Boles, M.A., 2001. Thermodynamics: An Engineering Approach, 4th edition. ed. McGraw-Hill College. Müller, I., Müller, W.H., 2009. Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo, Springer. Weigand, B., et al. (2013) Thermodynamik Kompakt 3rd edition, Springer. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556516 Generated on: 16.04.2015 14:16 23/04/2015 51 16.04.2015 14:16 Module Description MW1408 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1408: Engineering Thermodynamics Associate Professorship of Thermo-Fluid Dynamics (Prof. Polifke) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 90 Contact hours: 60 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Marked Exam, Resources are allowed (Notes, Books, Formulary) Exam type: written Exam duration (min.): 90 Homework: Possibility No of re-taking: In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: maths (analysis, vector analysis, divergence theorem, ordinary differential equations) mechanics (force, work, kinetic and potential energy) physics of heat (temperature, heat capacity, ...) basic matlab Contents: The lecture is divided into five chapters: 1) Conservation laws for mass momentum and energy in general integral formulation; simple forms for closed and steady open systems derived therefrom. Manifestations of work. First Law of Thermodynamics. 2) Thermodynamic state. State diagrams and state changes. Thermal and caloric equations of state and material properties of ideal and non-ideal gases, incompressible liquids and solids a well as gas-liquid-solid systems of pure substances (steam tables). Mass and energy balances for phase change. 3) State (point) and process (path) variables. Work and heat of reversible iso-processes. Thermodynamic efficiency of reversible cycle processes (Carnot, Joule, ...). 4) Entropy and Second Law of Thermodynamics, TS diagrams, Gibbs' equation, entropy production of irreversible processes, Guoy-Stodola theorem. Maximization of entropy in thermodynamic equilibriation. Thermodynamic potentials. Statistical interpretation of entropy. 5) Exergy balances and irreversible processes. Polytropic state change. Van der Waals gas, Clausius-Clapeyron. Study goals: 23/04/2015 52 16.04.2015 14:16 Module Description MW1408 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Upon completion of the module, students can: - characterize the central thermodynamic terms like energy, internal energy, entropy and exergy. - discriminate between temperature and heat as well as state and path variables. - derive simplified conservation laws for special systems using appropriate approximations of the general integral formulations (including convective transport and unsteady effects). - identify different forms of work in different thermodynamic systems in order to set up fully specified balances for total/ internal/ mechanical energy. - describe simple quantitative state changes of ideal gases using the thermal and caloric equations of state. - determine state changes involving phase changes of pure substances using steam tables. - calculate state changes of incompressible liquids and solids with constant material properties. - apply the conservation laws in order to determine work and heat transferred in simple processes. - name the characteristics of the most important cycle processes (Carnot, Joule, Rankine, Otto, Diesel, ...). - evaluate heat engines and other machines for energy transformation using the results for work and heat of iso- and cycle processes. - evaluate heat engines and other machines for energy transformation using thermodynamic diagrams (TV, pV, Ts, hs, ph, etc.) or steam tables. - determine irreversible entropy production and the corresponding loss in exergy by balance equations and discrimintae between reversible and irreversible processes. - evaluate simple processes using exergy flow balances. Teaching and learning methods: multimedia-supported The concepts and methods of thermodynamics are introduced in the lecture. In order to deepen the knowledge, a tutorial session is demonstrating the application of the concepts and methods. Questions of the students, are answered in small group tutorials. In addition, the students are encouraged to process weekly homework exercises, which are corrected individually. E-tests on the Moodle plattform are completing the module. Media formats: Chalkboard, Beamer Presentation, Animations Literature: Baehr, H.D., und Kabelac, S. 2012. Thermodynamik: Grundlagen und technische Anwendungen, Springer. Cengel, Y.A., Boles, M.A., 2001. Thermodynamics: An Engineering Approach, 4th edition. ed. McGraw-Hill College. Müller, I., Müller, W.H., 2009. Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo, Springer. Weigand, B., et al. (2013) Thermodynamik Kompakt 3rd edition, Springer. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556516 Generated on: 16.04.2015 14:16 23/04/2015 53 16.04.2015 14:16 Module Description EI2583 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI2583: Signal Representation (MSE) TUM Department of Electrical and Computer Engineering Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 75 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The knowledge-based learning outcomes are tested in a 90-minute written exam. The lecture and exercises will account for 80% of the exam. The remaining 20% will be covered by topics related to the practical course. In total, up to 20% of the exam can be tested by means of multiple choice tasks. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: differential calculus, complex analysis, sets, Fourier integral. The following modules should be completed before registering for this module: - Analysis 1 - Analysis 2 Contents: Signal Representation: continuous-time and discrete-time signals, linear time-invariant systems (LTI systems), convolution, convolutional integral and sum, impulse response of LTI systems, stability and causality, periodic signals, orthogonal function systems, continuous-time Fourier Series (FS), continuous-time Fourier Transformation (FT), Fourier integral, relationship between FS and FT, corresponding FT pairs, amplitude modulation and signal reconstruction, linear differential equations and transfer functions, Bode diagram, introduction to filters, discrete-time Fourier Transformation (DTFT), linear difference equations, discrete-time filters, sampling theorem, sampling and reconstruction of signals, sampling in frequence domain, Laplace Transformation (LT), convergence properties of the LT, z Transformation (ZT), residue theorem, discrete Fourier Transformation (DFT). Study goals: After completing this module, the students will be able to describe signals in a deterministic fashion. Furthermore, students will acquire well-founded knowledge of classical integral transforms for signal representation in both time and frequency domain. Teaching and learning methods: In addtion to the students' individual lerarning methods, it is intended that students actively take part in the exercises, 23/04/2015 54 16.04.2015 14:17 Module Description EI2583 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... improving their knowledge through the discussion of solutions. The teaching method is based on direct lectures and global exercise lessons (discussion of solutions to posed problems). Additionally, collaborative tutor sessions are offered on the material. By means of supplementing practical programming tasks, the students are familiarized with the practical aspects of signal processing and are introduced to programming in MATLAB. These practical tasks are distributed as a homework exercise and solved individually. Media formats: The following media are provided: - lecture slides - script - exercise catalogue with solutions as download - programming exercises as download Literature: A.V. Oppenheim and A.S. Wilsky. Signals and Systems. Prentice Hall Signal Processing Series, 2. Edition, 1996, H.W. Schüssler: Digitale Signalverarbeitung, Springer-Verlag 1994 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1058722 Generated on: 16.04.2015 14:17 23/04/2015 55 16.04.2015 14:17 Module Description EI2583 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI2583: Signal Representation (MSE) TUM Department of Electrical and Computer Engineering Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 75 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The knowledge-based learning outcomes are tested in a 90-minute written exam. The lecture and exercises will account for 80% of the exam. The remaining 20% will be covered by topics related to the practical course. In total, up to 20% of the exam can be tested by means of multiple choice tasks. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: differential calculus, complex analysis, sets, Fourier integral. The following modules should be completed before registering for this module: - Analysis 1 - Analysis 2 Contents: Signal Representation: continuous-time and discrete-time signals, linear time-invariant systems (LTI systems), convolution, convolutional integral and sum, impulse response of LTI systems, stability and causality, periodic signals, orthogonal function systems, continuous-time Fourier Series (FS), continuous-time Fourier Transformation (FT), Fourier integral, relationship between FS and FT, corresponding FT pairs, amplitude modulation and signal reconstruction, linear differential equations and transfer functions, Bode diagram, introduction to filters, discrete-time Fourier Transformation (DTFT), linear difference equations, discrete-time filters, sampling theorem, sampling and reconstruction of signals, sampling in frequence domain, Laplace Transformation (LT), convergence properties of the LT, z Transformation (ZT), residue theorem, discrete Fourier Transformation (DFT). Study goals: After completing this module, the students will be able to describe signals in a deterministic fashion. Furthermore, students will acquire well-founded knowledge of classical integral transforms for signal representation in both time and frequency domain. Teaching and learning methods: In addtion to the students' individual lerarning methods, it is intended that students actively take part in the exercises, 23/04/2015 56 16.04.2015 14:17 Module Description EI2583 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... improving their knowledge through the discussion of solutions. The teaching method is based on direct lectures and global exercise lessons (discussion of solutions to posed problems). Additionally, collaborative tutor sessions are offered on the material. By means of supplementing practical programming tasks, the students are familiarized with the practical aspects of signal processing and are introduced to programming in MATLAB. These practical tasks are distributed as a homework exercise and solved individually. Media formats: The following media are provided: - lecture slides - script - exercise catalogue with solutions as download - programming exercises as download Literature: A.V. Oppenheim and A.S. Wilsky. Signals and Systems. Prentice Hall Signal Processing Series, 2. Edition, 1996, H.W. Schüssler: Digitale Signalverarbeitung, Springer-Verlag 1994 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1058722 Generated on: 16.04.2015 14:17 23/04/2015 57 16.04.2015 14:17 Module Description MA9804 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9804: Numerical Treatment of Partial Differential Equations (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: MA9801 Basic Mathematics, MA9802 Differential- and Integral Calculus, MA9803 Modeling and Simulation with Ordinary Differential Equations Contents: Numerical methods for partial differential equations (p.d.e.'s) - type classification,well/ill-posedness - heat equation: Finite difference methods methods of lines, Fourier techniques - conservation laws: strong/weak formulation, entropy condition, limiter (? finite volume methods) - second order elliptic problems: Finite difference methods linear systems of equations, iterative solution methods, weak (variational) formulation of elliptic p.d.e.'s Finite element method Study goals: At the end of the module, students - are familiar with basic types of p.d.e.'s - understand some of the mathematical difficulties that arise in the 23/04/2015 58 16.04.2015 14:18 Module Description MA9804 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... modeling with p.d.e.´s - know basic analytical and numerical methods for the solution of p.d.e´s. Teaching and learning methods: The Lecture is presented on blackboard, overhead or tablet. In Tutorials, students analyze and solve exercises by themselves with support by a tutor. Students work in teams with MATLAB or similar software on the numerical solution of p.d.e.'s. Media formats: Presentation of exercises; Solution of exercises; Programming with MATLAB. Solutions of exercises can be found in the Internet. Literature: Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). LeVeque: Numerical Methods for Conservation Laws, Birkhäuser (1992). Quarteroni, Valli: Numerical Approximation of Partial Differential Equations, Springer Verlag (1997). Jung, Langer: Methode der finiten Elemente für Ingenieure, Teubner (2001). Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555432 Generated on: 16.04.2015 14:18 23/04/2015 59 16.04.2015 14:18 Module Description MA9804 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MA9804: Numerical Treatment of Partial Differential Equations (MSE) TUM Department of Mathematics Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam is graded. No books, handwritten notes etc. are allowed in the exam. Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: MA9801 Basic Mathematics, MA9802 Differential- and Integral Calculus, MA9803 Modeling and Simulation with Ordinary Differential Equations Contents: Numerical methods for partial differential equations (p.d.e.'s) - type classification,well/ill-posedness - heat equation: Finite difference methods methods of lines, Fourier techniques - conservation laws: strong/weak formulation, entropy condition, limiter (? finite volume methods) - second order elliptic problems: Finite difference methods linear systems of equations, iterative solution methods, weak (variational) formulation of elliptic p.d.e.'s Finite element method Study goals: At the end of the module, students - are familiar with basic types of p.d.e.'s - understand some of the mathematical difficulties that arise in the 23/04/2015 60 16.04.2015 14:18 Module Description MA9804 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... modeling with p.d.e.´s - know basic analytical and numerical methods for the solution of p.d.e´s. Teaching and learning methods: The Lecture is presented on blackboard, overhead or tablet. In Tutorials, students analyze and solve exercises by themselves with support by a tutor. Students work in teams with MATLAB or similar software on the numerical solution of p.d.e.'s. Media formats: Presentation of exercises; Solution of exercises; Programming with MATLAB. Solutions of exercises can be found in the Internet. Literature: Dahmen, W./Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler, Springer Verlag (2006). LeVeque: Numerical Methods for Conservation Laws, Birkhäuser (1992). Quarteroni, Valli: Numerical Approximation of Partial Differential Equations, Springer Verlag (1997). Jung, Langer: Methode der finiten Elemente für Ingenieure, Teubner (2001). Responsible for the module: Wohlmuth, Barbara; Prof. Dr. rer. nat.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555432 Generated on: 16.04.2015 14:18 23/04/2015 61 16.04.2015 14:18 Module Description BGU64009 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BGU64009: Material Science II (MSE) Chair of Zerstörungsfreie Prüfung (Prof. Große) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: summer semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam takes place at the end of the semester and verifies the knowledge acquired in lecture and exercise course. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Attendance of the lecture Material Science I is required for Material Science II Contents: In general the lecture Material Science (MSI & MSII) covers all subareas of materials science from physical and chemical fundamentals of substances and materials to the selection of construction materials, their design-specific application and the characterization of parts. In Material Science II the fundamentals of materials science are deepened by examining phenomena like phase transitions and material transport. Moreover, an understanding of fracture mechanical processes and their testing will be reached based on mechanical properties on the material scale. Finally, the various materials are examined against the background of the acquired physical and chemical relations. The particular contens are: 1. The real crystal 2. Phase transitions in solid materials 3. Material transport and diffusion 4. Mechanical properties on the material scale (deformation, strength, fracture processes, destructive and non-destructive testing) 5. Materials (Metals, plastics, ceramics, biological substances, building materials, composites, fiber-reinforced composites) Study goals: Students are enabled to select and apply materials with regard to parts and constructions. For this purpose physical, chemical and engineering methods and criteria used to evaluate the characteristics of materials are conveyed. Students know the most important building and construction materials as well as the methods of characterization of materials and parts. Terms like tensile strength, corrosion resistance, hardness, ductility, brittleness or anisotropy are understood and can be assigned to the respective materials. 23/04/2015 62 16.04.2015 14:19 Module Description BGU64009 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: The module consists of a lecture and an accompanying exercise course. The contents of the lecture are conveyed by speech and presentations. Accompanying the lecture, students are expected to work through a textbook which can be supplemented by additional literature for further deepening. In the exercise course the contents of the lecture are illustrated by calculations and practical experiments. Media formats: The media used in the lecture are presentations, videos and blackboard sketches Literature: textbook accompanying the lecture: Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010; additional: Askeland, Donald R., Materialwissenschaften, 1. Aufl., Spektrum Akandem. Verlag 2010; The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006; Roos, E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008; Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=622577 Generated on: 16.04.2015 14:19 23/04/2015 63 16.04.2015 14:19 Module Description BGU64009 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BGU64009: Material Science II (MSE) Chair of Zerstörungsfreie Prüfung (Prof. Große) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: summer semester Credits*: 6 Total number of hours: 180 Self-study hours: 105 Contact hours: 75 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The written exam takes place at the end of the semester and verifies the knowledge acquired in lecture and exercise course. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Attendance of the lecture Material Science I is required for Material Science II Contents: In general the lecture Material Science (MSI & MSII) covers all subareas of materials science from physical and chemical fundamentals of substances and materials to the selection of construction materials, their design-specific application and the characterization of parts. In Material Science II the fundamentals of materials science are deepened by examining phenomena like phase transitions and material transport. Moreover, an understanding of fracture mechanical processes and their testing will be reached based on mechanical properties on the material scale. Finally, the various materials are examined against the background of the acquired physical and chemical relations. The particular contens are: 1. The real crystal 2. Phase transitions in solid materials 3. Material transport and diffusion 4. Mechanical properties on the material scale (deformation, strength, fracture processes, destructive and non-destructive testing) 5. Materials (Metals, plastics, ceramics, biological substances, building materials, composites, fiber-reinforced composites) Study goals: Students are enabled to select and apply materials with regard to parts and constructions. For this purpose physical, chemical and engineering methods and criteria used to evaluate the characteristics of materials are conveyed. Students know the most important building and construction materials as well as the methods of characterization of materials and parts. Terms like tensile strength, corrosion resistance, hardness, ductility, brittleness or anisotropy are understood and can be assigned to the respective materials. 23/04/2015 64 16.04.2015 14:19 Module Description BGU64009 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching and learning methods: The module consists of a lecture and an accompanying exercise course. The contents of the lecture are conveyed by speech and presentations. Accompanying the lecture, students are expected to work through a textbook which can be supplemented by additional literature for further deepening. In the exercise course the contents of the lecture are illustrated by calculations and practical experiments. Media formats: The media used in the lecture are presentations, videos and blackboard sketches Literature: textbook accompanying the lecture: Callister, William D.:Materials Science and Engineering, 8th Ed., Wiley Desktop Edition 2010; additional: Askeland, Donald R., Materialwissenschaften, 1. Aufl., Spektrum Akandem. Verlag 2010; The Science and Engineering of Materials, 5th Ed., Thomson Learning 2006; Roos, E. und Maile, K., Werkstoffe für Ingenieure, 3. Aufl., Springer-Verlag 2008; Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=622577 Generated on: 16.04.2015 14:19 23/04/2015 65 16.04.2015 14:19 Module Description WZ8101 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description WZ8101: Biomimetics TUM School of Life Sciences Weihenstephan Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 90 Contact hours: 60 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Written exam (60 min.). Central element of the exam is the lecture material. Students are free to provide a mid-term performance. The mid-term performance consists of the preparation and presentation of a scientific poster. Preparation of the poster will be done within the excercise of this module. In case that the poster is prepared in groupwork (max. 4 students), every student of the group has to present at least a part of the poster. The mid-term performance will be marked in a bonus regulation. The overall module mark can be upgraded by 0,3 if the overall impression better characterizes the study results of the student. This bonus regulation has no influence on passing the module exam. In case of a re-examination the bonus regulation can be considerd for upgrading the module mark. Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: The course requires basic knowledge in mathematics, physics, chemistry and technical mechanics. Contents: Based on the previously imparted knowledges in mathematics and physics, the students are teached in the basic principles and properties of biological systems. Content: Overview of Biology, molecular based design, self-organization, packaging technologies, material properties, surfaces, construction, biomechanics, information processing. Study goals: After attending the course, the students are able to: 1. understand biological systems in their functional context 2. understand the approach of biological studies 3. analyse biological systems by the use of engineering methods to extract relevant parameters 4. understand the transfer from biological data sets into technical applications 5. evaluate the bio-inspired applications 6. apply the transfer from biological data into technical applications Teaching and learning methods: Learning results will be worked out in two complementary components. The lecture (power-point, blackboard, videos) introduces the students to basic principles of biology and the implementation of biological systems into technical 23/04/2015 66 16.04.2015 14:20 Module Description WZ8101 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... applications. Acquired knowledge will be deepened in the subsequent excercise. The students compile a scientific poster on a biomimetic topic. The main objective is to apply acquried engineering methods to biometic sollutions and to evaluate existing biomimetic applications in respect to feasibility and market potential. Media formats: Powerpoint-Presentation, Blackboard and Videos. Literature: Students will be provided with powerpoint slides one week before each lecture via Moodle. Additional references will introduced at the first date of the lecture and at appropriate dates for special topics. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: Tobias Kohl ([email protected]) (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=558964 Generated on: 16.04.2015 14:20 23/04/2015 67 16.04.2015 14:20 Module Description WZ8101 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description WZ8101: Biomimetics TUM School of Life Sciences Weihenstephan Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 90 Contact hours: 60 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Written exam (60 min.). Central element of the exam is the lecture material. Students are free to provide a mid-term performance. The mid-term performance consists of the preparation and presentation of a scientific poster. Preparation of the poster will be done within the excercise of this module. In case that the poster is prepared in groupwork (max. 4 students), every student of the group has to present at least a part of the poster. The mid-term performance will be marked in a bonus regulation. The overall module mark can be upgraded by 0,3 if the overall impression better characterizes the study results of the student. This bonus regulation has no influence on passing the module exam. In case of a re-examination the bonus regulation can be considerd for upgrading the module mark. Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: The course requires basic knowledge in mathematics, physics, chemistry and technical mechanics. Contents: Based on the previously imparted knowledges in mathematics and physics, the students are teached in the basic principles and properties of biological systems. Content: Overview of Biology, molecular based design, self-organization, packaging technologies, material properties, surfaces, construction, biomechanics, information processing. Study goals: After attending the course, the students are able to: 1. understand biological systems in their functional context 2. understand the approach of biological studies 3. analyse biological systems by the use of engineering methods to extract relevant parameters 4. understand the transfer from biological data sets into technical applications 5. evaluate the bio-inspired applications 6. apply the transfer from biological data into technical applications Teaching and learning methods: Learning results will be worked out in two complementary components. The lecture (power-point, blackboard, videos) introduces the students to basic principles of biology and the implementation of biological systems into technical 23/04/2015 68 16.04.2015 14:20 Module Description WZ8101 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... applications. Acquired knowledge will be deepened in the subsequent excercise. The students compile a scientific poster on a biomimetic topic. The main objective is to apply acquried engineering methods to biometic sollutions and to evaluate existing biomimetic applications in respect to feasibility and market potential. Media formats: Powerpoint-Presentation, Blackboard and Videos. Literature: Students will be provided with powerpoint slides one week before each lecture via Moodle. Additional references will introduced at the first date of the lecture and at appropriate dates for special topics. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: Tobias Kohl ([email protected]) (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=558964 Generated on: 16.04.2015 14:20 23/04/2015 69 16.04.2015 14:20 Module Description BV410014 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BV410014: Fluid and Structural Mechanics Associate Professorship of Hydromechanics (Prof. Manhart) Module level: Bachelor Language: English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 94 Contact hours: 56 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The module will be validated by a written exam covering all topics of the lectures and tutorials. The exam will be split into two parts: first part (60 min.): Fluid Mechanics; second part (60 min.): Structural Mechanics. Further details will be ancounced in the lecture and on the board. Exam type: written Exam duration (min.): 120 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Mathematische Grundlagen, Engineering Mechanics I and II, Continuum Mechanics Contents: The module Fluid and Structural Mechanics (FSM) deepens the fundamental mechanics taught in the previous semesters, e.g. from mathematics, engineering mechanics and continuum mechanics. More advanced mechanical theory is addressed as well as more complex applications in the different fields of engineering science. Content of the module: Part 1 - Fluids: (i) Momentum theorem (ii) Bernoulli equation (iii) Pipe flow (iv) Potential flow; Part 2 - Structures : (i) Advanced structural analysis (2d/3d), (ii) nonlinear structural analysis, (iii) discretisation techniques for structural analysis Study goals: After successful termination of the first part of the module, the students will be able to (i) analyse simple flow situations with classical engineering methods, (ii) analyse pipe flow system problems and (iii) describe flow problems of ideal fluids via the potential theory. The second part enables them to apply advanced analytical methods for linear and nonlinear structural analysis for typical engineering problems. In addition they will understand basic numerical approaches for structural analysis. Teaching and learning methods: Lecture: PowerPoint presentation, case studies on the blackboard, other presentation techniques; Tutorial: Problem solving exercises either group based or individual. Introduction into software for fluids and structures based on special student versions and laptops of the students. Media formats: 23/04/2015 70 16.04.2015 14:21 Module Description BV410014 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Presentations, case studies, problem solving, lab demonstrations. The lectures will be partially supported by software demonstrations in class. Literature: Lecture notes, tutorial scripts, exercises, Books (e.g. Fluid Mechanics from Kundu & Cohen) Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=706001 Generated on: 16.04.2015 14:21 23/04/2015 71 16.04.2015 14:21 Module Description BV410014 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BV410014: Fluid and Structural Mechanics Associate Professorship of Hydromechanics (Prof. Manhart) Module level: Bachelor Language: English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 94 Contact hours: 56 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The module will be validated by a written exam covering all topics of the lectures and tutorials. The exam will be split into two parts: first part (60 min.): Fluid Mechanics; second part (60 min.): Structural Mechanics. Further details will be ancounced in the lecture and on the board. Exam type: written Exam duration (min.): 120 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Mathematische Grundlagen, Engineering Mechanics I and II, Continuum Mechanics Contents: The module Fluid and Structural Mechanics (FSM) deepens the fundamental mechanics taught in the previous semesters, e.g. from mathematics, engineering mechanics and continuum mechanics. More advanced mechanical theory is addressed as well as more complex applications in the different fields of engineering science. Content of the module: Part 1 - Fluids: (i) Momentum theorem (ii) Bernoulli equation (iii) Pipe flow (iv) Potential flow; Part 2 - Structures : (i) Advanced structural analysis (2d/3d), (ii) nonlinear structural analysis, (iii) discretisation techniques for structural analysis Study goals: After successful termination of the first part of the module, the students will be able to (i) analyse simple flow situations with classical engineering methods, (ii) analyse pipe flow system problems and (iii) describe flow problems of ideal fluids via the potential theory. The second part enables them to apply advanced analytical methods for linear and nonlinear structural analysis for typical engineering problems. In addition they will understand basic numerical approaches for structural analysis. Teaching and learning methods: Lecture: PowerPoint presentation, case studies on the blackboard, other presentation techniques; Tutorial: Problem solving exercises either group based or individual. Introduction into software for fluids and structures based on special student versions and laptops of the students. Media formats: 23/04/2015 72 16.04.2015 14:21 Module Description BV410014 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Presentations, case studies, problem solving, lab demonstrations. The lectures will be partially supported by software demonstrations in class. Literature: Lecture notes, tutorial scripts, exercises, Books (e.g. Fluid Mechanics from Kundu & Cohen) Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=706001 Generated on: 16.04.2015 14:21 23/04/2015 73 16.04.2015 14:21 Module Description MW1410 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1410: Heat Transfer (MSE) Associate Professorship of Raumfahrtantriebe (Prof. Haidn) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Schriftliche Abschlussklausur, Hilfsmittel sind erlaubt (Mitschriften, Bücher, Formelsammlung) Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Thermodynamik, Fluid- und Festkörpermechanik Contents: " Einführung in Mechanismen der Wärmeübertragung " Grundlagen der Wärmeleitung: Fouriersches Gesetz Fouriersche Differentialgleichung - Randbedingungen " Stationäre Wärmeleitung: Péclet-Gleichung für ebene, zylindrische und sphärische Geometrien Formfaktoren für 2D - Leitung " Wärmetransport durch Strahlung: Schwarzkörperstrahlung, Emission und Absorption von grauen Körpern , Kirchhoffsches Gesetz, Wärmeaustausch zwischen Körpern durch Strahlung, spektrale Eigenschaften von strahlenden Oberflächen " Wärmeüberetrager: NTU-efficiency & Log-averaged temperature methods " Convective Heat Transfer: physical phenomena of convective heat transfer - similarity theory and dimensionless groups - correlations for the Nußelt-numbers in configurations of applied interest. " Ähnlichkeitstheorie: Theorem von Buckingham Identifikation dimensionloser Gruppen Auslegung von Experimenten, Präsentation of experimentellen Ergebissen Reynolds-Analogie " Freie Konvektion: laminare Konvektion an einer isothermen, vertikalen Oberfläche, Boussinesq-Approximation der Grenzschichtgleichungen - dimensionlose Gruppen - Nußelt-Korrelationen für die isotherme Wand. " Transiente Wärmeübertragung: Biot-Zahl halb-unendlicher Raum - Fourier Serien für Platte, Zylinder und Kugel, Ähnlichkeitslösungen Study goals: Mit der Vorlesung ""Wärmeübertragung"" soll den Studenten mit grundlegenden Konzepten und Werkzeugen der Wäreübertragung vertraut gemacht werden. Teaching and learning methods: In der Vorlesung werden die Lehrinhalte anhand von Vortrag und Präsentation vermittelt. Begriffe und 23/04/2015 74 16.04.2015 14:22 Module Description MW1410 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Grundbeziehungen werden vorgestellt und in den Übungen anhand von realen Anwendungen oder Rechenbeispielen vertieft. Die Präsentationfolien der Vorlesung, die Übungsaufgaben mit dazugehörigen Musterlösungen und ein Fragenkatalog zur eigenständigen Bearbeitung werden über die TUM-Lernplattform zur Verfügung gestellt. Individuelle Fragen können direkt nach der Vorlesung mit den Dozenten oder in der Assistentensprechstunde (Termin nach Vereinbarung) diskutiert werden. Media formats: Folien, Tafelanschrieb Literature: Literatur: 1. Baehr, H.D. ; Stephan, K.: Wärme-und Stoffübertragung, Springer Verlag, Berlin, Heidelberg, New York, 1994 2. Eckert, E.R.G. ; Drake, R.M.: Analysis of Heat and Mass Transfer, McGraw - Hill Book Co., New York, 1959 3. Gebhart, B.: Heat Transfer, McGraw - Hill Book Co., New York, 1961 4. Grigull, U. ; Sandner, H.: Wärmeleitung, Springer Verlag, Berlin, Heidelberg, New York, 1979 5. Gröber, H. ; Erk, S. ; Grigull, U.: Die Grundgesetze der Wärmeübertragung, 3. Aufl., 3. Neudruck (Reprint) Springer Verlag, Berlin, Heidelberg, New York, 1981 6. Incropera, F.P. ; DeWitt, D.P.: Introduction to Heat Transfer, 2nd edition, John Wiley & sons, New York, 1990 7. Jakob, M.: Heat Transfer, Vol. 1, 2 8th printing, J. Wiley and Sons, New York, 1962 8. McAdams, W.H.: Heat Transmission, 3rd edition, McGraw - Hill Book Co., New York, 1954 9. Mayinger, F.: Strömung und Wärmeübergang in Gas-Flüssigkeitsgemischen, Springer Verlag, Wien, NewYork, 1982 10. Mills, A.F.: Heat and Mass Transfer, Irwin , 1995 11. Siegel, R. ; Howell, J.R. ; Lorengel, J.: Wärmeübertragung durch Strahlung, Teil I: Grundlagen und Materialeigenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1988 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556522 Generated on: 16.04.2015 14:22 23/04/2015 75 16.04.2015 14:22 Module Description MW1410 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1410: Heat Transfer (MSE) Associate Professorship of Raumfahrtantriebe (Prof. Haidn) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Schriftliche Abschlussklausur, Hilfsmittel sind erlaubt (Mitschriften, Bücher, Formelsammlung) Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Thermodynamik, Fluid- und Festkörpermechanik Contents: " Einführung in Mechanismen der Wärmeübertragung " Grundlagen der Wärmeleitung: Fouriersches Gesetz Fouriersche Differentialgleichung - Randbedingungen " Stationäre Wärmeleitung: Péclet-Gleichung für ebene, zylindrische und sphärische Geometrien Formfaktoren für 2D - Leitung " Wärmetransport durch Strahlung: Schwarzkörperstrahlung, Emission und Absorption von grauen Körpern , Kirchhoffsches Gesetz, Wärmeaustausch zwischen Körpern durch Strahlung, spektrale Eigenschaften von strahlenden Oberflächen " Wärmeüberetrager: NTU-efficiency & Log-averaged temperature methods " Convective Heat Transfer: physical phenomena of convective heat transfer - similarity theory and dimensionless groups - correlations for the Nußelt-numbers in configurations of applied interest. " Ähnlichkeitstheorie: Theorem von Buckingham Identifikation dimensionloser Gruppen Auslegung von Experimenten, Präsentation of experimentellen Ergebissen Reynolds-Analogie " Freie Konvektion: laminare Konvektion an einer isothermen, vertikalen Oberfläche, Boussinesq-Approximation der Grenzschichtgleichungen - dimensionlose Gruppen - Nußelt-Korrelationen für die isotherme Wand. " Transiente Wärmeübertragung: Biot-Zahl halb-unendlicher Raum - Fourier Serien für Platte, Zylinder und Kugel, Ähnlichkeitslösungen Study goals: Mit der Vorlesung ""Wärmeübertragung"" soll den Studenten mit grundlegenden Konzepten und Werkzeugen der Wäreübertragung vertraut gemacht werden. Teaching and learning methods: In der Vorlesung werden die Lehrinhalte anhand von Vortrag und Präsentation vermittelt. Begriffe und 23/04/2015 76 16.04.2015 14:22 Module Description MW1410 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Grundbeziehungen werden vorgestellt und in den Übungen anhand von realen Anwendungen oder Rechenbeispielen vertieft. Die Präsentationfolien der Vorlesung, die Übungsaufgaben mit dazugehörigen Musterlösungen und ein Fragenkatalog zur eigenständigen Bearbeitung werden über die TUM-Lernplattform zur Verfügung gestellt. Individuelle Fragen können direkt nach der Vorlesung mit den Dozenten oder in der Assistentensprechstunde (Termin nach Vereinbarung) diskutiert werden. Media formats: Folien, Tafelanschrieb Literature: Literatur: 1. Baehr, H.D. ; Stephan, K.: Wärme-und Stoffübertragung, Springer Verlag, Berlin, Heidelberg, New York, 1994 2. Eckert, E.R.G. ; Drake, R.M.: Analysis of Heat and Mass Transfer, McGraw - Hill Book Co., New York, 1959 3. Gebhart, B.: Heat Transfer, McGraw - Hill Book Co., New York, 1961 4. Grigull, U. ; Sandner, H.: Wärmeleitung, Springer Verlag, Berlin, Heidelberg, New York, 1979 5. Gröber, H. ; Erk, S. ; Grigull, U.: Die Grundgesetze der Wärmeübertragung, 3. Aufl., 3. Neudruck (Reprint) Springer Verlag, Berlin, Heidelberg, New York, 1981 6. Incropera, F.P. ; DeWitt, D.P.: Introduction to Heat Transfer, 2nd edition, John Wiley & sons, New York, 1990 7. Jakob, M.: Heat Transfer, Vol. 1, 2 8th printing, J. Wiley and Sons, New York, 1962 8. McAdams, W.H.: Heat Transmission, 3rd edition, McGraw - Hill Book Co., New York, 1954 9. Mayinger, F.: Strömung und Wärmeübergang in Gas-Flüssigkeitsgemischen, Springer Verlag, Wien, NewYork, 1982 10. Mills, A.F.: Heat and Mass Transfer, Irwin , 1995 11. Siegel, R. ; Howell, J.R. ; Lorengel, J.: Wärmeübertragung durch Strahlung, Teil I: Grundlagen und Materialeigenschaften, Springer Verlag, Berlin, Heidelberg, New York, 1988 Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556522 Generated on: 16.04.2015 14:22 23/04/2015 77 16.04.2015 14:22 Module Description IN8012 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8012: Engineering Informatics II (MSE) TUM Department of Informatics Module level: Bachelor Language: German/English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE) Contents: Modeling, object-oriented design methods with UML, software engineering basics (analysis, system design and detailed design), object-relational mappings (ORM) to relational query languages (SQL), data integrity, basis of exception handling and multi-user systems, security aspects (access control, authorisation); depending on the focus of the concrete lecture more content in software engineering (e.g. testing and implementation of large software systems, design patterns) or in databases (e.g. physical design for relational databases, recovery / backup). Study goals: Students master important concepts of software engineering as well as of relational databases and are able to apply them systematically. They are able use software engineering methods to convert an informal problem description into a formal model. Furthermore, they are able to formulate, analyze, and design models with the object-oriented modeling language UML. In addition the students are able to apply these concepts in designing applications. Depending on the focus of the concrete lecture more stress is laid on software engineering aspects (e.g. design patterns, mobile systems) or database aspects (e.g. database application programming, relational database design theory). Teaching and learning methods: lecture, web interface for self-study Media formats: Lecture with animated slides Literature: - B. Brügge, A. Dutoit: Objektorientierte Softwaretechnik. Mit Entwurfsmustern, UML und Java, Pearson Verlag, 2004. 23/04/2015 78 16.04.2015 14:23 Module Description IN8012 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... - B. Brügge, A. Dutoit: Object-Oriented Software Engineering: Using UML, Patterns and Java, Prentice Hall, 3rd Edition, 2009. - Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung. 8., aktualisierte und erweiterte Auflage, Oldenbourg Verlag, 2011 - A. Kemper, M. Wimmer: Übungsbuch: Datenbanksysteme. 3. Auflage Oldenbourg Verlag, 2012 Responsible for the module: Kemper, Alfons; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556994 Generated on: 16.04.2015 14:23 23/04/2015 79 16.04.2015 14:23 Module Description IN8012 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8012: Engineering Informatics II (MSE) TUM Department of Informatics Module level: Bachelor Language: German/English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE) Contents: Modeling, object-oriented design methods with UML, software engineering basics (analysis, system design and detailed design), object-relational mappings (ORM) to relational query languages (SQL), data integrity, basis of exception handling and multi-user systems, security aspects (access control, authorisation); depending on the focus of the concrete lecture more content in software engineering (e.g. testing and implementation of large software systems, design patterns) or in databases (e.g. physical design for relational databases, recovery / backup). Study goals: Students master important concepts of software engineering as well as of relational databases and are able to apply them systematically. They are able use software engineering methods to convert an informal problem description into a formal model. Furthermore, they are able to formulate, analyze, and design models with the object-oriented modeling language UML. In addition the students are able to apply these concepts in designing applications. Depending on the focus of the concrete lecture more stress is laid on software engineering aspects (e.g. design patterns, mobile systems) or database aspects (e.g. database application programming, relational database design theory). Teaching and learning methods: lecture, web interface for self-study Media formats: Lecture with animated slides Literature: - B. Brügge, A. Dutoit: Objektorientierte Softwaretechnik. Mit Entwurfsmustern, UML und Java, Pearson Verlag, 2004. 23/04/2015 80 16.04.2015 14:23 Module Description IN8012 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... - B. Brügge, A. Dutoit: Object-Oriented Software Engineering: Using UML, Patterns and Java, Prentice Hall, 3rd Edition, 2009. - Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung. 8., aktualisierte und erweiterte Auflage, Oldenbourg Verlag, 2011 - A. Kemper, M. Wimmer: Übungsbuch: Datenbanksysteme. 3. Auflage Oldenbourg Verlag, 2012 Responsible for the module: Kemper, Alfons; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556994 Generated on: 16.04.2015 14:23 23/04/2015 81 16.04.2015 14:23 Module Description EI5182 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI5182: Control Theory (MSE) TUM Department of Electrical and Computer Engineering Module level: not specified Language: English Module duration: one semester Occurrence: summer semester Credits*: 4 Total number of hours: 120 Self-study hours: 75 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: written exam Exam type: written Exam duration (min.): 90min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Modellierung und Simulation mit gewöhnlichen Differentialgleichungen Contents: Systems: Definitions and Properties Stability Lyapunov Stability, Lyapunov function, I/O-Stability, Linearisation Analysis of linear systems Normal forms, Stability, Controllability, Observability, state feedback, observers Linear SISO systems Laplace transformation, transfer functions, Block diagrams, Nyquist criterium, Bode diagram, root locus, controller design Study goals: Control theory is introduced with focus on linear systems. Students will be able to analyze a system, select an appropriate controller and parameterize this controller. Teaching and learning methods: lecture tutorial Homework Media formats: The following media is used: 23/04/2015 82 16.04.2015 14:24 Module Description EI5182 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... - Black board - Slides - Exercises Literature: Literature: - E. Sontag: Mathematical Control Theory, Springer 1998. - K.J. Aström/R.M. Murray: Analysis and Design of Feedback Systems, Princeton University Press, 2010. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556410 Generated on: 16.04.2015 14:24 23/04/2015 83 16.04.2015 14:24 Module Description EI5182 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI5182: Control Theory (MSE) TUM Department of Electrical and Computer Engineering Module level: not specified Language: English Module duration: one semester Occurrence: summer semester Credits*: 4 Total number of hours: 120 Self-study hours: 75 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: written exam Exam type: written Exam duration (min.): 90min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Modellierung und Simulation mit gewöhnlichen Differentialgleichungen Contents: Systems: Definitions and Properties Stability Lyapunov Stability, Lyapunov function, I/O-Stability, Linearisation Analysis of linear systems Normal forms, Stability, Controllability, Observability, state feedback, observers Linear SISO systems Laplace transformation, transfer functions, Block diagrams, Nyquist criterium, Bode diagram, root locus, controller design Study goals: Control theory is introduced with focus on linear systems. Students will be able to analyze a system, select an appropriate controller and parameterize this controller. Teaching and learning methods: lecture tutorial Homework Media formats: The following media is used: 23/04/2015 84 16.04.2015 14:24 Module Description EI5182 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... - Black board - Slides - Exercises Literature: Literature: - E. Sontag: Mathematical Control Theory, Springer 1998. - K.J. Aström/R.M. Murray: Analysis and Design of Feedback Systems, Princeton University Press, 2010. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556410 Generated on: 16.04.2015 14:24 23/04/2015 85 16.04.2015 14:24 Module Description EI4282 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI4282: Digital Integrated Circuit in Engineering (MSE) TUM Department of Electrical and Computer Engineering Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 4 Total number of hours: 120 Self-study hours: 60 Contact hours: 60 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Schriftliche Prüfung von 60 Minuten Dauer Exam type: written Exam duration (min.): 60min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: high school maths and physics Contents: In this course, students shall learn ... basic concepts of digital logic circuits and functional blocks; optimized design of Finite-State-Machines using pipelining principles; technical and economical aspects of integrated circuit hardware platforms; introduction to semiconductor memory; introduction to multi-criteria circuit optimization problems: area vs. performance vs. power The content of the course covers Moore's Law of semiconductor integration, basic MOSFET operation, systematic design of combinatorial and sequential logic (Finite-State-Machines, synchronous circuits, pipelining), IC hardware platforms (ASIC, FPGA), arithmetic building blocks (adder, multiplier). Study goals: Objective of the course is to convey a basic understanding of basic concepts of digital logic and function blocks, to be able to optimize finite automata by applying pipelining and to understand technical and economic implications in the selection of IC hardware platforms. Additional the participants will get a basic understanding of MOS transistors and CMOS circuits Teaching and learning methods: The teaching methods are in the lecture teacher-centered presentations and in the exercises the presentation of in-class examples. In addition to the individual methods of the students deepening of knowledge is reached by repetitive calculation of exercise examples in either central or tutor classes. 23/04/2015 86 16.04.2015 14:26 Module Description EI4282 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: Folgende Medienformen finden Verwendung: - PPT-Präsentationen mit handschriftlichen Ergänzungen - Skript - Übungsaufgaben mit Lösungen als Download im Internet Literature: - J. Rabaey, "Digital Integrated Circuits", Prentice Hall - N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design",Addison Wesley - Synthesis and Optimization of Digital Circuits; De Micheli, Giovanni; McGraw-Hill, 1994. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556403 Generated on: 16.04.2015 14:26 23/04/2015 87 16.04.2015 14:26 Module Description EI4282 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description EI4282: Digital Integrated Circuit in Engineering (MSE) TUM Department of Electrical and Computer Engineering Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 4 Total number of hours: 120 Self-study hours: 60 Contact hours: 60 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Schriftliche Prüfung von 60 Minuten Dauer Exam type: written Exam duration (min.): 60min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: high school maths and physics Contents: In this course, students shall learn ... basic concepts of digital logic circuits and functional blocks; optimized design of Finite-State-Machines using pipelining principles; technical and economical aspects of integrated circuit hardware platforms; introduction to semiconductor memory; introduction to multi-criteria circuit optimization problems: area vs. performance vs. power The content of the course covers Moore's Law of semiconductor integration, basic MOSFET operation, systematic design of combinatorial and sequential logic (Finite-State-Machines, synchronous circuits, pipelining), IC hardware platforms (ASIC, FPGA), arithmetic building blocks (adder, multiplier). Study goals: Objective of the course is to convey a basic understanding of basic concepts of digital logic and function blocks, to be able to optimize finite automata by applying pipelining and to understand technical and economic implications in the selection of IC hardware platforms. Additional the participants will get a basic understanding of MOS transistors and CMOS circuits Teaching and learning methods: The teaching methods are in the lecture teacher-centered presentations and in the exercises the presentation of in-class examples. In addition to the individual methods of the students deepening of knowledge is reached by repetitive calculation of exercise examples in either central or tutor classes. 23/04/2015 88 16.04.2015 14:26 Module Description EI4282 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: Folgende Medienformen finden Verwendung: - PPT-Präsentationen mit handschriftlichen Ergänzungen - Skript - Übungsaufgaben mit Lösungen als Download im Internet Literature: - J. Rabaey, "Digital Integrated Circuits", Prentice Hall - N. Weste, K. Eshraghian, "Principles of CMOS VLSI Design",Addison Wesley - Synthesis and Optimization of Digital Circuits; De Micheli, Giovanni; McGraw-Hill, 1994. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556403 Generated on: 16.04.2015 14:26 23/04/2015 89 16.04.2015 14:26 Module Description WI100809 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description WI100809: Entrepreneurial Idea Development Chair of Entrepreneurship (Prof. Patzelt) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 4 Total number of hours: 120 Self-study hours: 90 Contact hours: 30 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The grading is based on presentations (40% of grade) and a term paper (60% of grade). Exam type: written and oral Exam duration (min.): 30 min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: Yes Conversation: Yes Written paper: Yes (Recommended) requirements: None Contents: The course offers an introduction to entrepreneurship theory and practice. First students will learn in lectures about theoretical approaches to entrepreneurship and important topics such as entrepreneurial decision making and psychology, opportunity recognition, entrepreneurial finance, and strategy. The second part of the course is a "handson-experience" where student teams will work out an opportunity assessment plan based on innovative business ideas they develop. Study goals: After course participation students are able to understand the processes associated with the recognition and development of entrepreneurial opportunities. In addition, they are able to develop an opportunity assessment plan. Teaching and learning methods: The module consists of introductory lectures including cases and class discussion. In group work students develop business ideas and present the opportunity assessment plans they developed. Media formats: PowerPoint, Flipchart. Literature: Hisrich, R. D./Peters, M. P./Shepherd, D. A.: Entrepreneurship, 8th edition, McGraw-Hill, 2010 Responsible for the module: not specified: not specified 23/04/2015 90 16.04.2015 14:32 Module Description WI100809 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1070625 Generated on: 16.04.2015 14:32 23/04/2015 91 16.04.2015 14:32 Module Description WI100809 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description WI100809: Entrepreneurial Idea Development Chair of Entrepreneurship (Prof. Patzelt) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 4 Total number of hours: 120 Self-study hours: 90 Contact hours: 30 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The grading is based on presentations (40% of grade) and a term paper (60% of grade). Exam type: written and oral Exam duration (min.): 30 min Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: Yes Conversation: Yes Written paper: Yes (Recommended) requirements: None Contents: The course offers an introduction to entrepreneurship theory and practice. First students will learn in lectures about theoretical approaches to entrepreneurship and important topics such as entrepreneurial decision making and psychology, opportunity recognition, entrepreneurial finance, and strategy. The second part of the course is a "handson-experience" where student teams will work out an opportunity assessment plan based on innovative business ideas they develop. Study goals: After course participation students are able to understand the processes associated with the recognition and development of entrepreneurial opportunities. In addition, they are able to develop an opportunity assessment plan. Teaching and learning methods: The module consists of introductory lectures including cases and class discussion. In group work students develop business ideas and present the opportunity assessment plans they developed. Media formats: PowerPoint, Flipchart. Literature: Hisrich, R. D./Peters, M. P./Shepherd, D. A.: Entrepreneurship, 8th edition, McGraw-Hill, 2010 Responsible for the module: not specified: not specified 23/04/2015 92 16.04.2015 14:32 Module Description WI100809 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1070625 Generated on: 16.04.2015 14:32 23/04/2015 93 16.04.2015 14:32 Module Description SE0004 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0004: Introduction into Scientific Research Department MSE Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 6 Total number of hours: 180 Self-study hours: 60 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Eine oder mehrere Prüfungen zu Lehrveranstaltungen oder Studienleistungen aus dem Themenbereich "Wissenschaftliches Arbeiten". Dabei müssen einzelne (Teil-)Prüfungsleistungen mind. 2 ECTS umfassen. Es kann maximal eine englischsprachige Prüfungsleistung eingebracht werden. Anerkannte Prüfungen zur Erfüllung des Moduls sind auf der MSE-Homepage in Form einer Lehrveranstaltungsübersicht veröffentlicht und werden regelmäßig aktualisiert (http://www.engineering.mse.tum.de/studium/studienleistungen/). Im Rahmen des Moduls kann zudem als Teilprüfungsleistung ein Bericht oder Poster über ein abgeleistetes Forschungspraktikums in Höhe von 4 ECTS anerkannt werden. Der Bericht oder das Poster zum Forschungspraktikum muss von einem Prüfer der am Studiengang beteiligten Fakultäten bewertet sein. Informationen zum Forschungspraktikum sind auf der MSE-Homepager veröfftentlicht und werden regelmäßig aktualisiert (http://www.engineering.mse.tum.de/studium/forschungspraktikum/). Exam type: written or oral Exam duration (min.): 30 bis 60 Minuten Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: Yes Conversation: Yes Written paper: Yes Homework: Yes (Recommended) requirements: Regelmäßige und aktive Teilnahme Contents: Seminare bieten z.B. eine Einführung in grundlegende wissenschaftliche Arbeitstechniken. Insbesondere sollen Studierende bei der Erstellung ihrer Bachelorarbeit begleitet und unterstützt werden, z.B. durch Auseinandersetzung mit gängigen Theorien, Konzepten und Denkansätzen; dem Erkennen von wissenschaftlichem Forschungsbedarf und praktischer Relevanz; der Strukturierung des Themas; der Literaturrecherche und -verarbeitung. Das Forschungspraktikum bietet erste Einblicke in die Welt der Forschung. In Begleitung erfahrener wissenschaftlicher Mitarbeiter/-innen erhalten die Studierenden Einblick in laufende Forschungsprojekte an den Lehrstühlen der TUM, bei gleichgestellten Forschungseinrichtungen oder bei einem externen Anbieter und arbeiten an aktuellen Fragestellungen mit. Mögliche Tätigkeiten sind: Mitarbeit beim Aufbau und Betrieb von Versuchsanlagen, Erfassen und Dokumentieren von Forschungsergebnissen, Vorbereitung, Durchführung und Auswertung von Versuchen, Mitarbeitbeit bei der Organisation und Durchführung von Kolloquien und Symposien, Literaturrecherche und Erstellen von Literaturlisten. Study goals: Die eigenständige wissenschaftliche Arbeit /einen Bericht/eine Abschlussarbeit entwickeln; Kenntnisse über 23/04/2015 94 16.04.2015 14:32 Module Description SE0004 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Vorgehen, Ziele und Methoden der wissenschaftlichen Arbeitsweise aneignen; Mitarbeit bei der Organisation und Durchführung von Fachseminaren, Kolloquien und Kongressen; Literatur- und Patentrecherche und Erstellen von Literaturlisten mit den ethischen und psychologischen Fragen des wissenschaftlichen Arbeitens umgehen; Forschungsideen/-vorhaben präsentieren; über Forschungsthemen diskutieren; Mitarbeit beim Aufbau und Betrieb von Versuchsanlagen; Erfassen und Dokumentieren von Forschungsergebnissen usw. Teaching and learning methods: Vortrag, Übung, Präsentation, Referat, Einzel- Partner- und Gruppenarbeit, Forschungsaktivitäten Media formats: Die Medienformen sind für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung) Literature: Die Literatur ist für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung) Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=804670 Generated on: 16.04.2015 14:32 23/04/2015 95 16.04.2015 14:32 Module Description SE0004 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0004: Introduction into Scientific Research Department MSE Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 6 Total number of hours: 180 Self-study hours: 60 Contact hours: 120 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Eine oder mehrere Prüfungen zu Lehrveranstaltungen oder Studienleistungen aus dem Themenbereich "Wissenschaftliches Arbeiten". Dabei müssen einzelne (Teil-)Prüfungsleistungen mind. 2 ECTS umfassen. Es kann maximal eine englischsprachige Prüfungsleistung eingebracht werden. Anerkannte Prüfungen zur Erfüllung des Moduls sind auf der MSE-Homepage in Form einer Lehrveranstaltungsübersicht veröffentlicht und werden regelmäßig aktualisiert (http://www.engineering.mse.tum.de/studium/studienleistungen/). Im Rahmen des Moduls kann zudem als Teilprüfungsleistung ein Bericht oder Poster über ein abgeleistetes Forschungspraktikums in Höhe von 4 ECTS anerkannt werden. Der Bericht oder das Poster zum Forschungspraktikum muss von einem Prüfer der am Studiengang beteiligten Fakultäten bewertet sein. Informationen zum Forschungspraktikum sind auf der MSE-Homepager veröfftentlicht und werden regelmäßig aktualisiert (http://www.engineering.mse.tum.de/studium/forschungspraktikum/). Exam type: written or oral Exam duration (min.): 30 bis 60 Minuten Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: Yes Conversation: Yes Written paper: Yes Homework: Yes (Recommended) requirements: Regelmäßige und aktive Teilnahme Contents: Seminare bieten z.B. eine Einführung in grundlegende wissenschaftliche Arbeitstechniken. Insbesondere sollen Studierende bei der Erstellung ihrer Bachelorarbeit begleitet und unterstützt werden, z.B. durch Auseinandersetzung mit gängigen Theorien, Konzepten und Denkansätzen; dem Erkennen von wissenschaftlichem Forschungsbedarf und praktischer Relevanz; der Strukturierung des Themas; der Literaturrecherche und -verarbeitung. Das Forschungspraktikum bietet erste Einblicke in die Welt der Forschung. In Begleitung erfahrener wissenschaftlicher Mitarbeiter/-innen erhalten die Studierenden Einblick in laufende Forschungsprojekte an den Lehrstühlen der TUM, bei gleichgestellten Forschungseinrichtungen oder bei einem externen Anbieter und arbeiten an aktuellen Fragestellungen mit. Mögliche Tätigkeiten sind: Mitarbeit beim Aufbau und Betrieb von Versuchsanlagen, Erfassen und Dokumentieren von Forschungsergebnissen, Vorbereitung, Durchführung und Auswertung von Versuchen, Mitarbeitbeit bei der Organisation und Durchführung von Kolloquien und Symposien, Literaturrecherche und Erstellen von Literaturlisten. Study goals: Die eigenständige wissenschaftliche Arbeit /einen Bericht/eine Abschlussarbeit entwickeln; Kenntnisse über 23/04/2015 96 16.04.2015 14:32 Module Description SE0004 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Vorgehen, Ziele und Methoden der wissenschaftlichen Arbeitsweise aneignen; Mitarbeit bei der Organisation und Durchführung von Fachseminaren, Kolloquien und Kongressen; Literatur- und Patentrecherche und Erstellen von Literaturlisten mit den ethischen und psychologischen Fragen des wissenschaftlichen Arbeitens umgehen; Forschungsideen/-vorhaben präsentieren; über Forschungsthemen diskutieren; Mitarbeit beim Aufbau und Betrieb von Versuchsanlagen; Erfassen und Dokumentieren von Forschungsergebnissen usw. Teaching and learning methods: Vortrag, Übung, Präsentation, Referat, Einzel- Partner- und Gruppenarbeit, Forschungsaktivitäten Media formats: Die Medienformen sind für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung) Literature: Die Literatur ist für jede LV individuell vorgegeben (siehe jeweilige Modul- oder LV-Beschreibung) Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=804670 Generated on: 16.04.2015 14:32 23/04/2015 97 16.04.2015 14:32 Module Description SE0007 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0007: World of Engineering (MSE) Department MSE Module level: Bachelor Language: German/English Module duration: more semesters Occurrence: winter/summer semester Credits*: 2 Total number of hours: 60 Self-study hours: 44 Contact hours: 16 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: no written or oral exam In each lecture, students need to confirm their attendance with their signature on a designated list. The course is passed on condition of regular attendance. Exam type: written Exam duration (min.): not specified Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: No Conversation: No Written paper: Yes Homework: No (Recommended) requirements: None Contents: The lecture series gives a broad overview of current research topics and trends in engineering practice by inviting guest speakers from all fields of engineering (automotive, aerospace, biomedical, electrical, civil, etc.). This gives students the possibility to obtain useful information about potential working areas and professional careers in engineering and in the applied sciences already at an early stage of their studies. Study goals: After successful completion of the module World of Engineering, students are able to recognize connections between their theoretical knowledge and engineering practice. They have obtained a first overview of current research trends and can profitably use this knowledge for their further study and career plans. The topics of the lecture series also enable students to analyze current and future developments in engineering as well as to evaluate the potentials of such developments. Teaching and learning methods: The module consists of a series of lectures with integrated workshop type parts. Theoretical knowledge and case studies are presented by the guest speakers in the form of lectures and Powerpoint slides. To some extent, students are required to do independent literature research. The obtained knowledge is deepened in corresponding discussions. Media formats: Presentation, notes on PC, learning material published on the electronic learning platform Literature: 23/04/2015 98 16.04.2015 14:33 Module Description SE0007 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... --Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=627418 Generated on: 16.04.2015 14:33 23/04/2015 99 16.04.2015 14:33 Module Description SE0007 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0007: World of Engineering (MSE) Department MSE Module level: Bachelor Language: German/English Module duration: more semesters Occurrence: winter/summer semester Credits*: 2 Total number of hours: 60 Self-study hours: 44 Contact hours: 16 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: no written or oral exam In each lecture, students need to confirm their attendance with their signature on a designated list. The course is passed on condition of regular attendance. Exam type: written Exam duration (min.): not specified Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: No Conversation: No Written paper: Yes Homework: No (Recommended) requirements: None Contents: The lecture series gives a broad overview of current research topics and trends in engineering practice by inviting guest speakers from all fields of engineering (automotive, aerospace, biomedical, electrical, civil, etc.). This gives students the possibility to obtain useful information about potential working areas and professional careers in engineering and in the applied sciences already at an early stage of their studies. Study goals: After successful completion of the module World of Engineering, students are able to recognize connections between their theoretical knowledge and engineering practice. They have obtained a first overview of current research trends and can profitably use this knowledge for their further study and career plans. The topics of the lecture series also enable students to analyze current and future developments in engineering as well as to evaluate the potentials of such developments. Teaching and learning methods: The module consists of a series of lectures with integrated workshop type parts. Theoretical knowledge and case studies are presented by the guest speakers in the form of lectures and Powerpoint slides. To some extent, students are required to do independent literature research. The obtained knowledge is deepened in corresponding discussions. Media formats: Presentation, notes on PC, learning material published on the electronic learning platform Literature: 23/04/2015 100 16.04.2015 14:33 Module Description SE0007 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... --Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=627418 Generated on: 16.04.2015 14:33 23/04/2015 101 16.04.2015 14:33 Module Description SE0006 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0006: Soft Skills Department MSE Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 2 Total number of hours: 60 Self-study hours: 30 Contact hours: 30 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Lernergebnisse der Studienleistung werden vorwiegend in Form einer schriftlichen Hausarbeit und/oder eines Vortrags/Referats am Ende der Lehrveranstaltung geprüft. Die Prüfungsleistung muss mindestens 2 ECTS umfassen. Anerkannte Prüfungen zur Erfüllung des Moduls "Schlüsselqualifikationen" sind in Form einer Veranstaltungsübersicht der Carl-von-Linde Akademie auf der MSE-Homepage veröffentlicht und werden regelmäßig aktualisiert: http://www.engineering.mse.tum.de/studium/studienleistungen/ Darüber hinaus können auch andere Prüfungsleistungen nach vorheriger Genehmigung des Studienbüros sowohl an der TUM als auch an einer anderen Hochschule erbracht werden. Exam type: written or oral Exam duration (min.): 30 bis 60 Min. Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: Yes Conversation: Yes Written paper: Yes Homework: Yes (Recommended) requirements: Regelmäßige und aktive Teilnahme Contents: Schlüsselqualifikationen, auch bezeichnet als Soft Skills, sind Werkzeuge , welche die im Studiengang zu erlernenden Kompetenzen (Hard Skills - fachliche Qualifikation) durch überfachliche, soziale und (selbst-) organisatorische Fähigkeiten ergänzen. Im Rahmen einer solchen Lehrveranstaltung können a.u. Kommunikationsstärke, Teamfähigkeit, Konfliktlösungeskompetenz trainiert oder Instrumente zur Entscheidungsfindung, zum Projekt- und Zeitmanagement sowie Fähigkeiten für Effektives Lernen, Effektives Lesen, Wissenschaftliches Arbeiten, Referieren und Präsentieren vor größeren Gruppen, Stressbewältigung usw. erlernt werden. Des Weiteren können Veranstaltungen mit interdisziplinären, philosophischen oder interkulturellen Inhalten eingebracht werden. Study goals: Angestrebte Lernziele des Moduls sind u.a.: Kommunikationskompetenzen (Veranstaltungen zu den Themen: Rhetorik, Auftreten u.s.w.) Führungskompetenzen (Veranstaltungen zu den Themen: Beherrschung von Instrumenten zur Entscheidungsfindung, Projekt- und Zeitmanagement, Stressbewältigung u.s.w.). Medien- und Methodenkompetenzen (Veranstaltungen zu den Themen: Effektives Lernen, Effektives Lesen, Referieren und Präsentieren vor größeren Gruppen u.s.w.). Soziale und persönliche Kompetenzen (Veranstaltungen zu den Themen: Interkulturelle Kommunikation, 23/04/2015 102 16.04.2015 14:34 Module Description SE0006 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Konfliktbewältigung, Vermittlung der Erkenntnisse an die Öffentlichkeit u.s.w.) Teaching and learning methods: Im Rahmen dieses Moduls sind Seminaren, Workshops oder Vorlesungen als Veranstaltungsformen möglich. Dadurch werden unterschiedliche Lern- und Lehrmethoden eingesetzt (z.B. Referate, Präsentationen, Diskussionen u.s.w.), um theoretisches Wissen zu vertiefen. Media formats: Die Medienformen sind für jede LV individuell (siehe LV-Beschreibung) Literature: Die Literatur ist für jede LV individuell (siehe LV-Beschreibung) Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=772843 Generated on: 16.04.2015 14:34 23/04/2015 103 16.04.2015 14:34 Module Description SE0006 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0006: Soft Skills Department MSE Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 2 Total number of hours: 60 Self-study hours: 30 Contact hours: 30 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Lernergebnisse der Studienleistung werden vorwiegend in Form einer schriftlichen Hausarbeit und/oder eines Vortrags/Referats am Ende der Lehrveranstaltung geprüft. Die Prüfungsleistung muss mindestens 2 ECTS umfassen. Anerkannte Prüfungen zur Erfüllung des Moduls "Schlüsselqualifikationen" sind in Form einer Veranstaltungsübersicht der Carl-von-Linde Akademie auf der MSE-Homepage veröffentlicht und werden regelmäßig aktualisiert: http://www.engineering.mse.tum.de/studium/studienleistungen/ Darüber hinaus können auch andere Prüfungsleistungen nach vorheriger Genehmigung des Studienbüros sowohl an der TUM als auch an einer anderen Hochschule erbracht werden. Exam type: written or oral Exam duration (min.): 30 bis 60 Min. Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: Yes Conversation: Yes Written paper: Yes Homework: Yes (Recommended) requirements: Regelmäßige und aktive Teilnahme Contents: Schlüsselqualifikationen, auch bezeichnet als Soft Skills, sind Werkzeuge , welche die im Studiengang zu erlernenden Kompetenzen (Hard Skills - fachliche Qualifikation) durch überfachliche, soziale und (selbst-) organisatorische Fähigkeiten ergänzen. Im Rahmen einer solchen Lehrveranstaltung können a.u. Kommunikationsstärke, Teamfähigkeit, Konfliktlösungeskompetenz trainiert oder Instrumente zur Entscheidungsfindung, zum Projekt- und Zeitmanagement sowie Fähigkeiten für Effektives Lernen, Effektives Lesen, Wissenschaftliches Arbeiten, Referieren und Präsentieren vor größeren Gruppen, Stressbewältigung usw. erlernt werden. Des Weiteren können Veranstaltungen mit interdisziplinären, philosophischen oder interkulturellen Inhalten eingebracht werden. Study goals: Angestrebte Lernziele des Moduls sind u.a.: Kommunikationskompetenzen (Veranstaltungen zu den Themen: Rhetorik, Auftreten u.s.w.) Führungskompetenzen (Veranstaltungen zu den Themen: Beherrschung von Instrumenten zur Entscheidungsfindung, Projekt- und Zeitmanagement, Stressbewältigung u.s.w.). Medien- und Methodenkompetenzen (Veranstaltungen zu den Themen: Effektives Lernen, Effektives Lesen, Referieren und Präsentieren vor größeren Gruppen u.s.w.). Soziale und persönliche Kompetenzen (Veranstaltungen zu den Themen: Interkulturelle Kommunikation, 23/04/2015 104 16.04.2015 14:34 Module Description SE0006 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Konfliktbewältigung, Vermittlung der Erkenntnisse an die Öffentlichkeit u.s.w.) Teaching and learning methods: Im Rahmen dieses Moduls sind Seminaren, Workshops oder Vorlesungen als Veranstaltungsformen möglich. Dadurch werden unterschiedliche Lern- und Lehrmethoden eingesetzt (z.B. Referate, Präsentationen, Diskussionen u.s.w.), um theoretisches Wissen zu vertiefen. Media formats: Die Medienformen sind für jede LV individuell (siehe LV-Beschreibung) Literature: Die Literatur ist für jede LV individuell (siehe LV-Beschreibung) Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=772843 Generated on: 16.04.2015 14:34 23/04/2015 105 16.04.2015 14:34 Module Description ED0085 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description ED0085: Philosophy of Engineering TUM School of Education Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 2 Total number of hours: 60 Self-study hours: 30 Contact hours: 30 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The course achievement is determined by an exam which is not graded. Questions and exercises concern the whole content of the course. No resources besides pen and paper are allowed. Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: None Contents: First we will introduce fundamental concepts of model and systems theory which are central for the natural and engineering sciences: What is a dynamical system? Which applications exist in physics, chemistry, biology, and electrical engineering? What distinguishes linear from non-linear dynamics? What is the connection between causality and control? What is the meaning of determinism, stochastics, and probability? How are evolution and technology linked up? Besides the methodological-epistemological foundations of natural and engineering sciences we will cover the historical and sociological development of science and technology: How do technological-scientific discoveries and inventions arise? What is the connection between technological-scientific innovation dynamics and economical-social development in the age of globalization? To what extent does the engineer bear responsibility? How can the impacts of technology be assessed? Study goals: Students are trained in analytical thinking and are provided with a profound understanding of logical, abstract, and systems-oriented questions in combination with the ability to independently establish interdisciplinary connections. Also, students are made aware of ethical-social issues in engineering practice. Teaching and learning methods: The module consists of lectures with integrated parts of a more seminar-like nature. Theoretical knowledge is conveyed by the professors in terms of lectures and PowerPoint presentations or will be acquired by students through independent reading. In discussions and small exercises the theoretical knowledge is deepened and applied. Media formats: PowerPoint presentations, documents online 23/04/2015 106 16.04.2015 14:44 Module Description ED0085 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Literature: Bucciarelli L.L. (2003): Engineering Philosophy, Delft University Press, Delft; Mainzer K. (2007): Thinking in Complexity, Springer: New York 5. Aufl.; Mainzer K. (2008): Komplexität, UTB-Profile: Paderborn Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555254 Generated on: 16.04.2015 14:44 23/04/2015 107 16.04.2015 14:44 Module Description ED0085 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description ED0085: Philosophy of Engineering TUM School of Education Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 2 Total number of hours: 60 Self-study hours: 30 Contact hours: 30 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: The course achievement is determined by an exam which is not graded. Questions and exercises concern the whole content of the course. No resources besides pen and paper are allowed. Exam type: written Exam duration (min.): 60 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: None Contents: First we will introduce fundamental concepts of model and systems theory which are central for the natural and engineering sciences: What is a dynamical system? Which applications exist in physics, chemistry, biology, and electrical engineering? What distinguishes linear from non-linear dynamics? What is the connection between causality and control? What is the meaning of determinism, stochastics, and probability? How are evolution and technology linked up? Besides the methodological-epistemological foundations of natural and engineering sciences we will cover the historical and sociological development of science and technology: How do technological-scientific discoveries and inventions arise? What is the connection between technological-scientific innovation dynamics and economical-social development in the age of globalization? To what extent does the engineer bear responsibility? How can the impacts of technology be assessed? Study goals: Students are trained in analytical thinking and are provided with a profound understanding of logical, abstract, and systems-oriented questions in combination with the ability to independently establish interdisciplinary connections. Also, students are made aware of ethical-social issues in engineering practice. Teaching and learning methods: The module consists of lectures with integrated parts of a more seminar-like nature. Theoretical knowledge is conveyed by the professors in terms of lectures and PowerPoint presentations or will be acquired by students through independent reading. In discussions and small exercises the theoretical knowledge is deepened and applied. Media formats: PowerPoint presentations, documents online 23/04/2015 108 16.04.2015 14:44 Module Description ED0085 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Literature: Bucciarelli L.L. (2003): Engineering Philosophy, Delft University Press, Delft; Mainzer K. (2007): Thinking in Complexity, Springer: New York 5. Aufl.; Mainzer K. (2008): Komplexität, UTB-Profile: Paderborn Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=555254 Generated on: 16.04.2015 14:44 23/04/2015 109 16.04.2015 14:44 Module Description BV440001 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BV440001: Partial Differential Equations: An Algorithmic Approach Chair of Computation in Engineering (Prof. Rank) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 120 Self-study hours: 75 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Written exam, where the developed software-project w.r.t. its theoretical basis and practical implementation enters. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: Yes Written paper: Yes (Recommended) requirements: Contents of the modules Mathematics I - III, Continuum Mechanics, Fluid and Structural Mechanics, Numerics for engineers, Computer Aided Modeling of Products and Processes Contents: The module presents an introduction to algorithms for the numerical solution of partial differential equations applied to engineering problems. Finite-difference-methods and the finite element method in one and two dimensions are discussed for e.g. the potential equation, convective-diffusive problems and the wave equation. Whereas all methods are presented in a generic algorithmic setting, they are all motivated from concrete problems in engineering sciences. The following topics are treated: Stencils, weak formulation, energy functionals, element matrices, matrix assemby, solution of sparse systems, mesh generation, profile/bandwidth optimization, method of lines, h-, p-convergence. Concrete implementation of the algorithms plays a central role in this module. The software-development is performed in an accompanying project work, where a comprehensive computer program in Matlab is developed by individual students and small teams, and where some modules are provided by the tutors. Study goals: After finishing this module the student is proficient in basic algorithms for linear elliptic, parabolic and hyperbolic partial differential equations. He/she is able to transfer these basic methods to various engineering tasks. The exemplary implementation of important algorithms in the accompanying software-project enables for an extended software-development for complex partial differential equations. Teaching and learning methods: Learning outcomes of this module are achieved by several coordinated components. Whereas the lecture is 23/04/2015 110 16.04.2015 14:50 Module Description BV440001 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... supported by Powerpoint-presentations, implemented algorithms are directly accessed on the computer. Central topics are conveyed by project work, where first a suitable software structure is designed. Individual students and small teams then develop algorithmic components which finally are integrated into the overall system. In addition to the consulting of the lecturers students are supported by tutors. Media formats: Lecture supported by powerpoint-presentations, white-board and online software presentation. Software-development on desktop computers. Additional material will be available online. Literature: English lecture notes with additional references will be available. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=564044 Generated on: 16.04.2015 14:50 23/04/2015 111 16.04.2015 14:50 Module Description BV440001 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BV440001: Partial Differential Equations: An Algorithmic Approach Chair of Computation in Engineering (Prof. Rank) Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 120 Self-study hours: 75 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Written exam, where the developed software-project w.r.t. its theoretical basis and practical implementation enters. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: Yes Written paper: Yes (Recommended) requirements: Contents of the modules Mathematics I - III, Continuum Mechanics, Fluid and Structural Mechanics, Numerics for engineers, Computer Aided Modeling of Products and Processes Contents: The module presents an introduction to algorithms for the numerical solution of partial differential equations applied to engineering problems. Finite-difference-methods and the finite element method in one and two dimensions are discussed for e.g. the potential equation, convective-diffusive problems and the wave equation. Whereas all methods are presented in a generic algorithmic setting, they are all motivated from concrete problems in engineering sciences. The following topics are treated: Stencils, weak formulation, energy functionals, element matrices, matrix assemby, solution of sparse systems, mesh generation, profile/bandwidth optimization, method of lines, h-, p-convergence. Concrete implementation of the algorithms plays a central role in this module. The software-development is performed in an accompanying project work, where a comprehensive computer program in Matlab is developed by individual students and small teams, and where some modules are provided by the tutors. Study goals: After finishing this module the student is proficient in basic algorithms for linear elliptic, parabolic and hyperbolic partial differential equations. He/she is able to transfer these basic methods to various engineering tasks. The exemplary implementation of important algorithms in the accompanying software-project enables for an extended software-development for complex partial differential equations. Teaching and learning methods: Learning outcomes of this module are achieved by several coordinated components. Whereas the lecture is 23/04/2015 112 16.04.2015 14:50 Module Description BV440001 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... supported by Powerpoint-presentations, implemented algorithms are directly accessed on the computer. Central topics are conveyed by project work, where first a suitable software structure is designed. Individual students and small teams then develop algorithmic components which finally are integrated into the overall system. In addition to the consulting of the lecturers students are supported by tutors. Media formats: Lecture supported by powerpoint-presentations, white-board and online software presentation. Software-development on desktop computers. Additional material will be available online. Literature: English lecture notes with additional references will be available. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=564044 Generated on: 16.04.2015 14:50 23/04/2015 113 16.04.2015 14:50 Module Description IN8013 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8013: Geometric Modelling and Visualization (MSE) TUM Department of Informatics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility of re-taking: In the next semester: No At the end of the semester: Yes Lecture: No Conversation: No Written paper: No Homework: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Mathematics I and II, Computer Aided Modeling of Products and Processes Contents: This lecture provides an introduction to the fundamentals of computer graphics, with the focus on techniques frequently used in engineering applications. The lecture is split into three parts: 1) Geometric Modelling, including polygonal surface representations, surface reconstruction, operations on surfaces, and subdivision surfaces. 2) Rendering, including an introduction to the GPU based graphics pipeline as well as basic techniques for image synthesis like lighting, shading, texture mapping, and transformations. 3) Scientific Visualization, including techniques for visualizing volumetric scalar fields and flow fields. Study goals: At the end of the module, students are able to: - understand the basic graphics algorithms used by modern modelling and visualization software, - decide for which classes of objects to use these algorithms, - use available software systems supporting these algorithms. In the practical exercise, students are introduced to some available software systems, and they are supposed to work with these systems on their own initiative to learn how these systems work and what kind of functionality they provide. Teaching and learning methods: The lecture is accompanied by online demonstrations of commonly used software systems for geometric modelling, rendering and visualization. By demonstrating the discussed algorithms in action, the students obtain a deep understanding of what can be achieved today. The students have access to computers to use the demonstrated tools 23/04/2015 114 16.04.2015 14:52 Module Description IN8013 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... and to work on their own with these tools. Media formats: Lecture slides, on-board demonstrations, online-tutorials, online computer demonstrations using open access software systems Literature: - Foley, Van Dam, Feiner, Hughes: Computer Graphics: Principles and Practice, Addison-Wesley, 3rd edition - Bungartz, Griebel, Zenger: Einführung in die Computergraphik - Grundlagen, Geometrische Modellierung, Algorithmen; Vieweg - Encarnaçao, Klein, Strasser: Graphische Datenverarbeitung, 4. Auflage, Oldenburg Verlag Responsible for the module: Westermann, Rüdiger; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557065 Generated on: 16.04.2015 14:52 23/04/2015 115 16.04.2015 14:52 Module Description IN8013 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8013: Geometric Modelling and Visualization (MSE) TUM Department of Informatics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility of re-taking: In the next semester: No At the end of the semester: Yes Lecture: No Conversation: No Written paper: No Homework: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Mathematics I and II, Computer Aided Modeling of Products and Processes Contents: This lecture provides an introduction to the fundamentals of computer graphics, with the focus on techniques frequently used in engineering applications. The lecture is split into three parts: 1) Geometric Modelling, including polygonal surface representations, surface reconstruction, operations on surfaces, and subdivision surfaces. 2) Rendering, including an introduction to the GPU based graphics pipeline as well as basic techniques for image synthesis like lighting, shading, texture mapping, and transformations. 3) Scientific Visualization, including techniques for visualizing volumetric scalar fields and flow fields. Study goals: At the end of the module, students are able to: - understand the basic graphics algorithms used by modern modelling and visualization software, - decide for which classes of objects to use these algorithms, - use available software systems supporting these algorithms. In the practical exercise, students are introduced to some available software systems, and they are supposed to work with these systems on their own initiative to learn how these systems work and what kind of functionality they provide. Teaching and learning methods: The lecture is accompanied by online demonstrations of commonly used software systems for geometric modelling, rendering and visualization. By demonstrating the discussed algorithms in action, the students obtain a deep understanding of what can be achieved today. The students have access to computers to use the demonstrated tools 23/04/2015 116 16.04.2015 14:52 Module Description IN8013 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... and to work on their own with these tools. Media formats: Lecture slides, on-board demonstrations, online-tutorials, online computer demonstrations using open access software systems Literature: - Foley, Van Dam, Feiner, Hughes: Computer Graphics: Principles and Practice, Addison-Wesley, 3rd edition - Bungartz, Griebel, Zenger: Einführung in die Computergraphik - Grundlagen, Geometrische Modellierung, Algorithmen; Vieweg - Encarnaçao, Klein, Strasser: Graphische Datenverarbeitung, 4. Auflage, Oldenburg Verlag Responsible for the module: Westermann, Rüdiger; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557065 Generated on: 16.04.2015 14:52 23/04/2015 117 16.04.2015 14:52 Module Description PH9027 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description PH9027: Nanofabrication and Nanoanalytics TUM Department of Physics Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In a written exam the learning success is checked using comprehension questions and calculation problems. Exam type: written or oral Exam duration (min.): 60-90 Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: No Conversation: No Written paper: No Homework: No (Recommended) requirements: Basics in Solid State Physics Contents: The lecture focuses on various methods of nanofabrication (optical, electron beam lithography, focused ion beam) and newer emerging techni¬ques (x-ray lithography, nanoimprint, etc.). In particular the physical principles are discussed and limitations for the various methods given. Various synthesis and crystal growth methods for advanced semiconductor nanostructures will be further introduced such as chemical and physical vapor phase epitaxial techniques (MOVPE, MBE, etc.) and the physical growth principles of 0D,1D, and 2D materials highlighted. Examples will be given where these low-dimensional nanostructures are implemented into cutting-edge technological applications. The second part of this lecture deals with specific nanoanalytical methods required for characterization of structural, surface and atomic properties of nanofabricated and synthesized materials. These include electron microscopy, surface analytical methods, ion beam analytical techniques, x-ray techniques, and some new sophisticated techniques, such as atom probe tomography, etc. Study goals: After successful participation and engagement in the lecture "Material Modelling" students will have gained: 1. basic knowledge in nanofabrication and analysis of mainly semiconductor-based devices, 2. the capability to select and evaluate specific nanofabrication methods relevant for nanotechnological applications, 3. the possibility to explore the limits of the various methodologies, 4. the capability for structural, atomic and interface specific analysis of nanostructured materials, and 5. the important knowledge in understanding the complex interplay between material synthesis, structural and electronic properties of materials, and their effect on functionalities in cutting-edge device applications. Teaching and learning methods: Vorlesung: Darbietendes Lehrverfahren Media formats: 23/04/2015 118 16.04.2015 14:53 Module Description PH9027 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Präsentation, Laborbesichtigung Literature: Vorlesungsfolien und darin enthaltene Referenzen Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1057381 Generated on: 16.04.2015 14:53 23/04/2015 119 16.04.2015 14:53 Module Description PH9027 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description PH9027: Nanofabrication and Nanoanalytics TUM Department of Physics Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In a written exam the learning success is checked using comprehension questions and calculation problems. Exam type: written or oral Exam duration (min.): 60-90 Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: No Conversation: No Written paper: No Homework: No (Recommended) requirements: Basics in Solid State Physics Contents: The lecture focuses on various methods of nanofabrication (optical, electron beam lithography, focused ion beam) and newer emerging techni¬ques (x-ray lithography, nanoimprint, etc.). In particular the physical principles are discussed and limitations for the various methods given. Various synthesis and crystal growth methods for advanced semiconductor nanostructures will be further introduced such as chemical and physical vapor phase epitaxial techniques (MOVPE, MBE, etc.) and the physical growth principles of 0D,1D, and 2D materials highlighted. Examples will be given where these low-dimensional nanostructures are implemented into cutting-edge technological applications. The second part of this lecture deals with specific nanoanalytical methods required for characterization of structural, surface and atomic properties of nanofabricated and synthesized materials. These include electron microscopy, surface analytical methods, ion beam analytical techniques, x-ray techniques, and some new sophisticated techniques, such as atom probe tomography, etc. Study goals: After successful participation and engagement in the lecture "Material Modelling" students will have gained: 1. basic knowledge in nanofabrication and analysis of mainly semiconductor-based devices, 2. the capability to select and evaluate specific nanofabrication methods relevant for nanotechnological applications, 3. the possibility to explore the limits of the various methodologies, 4. the capability for structural, atomic and interface specific analysis of nanostructured materials, and 5. the important knowledge in understanding the complex interplay between material synthesis, structural and electronic properties of materials, and their effect on functionalities in cutting-edge device applications. Teaching and learning methods: Vorlesung: Darbietendes Lehrverfahren Media formats: 23/04/2015 120 16.04.2015 14:53 Module Description PH9027 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Präsentation, Laborbesichtigung Literature: Vorlesungsfolien und darin enthaltene Referenzen Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=1057381 Generated on: 16.04.2015 14:53 23/04/2015 121 16.04.2015 14:53 Module Description MW1407 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1407: Computational Solid and Fluid Dynamics (MSE) Chair of Aerodynamics and Fluid mechanics (Prof. Adams) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Die Prüfungsleistungen werden in Form schriftlicher Klausuren erbracht. Damit soll nachgewiesen werden, daß in begrenzter Zeit und mit begrenzten Hilfsmitteln ein Problem erkannt wird und Wege zur korrekten Lösung gefunden werden. Der Prüfungsinhalt erstreckt sich üb er den gesamten Vorlesungsinhalt. Fakten- und Zusammenhangswissen werden in einem Kurzfragenteil überprüft, Problemlösungskompetenz in einem Rechenaufgabenteil. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: Yes Written paper: Yes (Recommended) requirements: Mathematische Grundlagen, Differential- und Integralrechnung, Modellierung und Simulation mit gewöhnlichen Differentialgleichungen, Kontinuumsmechanik, Numerische Behandlung partieller Differentialgleichungen Contents: Das Modul Rechnergestützte Festkörper- und Fluiddynamik vermittelt die Grundlagen der numerischen Modellierung und Berechnung des Verhaltens fester und flüssiger Kontinua und gehört somit zur erweiterten ingenieurwissenschaftlichen Grundlagenausbildung in der klassischen Mechanik. Die Vorlesung bildet auch eine Grundlage weiterführender Vorlesungen zur numerischen Simulation in Masterstudiengängen. Inhalte: (1) Grundlagen der numerischen Simulation in der Kontinuumsmechanik, (2) Mathematische und physikalische Eigenschaften der Grundtypen partieller Differentialgleichungen, (3) Diskretisierungsverfahren für partielle Differentialgleichungen, (4) Konsistenz, Stabilität und Konvergenz, (5) Lösungsverfahren. Study goals: Die Studierenden verfügen nach erfolgreichem Bestehen des Moduls Rechnergestützte Festkörper- und Fluidmechanik über: (1) Grundkenntnisse in den numerischen Verfahren zur Simulation in der Kontinuumsmechanik, (2) die Fähgikeit zur mathematischen und physikalischen Beurteilung von Grundtypen partieller Differentialgleichungen, (3) die Fähigkeit zur dynamischen Analyse Kontinua anhand der Erhaltungsgesetze für Masse, Impuls und Energie, (4) Kenntnis über die elementaren grundlegenden Diskretisierungsverfahren, (5) die Fähigkeit zur Beurteilung und Analyse der Stabilität, Konsistenz und Konvergenz numerischer Verfahren. Teaching and learning methods: 23/04/2015 122 16.04.2015 14:54 Module Description MW1407 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Vorlesung: Darbietendes Lehrverfahren. Übung: Darbietendes und erarbeitendes Lehrverfahren. Media formats: Präsentation, Skript, Fälle und Lösungen Literature: Vorlesungsmanuskript, Übungsunterlagen Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556530 Generated on: 16.04.2015 14:54 23/04/2015 123 16.04.2015 14:54 Module Description MW1407 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW1407: Computational Solid and Fluid Dynamics (MSE) Chair of Aerodynamics and Fluid mechanics (Prof. Adams) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Die Prüfungsleistungen werden in Form schriftlicher Klausuren erbracht. Damit soll nachgewiesen werden, daß in begrenzter Zeit und mit begrenzten Hilfsmitteln ein Problem erkannt wird und Wege zur korrekten Lösung gefunden werden. Der Prüfungsinhalt erstreckt sich üb er den gesamten Vorlesungsinhalt. Fakten- und Zusammenhangswissen werden in einem Kurzfragenteil überprüft, Problemlösungskompetenz in einem Rechenaufgabenteil. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: Yes Written paper: Yes (Recommended) requirements: Mathematische Grundlagen, Differential- und Integralrechnung, Modellierung und Simulation mit gewöhnlichen Differentialgleichungen, Kontinuumsmechanik, Numerische Behandlung partieller Differentialgleichungen Contents: Das Modul Rechnergestützte Festkörper- und Fluiddynamik vermittelt die Grundlagen der numerischen Modellierung und Berechnung des Verhaltens fester und flüssiger Kontinua und gehört somit zur erweiterten ingenieurwissenschaftlichen Grundlagenausbildung in der klassischen Mechanik. Die Vorlesung bildet auch eine Grundlage weiterführender Vorlesungen zur numerischen Simulation in Masterstudiengängen. Inhalte: (1) Grundlagen der numerischen Simulation in der Kontinuumsmechanik, (2) Mathematische und physikalische Eigenschaften der Grundtypen partieller Differentialgleichungen, (3) Diskretisierungsverfahren für partielle Differentialgleichungen, (4) Konsistenz, Stabilität und Konvergenz, (5) Lösungsverfahren. Study goals: Die Studierenden verfügen nach erfolgreichem Bestehen des Moduls Rechnergestützte Festkörper- und Fluidmechanik über: (1) Grundkenntnisse in den numerischen Verfahren zur Simulation in der Kontinuumsmechanik, (2) die Fähgikeit zur mathematischen und physikalischen Beurteilung von Grundtypen partieller Differentialgleichungen, (3) die Fähigkeit zur dynamischen Analyse Kontinua anhand der Erhaltungsgesetze für Masse, Impuls und Energie, (4) Kenntnis über die elementaren grundlegenden Diskretisierungsverfahren, (5) die Fähigkeit zur Beurteilung und Analyse der Stabilität, Konsistenz und Konvergenz numerischer Verfahren. Teaching and learning methods: 23/04/2015 124 16.04.2015 14:54 Module Description MW1407 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Vorlesung: Darbietendes Lehrverfahren. Übung: Darbietendes und erarbeitendes Lehrverfahren. Media formats: Präsentation, Skript, Fälle und Lösungen Literature: Vorlesungsmanuskript, Übungsunterlagen Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=556530 Generated on: 16.04.2015 14:54 23/04/2015 125 16.04.2015 14:54 Module Description MW2142 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW2142: Biotechnology for Engineers Associate Professorship of Selective Seperation Technology (Prof. Berensmeier) Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Die angestrebten Lernergebnisse werden durch Verständnisfragen zu ausgewählten Inhalten des Moduls und durch Rechenaufgaben überprüft (zugelassenes Hilfsmittel: Taschenrechner). Exam type: written Exam duration (min.): 90 Minuten Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Voraussetzungen für die erfolgreiche Teilnahme sind ein Interesse an interdisziplinären Fragestellungen der Biologie, Chemie und Verfahrenstechnik. Contents: Diese Lehrveranstaltung soll Ingenieuren einen Einstieg in die Biotechnolgie geben. Ca. 1/3 der Lehrveranstaltung werden unterschiedliche biotechnologisch genutzte Systeme vorgestellt und deren biochemischen Hintergrund kurz erläutert. Der Schwerpunkt der Vorlesung liegt in der Beschreibung unterschiedlicher industrieller Prozesse und deren verfahrenstechnischen Umsetzung. Neben dem biotechnologischen Produktionsprozess (Enzymkatalyse, Fermentation, Zellkultur) selber wird der Gesamtprozess mit Upstream- (Medien-/ Stammoptimierung; Hochdurchsatzverfahren) und Downstream (Reinigung der Zielmoleküle durch Zellaufschluss, Zentrifugation, Chromatographie, Membranverfahren und Extraktion) behandelt. Study goals: Nach der Teilnahme an der Modulveranstaltung kennen die Studierenden unterschiedliche biologische Systeme und ihre Eigenschaften, die in der Biotechnologie industriell eingesetzt werden. Sie sind in der Lage einen kompletten Prozess abhängig vom biologischen System darzustellen und kennen die Schnittstellen zu anderen Wissenschaftsdisziplinen der Genetik, Biologie, Chemie und Verfahrenstechnik. Die Studierenden sind in der Lage, biologische Reaktionen in kontrollierten Modellbioreaktoren (Wachstum, Substrataufnahme und Produktbildung von Mikroorganismen und Zellen) in der Basis zu analysieren und Prozessverläufe zu bewerten. Zusätzlich sind sie in der Lage mehrere Verfahrensschritte zum Aufreiningen der Zielprodukte zu kombinieren und als kompletten Prozess darzustellen. Teaching and learning methods: Die Inhalte des Moduls werden in der Vorlesung (2 SWS) mit Hilfe von Powerpoint-Präsentationen theoretisch 23/04/2015 126 16.04.2015 14:55 Module Description MW2142 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... vermittelt, wobei die Folien auf Englisch sind. Unterrichtssprache ist Deutsch. Media formats: Die in der Vorlesung verwendeten Folien werden den angemeldenten Studierenden über TUMonline rechtzeitig zugänglich gemacht. Literature: Als Einführung empfiehlt sich: Horst Chmiehl: Bioprozesstechnik. Elsevier GmbH, München. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=957126 Generated on: 16.04.2015 14:55 23/04/2015 127 16.04.2015 14:55 Module Description MW2142 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW2142: Biotechnology for Engineers Associate Professorship of Selective Seperation Technology (Prof. Berensmeier) Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Die angestrebten Lernergebnisse werden durch Verständnisfragen zu ausgewählten Inhalten des Moduls und durch Rechenaufgaben überprüft (zugelassenes Hilfsmittel: Taschenrechner). Exam type: written Exam duration (min.): 90 Minuten Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Voraussetzungen für die erfolgreiche Teilnahme sind ein Interesse an interdisziplinären Fragestellungen der Biologie, Chemie und Verfahrenstechnik. Contents: Diese Lehrveranstaltung soll Ingenieuren einen Einstieg in die Biotechnolgie geben. Ca. 1/3 der Lehrveranstaltung werden unterschiedliche biotechnologisch genutzte Systeme vorgestellt und deren biochemischen Hintergrund kurz erläutert. Der Schwerpunkt der Vorlesung liegt in der Beschreibung unterschiedlicher industrieller Prozesse und deren verfahrenstechnischen Umsetzung. Neben dem biotechnologischen Produktionsprozess (Enzymkatalyse, Fermentation, Zellkultur) selber wird der Gesamtprozess mit Upstream- (Medien-/ Stammoptimierung; Hochdurchsatzverfahren) und Downstream (Reinigung der Zielmoleküle durch Zellaufschluss, Zentrifugation, Chromatographie, Membranverfahren und Extraktion) behandelt. Study goals: Nach der Teilnahme an der Modulveranstaltung kennen die Studierenden unterschiedliche biologische Systeme und ihre Eigenschaften, die in der Biotechnologie industriell eingesetzt werden. Sie sind in der Lage einen kompletten Prozess abhängig vom biologischen System darzustellen und kennen die Schnittstellen zu anderen Wissenschaftsdisziplinen der Genetik, Biologie, Chemie und Verfahrenstechnik. Die Studierenden sind in der Lage, biologische Reaktionen in kontrollierten Modellbioreaktoren (Wachstum, Substrataufnahme und Produktbildung von Mikroorganismen und Zellen) in der Basis zu analysieren und Prozessverläufe zu bewerten. Zusätzlich sind sie in der Lage mehrere Verfahrensschritte zum Aufreiningen der Zielprodukte zu kombinieren und als kompletten Prozess darzustellen. Teaching and learning methods: Die Inhalte des Moduls werden in der Vorlesung (2 SWS) mit Hilfe von Powerpoint-Präsentationen theoretisch 23/04/2015 128 16.04.2015 14:55 Module Description MW2142 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... vermittelt, wobei die Folien auf Englisch sind. Unterrichtssprache ist Deutsch. Media formats: Die in der Vorlesung verwendeten Folien werden den angemeldenten Studierenden über TUMonline rechtzeitig zugänglich gemacht. Literature: Als Einführung empfiehlt sich: Horst Chmiehl: Bioprozesstechnik. Elsevier GmbH, München. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=957126 Generated on: 16.04.2015 14:55 23/04/2015 129 16.04.2015 14:55 Module Description IN8014 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8014: Embedded Distributed Systems (MSE) TUM Department of Informatics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of Products and Processes Contents: Introduction to distributed systems and system software, modeling and programming of concurrent systems, synchronisation and messaging (semaphores), micro controller, real-time bus (CAN, Flexray), sensor and actuators, physical and logical architecture. Study goals: The students know the most important concepts of networked embedded systems. They are able to apply the methods and concepts systematically to program concurrent systems. Teaching and learning methods: lecture, exercise course, problems for individual study Media formats: Online Presentation Literature: A. Tanenbaum, Modern Operating Systems, Prentice Hall, 2009 (deutsche Übersetzung Moderne Betriebssysteme, Pearson Studium, 2009) A. Tanenbaum, Computer Networks, Prentice Hall, 2002 (deutsche Übersetzung Computer Netzwerke, Pearson Studium, 2003) Responsible for the module: Knoll, Alois Christian; Prof. Dr.-Ing. habil.: [email protected] 23/04/2015 130 16.04.2015 14:56 Module Description IN8014 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557070 Generated on: 16.04.2015 14:56 23/04/2015 131 16.04.2015 14:56 Module Description IN8014 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8014: Embedded Distributed Systems (MSE) TUM Department of Informatics Module level: Bachelor Language: German Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of Products and Processes Contents: Introduction to distributed systems and system software, modeling and programming of concurrent systems, synchronisation and messaging (semaphores), micro controller, real-time bus (CAN, Flexray), sensor and actuators, physical and logical architecture. Study goals: The students know the most important concepts of networked embedded systems. They are able to apply the methods and concepts systematically to program concurrent systems. Teaching and learning methods: lecture, exercise course, problems for individual study Media formats: Online Presentation Literature: A. Tanenbaum, Modern Operating Systems, Prentice Hall, 2009 (deutsche Übersetzung Moderne Betriebssysteme, Pearson Studium, 2009) A. Tanenbaum, Computer Networks, Prentice Hall, 2002 (deutsche Übersetzung Computer Netzwerke, Pearson Studium, 2003) Responsible for the module: Knoll, Alois Christian; Prof. Dr.-Ing. habil.: [email protected] 23/04/2015 132 16.04.2015 14:56 Module Description IN8014 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=557070 Generated on: 16.04.2015 14:56 23/04/2015 133 16.04.2015 14:56 Module Description IN8015 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8015: Systems Engineering (MSE) TUM Department of Informatics Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of Products and Processes, Software Engineering Contents: Introduction in systems engineering, systems modeling, development methods, phase models, project management, requirement evaluation and analysis, gateways, specification, systems design, architecture and gateway specification, module-, integration and systems check, version- and configuration management, software? and system maintenance Study goals: The students can handle the most important concepts, models, methods and processes of systems engineering. Teaching and learning methods: lecture, exercise course, problems for individual study Media formats: not specified Literature: Tim Weilkiens: Systems Engineering with SysML/UML. Morgan Kaufmann Publishers Inc, 2008 Alexander Kossiakoff und William N. Sweet: Systems Engineering Principles and Practice (Wiley Series in Systems Engineering and Management) von von John Wiley & Sons 2002 Responsible for the module: Pretschner, Alexander; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: 23/04/2015 134 16.04.2015 14:57 Module Description IN8015 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=563556 Generated on: 16.04.2015 14:57 23/04/2015 135 16.04.2015 14:57 Module Description IN8015 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description IN8015: Systems Engineering (MSE) TUM Department of Informatics Module level: Bachelor Language: German Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: In the written exam students should prove to be able to identify a given problem and find solutions within limited time. Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: IN8011 Engineering Informatics 1 (MSE), IN8012 Engineering Informatics 2 (MSE), Computer Aided Modeling of Products and Processes, Software Engineering Contents: Introduction in systems engineering, systems modeling, development methods, phase models, project management, requirement evaluation and analysis, gateways, specification, systems design, architecture and gateway specification, module-, integration and systems check, version- and configuration management, software? and system maintenance Study goals: The students can handle the most important concepts, models, methods and processes of systems engineering. Teaching and learning methods: lecture, exercise course, problems for individual study Media formats: not specified Literature: Tim Weilkiens: Systems Engineering with SysML/UML. Morgan Kaufmann Publishers Inc, 2008 Alexander Kossiakoff und William N. Sweet: Systems Engineering Principles and Practice (Wiley Series in Systems Engineering and Management) von von John Wiley & Sons 2002 Responsible for the module: Pretschner, Alexander; Prof. Dr.: [email protected] Courses (Type, SH) Lecturer: 23/04/2015 136 16.04.2015 14:57 Module Description IN8015 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=563556 Generated on: 16.04.2015 14:57 23/04/2015 137 16.04.2015 14:57 Module Description BGU43014 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BGU43014: Engineering Models in Structural Dynamics and Vibroacoustics Chair of Structural Mechanics (Prof. Müller) Module level: Bachelor Language: English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: not specified Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Fundamentals of Mathematics (MA9801), Physics (PH9021) Mechanics I (MW1406), Mechanics II (MW1409), Differential and Integral Calculus (MA9802), Modeling and Simulation with ordinary differential equations (MA9803) Contents: The content of the module is the modeling of structures in the field of civil engineering and mechanical engineering for dynamic problems. Interfaces and subsystems are defined for a product in the appropriate manner described by differential equations. Impedances and transfer functions are determined and aspects of insulation and damping are discussed. Measures like elastic support and damping aspects are explained. The effectiveness of measures at interfaces is explained via the measure of insertion loss. Modeling techniques for different frequency ranges are discussed, where the limits of the individual model are discussed using wave approaches. Study goals: After a successful participation in the course, the students are able to analyze structures for dynamic problems defining engineering models and suitable substructures with clear interfaces. Students apply various methods for solving the respective differential equations and discuss the solutions regarding dynamic characteristics. Students can evaluate the methods and their applicability for modeling in the low-, mid- and high-frequency range. Teaching and learning methods: lecture with exercises - Lecture (with experiments) - integrated exercises - numerical examples with computer algebra systems - measurement devices 23/04/2015 138 16.04.2015 14:58 Module Description BGU43014 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: - Tablet PC - Notebook-exercises - Lecture Notes Literature: Lecture Notes with links to further literature Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=965385 Generated on: 16.04.2015 14:58 23/04/2015 139 16.04.2015 14:58 Module Description BGU43014 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description BGU43014: Engineering Models in Structural Dynamics and Vibroacoustics Chair of Structural Mechanics (Prof. Müller) Module level: Bachelor Language: English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: not specified Exam type: written Exam duration (min.): 90 Possibility Homework: of re-taking: Yes In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Fundamentals of Mathematics (MA9801), Physics (PH9021) Mechanics I (MW1406), Mechanics II (MW1409), Differential and Integral Calculus (MA9802), Modeling and Simulation with ordinary differential equations (MA9803) Contents: The content of the module is the modeling of structures in the field of civil engineering and mechanical engineering for dynamic problems. Interfaces and subsystems are defined for a product in the appropriate manner described by differential equations. Impedances and transfer functions are determined and aspects of insulation and damping are discussed. Measures like elastic support and damping aspects are explained. The effectiveness of measures at interfaces is explained via the measure of insertion loss. Modeling techniques for different frequency ranges are discussed, where the limits of the individual model are discussed using wave approaches. Study goals: After a successful participation in the course, the students are able to analyze structures for dynamic problems defining engineering models and suitable substructures with clear interfaces. Students apply various methods for solving the respective differential equations and discuss the solutions regarding dynamic characteristics. Students can evaluate the methods and their applicability for modeling in the low-, mid- and high-frequency range. Teaching and learning methods: lecture with exercises - Lecture (with experiments) - integrated exercises - numerical examples with computer algebra systems - measurement devices 23/04/2015 140 16.04.2015 14:58 Module Description BGU43014 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: - Tablet PC - Notebook-exercises - Lecture Notes Literature: Lecture Notes with links to further literature Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=965385 Generated on: 16.04.2015 14:58 23/04/2015 141 16.04.2015 14:58 Module Description MW2086 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW2086: Uncertainty Modeling in Engineering (MSE) Associate Professorship of Continuum Mechanics (Prof. Koutsourelakis) Module level: Bachelor Language: English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Es wird eine Klausur am Ende der Vorlesung gestellt. Exam type: written Exam duration (min.): 120 Homework: Possibility Yes of re-taking: In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Mathematical foundations (calculus), Engineering Informatics 1 / 2 Contents: Engineers are constantly faced with the task of producing quantitative estimates and making decisions regarding the safety, reliability and performance of various systems. More often than not, these tasks must be carried out under limited information and significant uncertainty. Despite the progress in mathematical modeling and advances in numerical simulation techniques, our actual predictive ability has not commensurately increased. Engineers must account for the various sources of uncertainty (e.g. environmental effects, physical properties, model parameters) in order to reach rational conclusions. This course presents the necessary tools and methodological framework for dealing with uncertainty. Study goals: Introduce the basic mathematical framework in probability and statistics for analyzing problems exhibiting random variability. Introduce the basic methods for parameter estimation, reliability analysis, decision-making and design in the presence of uncertainty. Enable students to use statistical methods during their professional careers & further study. Teaching and learning methods: The learning outcomes of this module will be developed based on several coordinated teaching components. The lecture is supported when necessary by animation and software examples online on the computer. Additionally the course includes practice examples to deepen the course content. Methods required for finishing the problems will be presented online on the computer. Furthermore, there will be homework for personal study at home. Tutors are available to answer questions of students. 23/04/2015 142 16.04.2015 14:58 Module Description MW2086 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: Lecture slides and several readings from various sources will be provided throughout the semester Literature: not specified Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=821207 Generated on: 16.04.2015 14:58 23/04/2015 143 16.04.2015 14:58 Module Description MW2086 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW2086: Uncertainty Modeling in Engineering (MSE) Associate Professorship of Continuum Mechanics (Prof. Koutsourelakis) Module level: Bachelor Language: English Module duration: one semester Occurrence: summer semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Es wird eine Klausur am Ende der Vorlesung gestellt. Exam type: written Exam duration (min.): 120 Homework: Possibility Yes of re-taking: In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Mathematical foundations (calculus), Engineering Informatics 1 / 2 Contents: Engineers are constantly faced with the task of producing quantitative estimates and making decisions regarding the safety, reliability and performance of various systems. More often than not, these tasks must be carried out under limited information and significant uncertainty. Despite the progress in mathematical modeling and advances in numerical simulation techniques, our actual predictive ability has not commensurately increased. Engineers must account for the various sources of uncertainty (e.g. environmental effects, physical properties, model parameters) in order to reach rational conclusions. This course presents the necessary tools and methodological framework for dealing with uncertainty. Study goals: Introduce the basic mathematical framework in probability and statistics for analyzing problems exhibiting random variability. Introduce the basic methods for parameter estimation, reliability analysis, decision-making and design in the presence of uncertainty. Enable students to use statistical methods during their professional careers & further study. Teaching and learning methods: The learning outcomes of this module will be developed based on several coordinated teaching components. The lecture is supported when necessary by animation and software examples online on the computer. Additionally the course includes practice examples to deepen the course content. Methods required for finishing the problems will be presented online on the computer. Furthermore, there will be homework for personal study at home. Tutors are available to answer questions of students. 23/04/2015 144 16.04.2015 14:58 Module Description MW2086 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Media formats: Lecture slides and several readings from various sources will be provided throughout the semester Literature: not specified Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=821207 Generated on: 16.04.2015 14:58 23/04/2015 145 16.04.2015 14:58 Module Description MW2149 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW2149: Introduction to Wind Energy Chair of Wind Energy (Prof. Bottasso) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Examination with the following elements: - Written or oral examination at the end of lectures (100%), depending on the number of attendees. - During the lecture period an optional seminar talks may be presented. Exam type: written or oral Exam duration (min.): 90 min. written or 30 min. oral, respectively. Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: Yes Conversation: No Written paper: No Homework: No (Recommended) requirements: Basic knowledge in engineering mechanics and aerodynamics. Contents: " Introduction to wind energy, the wind resource and its characteristics. " Wind turbine types, configurations, components, design of machines and wind farms. " Wind turbine aerodynamics. " Dynamics, aeroservoelasticity and control of wind turbines. " Introduction to off-shore wind, the off-shore environment, support structures, dynamics. " Introduction to electrical systems and grid integration. Study goals: During the course, students will be introduced to the wind energy resource, and will learn the basic principles underlying the energy conversion process from wind, with a particular emphasis on a multidisciplinary view of the problem. At the successful completion of the course, students will achieve a basic solid understanding of the aerodynamics, dynamics and control of wind turbines, as well as of their design and operation, with a good overall knowledge of all principal aspects of wind energy technology. Teaching and learning methods: Learning method: In addition to the individual methods of the students consolidated knowledge is aspired by repeated lessons in exercises and tutorials. 23/04/2015 146 16.04.2015 14:59 Module Description MW2149 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching method: During the lectures students are instructed in a teacher-centered style. The exercises are held in a student-centered way. Media formats: The following kinds of media are used: - Class room lectures - Lecture notes (handouts) - Exercises with solutions as download Literature: Course material will be provided by the instructor. Additional recommended literature: " T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook, Wiley, 2011. " J. F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained, Theory, Design and Application, Wiley, 2012. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=938956 Generated on: 16.04.2015 14:59 23/04/2015 147 16.04.2015 14:59 Module Description MW2149 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description MW2149: Introduction to Wind Energy Chair of Wind Energy (Prof. Bottasso) Module level: Bachelor Language: English Module duration: one semester Occurrence: winter semester Credits*: 5 Total number of hours: 150 Self-study hours: 105 Contact hours: 45 * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Examination with the following elements: - Written or oral examination at the end of lectures (100%), depending on the number of attendees. - During the lecture period an optional seminar talks may be presented. Exam type: written or oral Exam duration (min.): 90 min. written or 30 min. oral, respectively. Possibility of re-taking: In the next semester: No At the end of the semester: No Lecture: Yes Conversation: No Written paper: No Homework: No (Recommended) requirements: Basic knowledge in engineering mechanics and aerodynamics. Contents: " Introduction to wind energy, the wind resource and its characteristics. " Wind turbine types, configurations, components, design of machines and wind farms. " Wind turbine aerodynamics. " Dynamics, aeroservoelasticity and control of wind turbines. " Introduction to off-shore wind, the off-shore environment, support structures, dynamics. " Introduction to electrical systems and grid integration. Study goals: During the course, students will be introduced to the wind energy resource, and will learn the basic principles underlying the energy conversion process from wind, with a particular emphasis on a multidisciplinary view of the problem. At the successful completion of the course, students will achieve a basic solid understanding of the aerodynamics, dynamics and control of wind turbines, as well as of their design and operation, with a good overall knowledge of all principal aspects of wind energy technology. Teaching and learning methods: Learning method: In addition to the individual methods of the students consolidated knowledge is aspired by repeated lessons in exercises and tutorials. 23/04/2015 148 16.04.2015 14:59 Module Description MW2149 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Teaching method: During the lectures students are instructed in a teacher-centered style. The exercises are held in a student-centered way. Media formats: The following kinds of media are used: - Class room lectures - Lecture notes (handouts) - Exercises with solutions as download Literature: Course material will be provided by the instructor. Additional recommended literature: " T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook, Wiley, 2011. " J. F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained, Theory, Design and Application, Wiley, 2012. Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=938956 Generated on: 16.04.2015 14:59 23/04/2015 149 16.04.2015 14:59 Module Description SE0001 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0001: Bachelor's Thesis Department MSE Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 12 Total number of hours: 360 Self-study hours: 360 Contact hours: not specified * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Schriftliche Ausarbeitung einer Bachelor's Thesis in deutscher oder englischer Sprache, die von einem Hochschullehrer, der am Studiengang beteiligten Fakultäten ausgegeben und betreut wird. Die Bearbeitungsdauer beträgt 6 Monate. Die schriftliche Ausarbeitung soll sinngemäß folgende Abschnitte enthalten: Einleitung, Problemstellung und Zielsetzung, Theoretische Grundlagen, Methoden, Ergebnisse, Zusammenfassung und Anhang mit Literaturverzeichnis. Details zur Auführung und Bearbeitung sind im "Leitfaden zur Bachlor`s Thesis und Bachelor Prüfung" geregelt (siehe Homepage: http://www.engineering.mse.tum.de/studium/pruefungsangelegenheiten/ ) Exam type: written Exam duration (min.): not specified Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Vor dem Beginn der Bachelor's Thesis müssen mindestens 147 ECTS durch den Studierenden nachgewiesen werden. Contents: Diese Lehrveranstaltung soll dazu dienen, die Studierenden anhand einer vom Betreuer definierten wissenschaftlichen Fragestellung aus den Ingenieurwissenschaften an die wissenschaftliche Arbeitsweise heranzuführen und zum selbstständigen wissenschaftlichen Arbeiten unter Nutzung der Methoden der Ingenieurwissenschaften anzuleiten. Die begleitende schriftliche Ausarbeitung des Studierenden fasst die wesentlichen Aspekte des behandelten Teilgebiets zusammen, diskutiert den entwickelten Lösungsansatz und beschreibt die durch den Studenten erarbeitete Lösung. Die Studierenden müssen bei der Bearbeitung der Bachelor's Thesis die jeweiligen Richtlinien und Standards des betreuenden Lehrstuhls beachten. Study goals: Die Teilnehmer sind nach der Bearbeitung der Bachelor's Thesis in der Lage, sich rasch in Themengebiete einzuarbeiten und innerhalb eines vorgegebenen Zeitrahmens selbstständig wissenschaftliche Fragestellungen zu erarbeiten. Sie haben gelernt, sich mit konkreten Fragestellungen auseinanderzusetzen und deren Lösungsspezifikation in dem Bereich zu verstehen. Sie können eine Lösung realisieren und diese auch präzise beschreiben. Teaching and learning methods: Unter Anleitung eines Betreuers werden die methodischen Grundlagen zur Ausarbeitung einer Bachelor's Thesis 23/04/2015 150 16.04.2015 15:00 Module Description SE0001 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... selbstständig erarbeitet (Messmethoden und Aufbau von Versuchsanlagen bei praktischen Arbeiten, sowie spezifische theoretische Grundlagen und Software bei theoretischen Arbeiten). Die Studierenden lernen zum einen sich selbstständig Informationen zu beschaffen, die für die Erarbeitung des Themas notwendig sind. Zum anderen werden sie angeleitet, ein Laborbuch (Arbeitstagebuch) zu führen. Die Studierenden lernen unter Anleitung ihre wissenschaftliche Fragestellung in einzelne Arbeitspakete zu zerlegen, um unter den gegebenen Rahmenbedingungen ihr Ziel zu erreichen (Projektmanagement). Media formats: Die Studierenden erhalten Zugang zu allen für die Ausarbeitung der jeweils individuellen Bachelor's Thesis erforderlicher Hilfsmittel (Literatur, Messinsturmente und Versuchsanlagen in Laboren und Technika, Rechner und Software) für den geplanten Bearbeitungszeitraum. Literature: Individuell je nach Themengebiet; Eigenrecherche Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=770107 Generated on: 16.04.2015 15:00 23/04/2015 151 16.04.2015 15:00 Module Description SE0001 1 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... Module Description SE0001: Bachelor's Thesis Department MSE Module level: Bachelor Language: German/English Module duration: one semester Occurrence: winter/summer semester Credits*: 12 Total number of hours: 360 Self-study hours: 360 Contact hours: not specified * The number of credits can vary depending on the corresponding SPO version. The valid number is always indicated on the Transcript of Records or the Preformance Record. Description of achievement and assessment methods: Schriftliche Ausarbeitung einer Bachelor's Thesis in deutscher oder englischer Sprache, die von einem Hochschullehrer, der am Studiengang beteiligten Fakultäten ausgegeben und betreut wird. Die Bearbeitungsdauer beträgt 6 Monate. Die schriftliche Ausarbeitung soll sinngemäß folgende Abschnitte enthalten: Einleitung, Problemstellung und Zielsetzung, Theoretische Grundlagen, Methoden, Ergebnisse, Zusammenfassung und Anhang mit Literaturverzeichnis. Details zur Auführung und Bearbeitung sind im "Leitfaden zur Bachlor`s Thesis und Bachelor Prüfung" geregelt (siehe Homepage: http://www.engineering.mse.tum.de/studium/pruefungsangelegenheiten/ ) Exam type: written Exam duration (min.): not specified Possibility Homework: of re-taking: No In the next semester: Yes At the end of the semester: No Lecture: No Conversation: No Written paper: No (Recommended) requirements: Vor dem Beginn der Bachelor's Thesis müssen mindestens 147 ECTS durch den Studierenden nachgewiesen werden. Contents: Diese Lehrveranstaltung soll dazu dienen, die Studierenden anhand einer vom Betreuer definierten wissenschaftlichen Fragestellung aus den Ingenieurwissenschaften an die wissenschaftliche Arbeitsweise heranzuführen und zum selbstständigen wissenschaftlichen Arbeiten unter Nutzung der Methoden der Ingenieurwissenschaften anzuleiten. Die begleitende schriftliche Ausarbeitung des Studierenden fasst die wesentlichen Aspekte des behandelten Teilgebiets zusammen, diskutiert den entwickelten Lösungsansatz und beschreibt die durch den Studenten erarbeitete Lösung. Die Studierenden müssen bei der Bearbeitung der Bachelor's Thesis die jeweiligen Richtlinien und Standards des betreuenden Lehrstuhls beachten. Study goals: Die Teilnehmer sind nach der Bearbeitung der Bachelor's Thesis in der Lage, sich rasch in Themengebiete einzuarbeiten und innerhalb eines vorgegebenen Zeitrahmens selbstständig wissenschaftliche Fragestellungen zu erarbeiten. Sie haben gelernt, sich mit konkreten Fragestellungen auseinanderzusetzen und deren Lösungsspezifikation in dem Bereich zu verstehen. Sie können eine Lösung realisieren und diese auch präzise beschreiben. Teaching and learning methods: Unter Anleitung eines Betreuers werden die methodischen Grundlagen zur Ausarbeitung einer Bachelor's Thesis 23/04/2015 152 16.04.2015 15:00 Module Description SE0001 2 von 2 https://campus.tum.de/tumonline/wbModHBReport.wbGenHTMLFor... selbstständig erarbeitet (Messmethoden und Aufbau von Versuchsanlagen bei praktischen Arbeiten, sowie spezifische theoretische Grundlagen und Software bei theoretischen Arbeiten). Die Studierenden lernen zum einen sich selbstständig Informationen zu beschaffen, die für die Erarbeitung des Themas notwendig sind. Zum anderen werden sie angeleitet, ein Laborbuch (Arbeitstagebuch) zu führen. Die Studierenden lernen unter Anleitung ihre wissenschaftliche Fragestellung in einzelne Arbeitspakete zu zerlegen, um unter den gegebenen Rahmenbedingungen ihr Ziel zu erreichen (Projektmanagement). Media formats: Die Studierenden erhalten Zugang zu allen für die Ausarbeitung der jeweils individuellen Bachelor's Thesis erforderlicher Hilfsmittel (Literatur, Messinsturmente und Versuchsanlagen in Laboren und Technika, Rechner und Software) für den geplanten Bearbeitungszeitraum. Literature: Individuell je nach Themengebiet; Eigenrecherche Responsible for the module: not specified: not specified Courses (Type, SH) Lecturer: not specified (Displayed soon!) For further information about this module and its allocation to the curriculum see: https://campus.tum.de/tumonline/wbModHb.wbShowMHBReadOnly?pKnotenNr=770107 Generated on: 16.04.2015 15:00 23/04/2015 153 16.04.2015 15:00
© Copyright 2024 ExpyDoc