Volume 11 (2014) // Number 5–6 // ISSN 1810-2107 Journal of 2014 Reproductive MedicineNo.5-6 and Endocrinology – Journal für Reproduktionsmedizin und Endokrinologie – Andrology Embryology&MolecularBiology Endocrinology Ethics&Law Genetics GynaecologyContraceptionPsychosomaticMedicineReproductiveMedicineUrology D·I·R Annual 2013 – German IVF-Registry V. Blumenauer, U. Czeromin, K. Fiedler, C. Gnoth, L. Happel, J.-S. Krüssel, M. S. Kupka, A. Tandler-Schneider Options for Fertility Preservation in Cancer Patients R. Dittrich et al. From classical to molecular physiology and back again N. Einer-Jensen, H. F. R. Hunter Official Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, DIR, EFA, OEGRM, SRBM/DGE Member of the www.kup.at/repromedizin Vertriebskennzeichen der Deutschen Post: Y-64238 Preis: EUR 40,– Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz Journal of Reproductive Medicine and Endocrinology Publisher Univ.-Doz. Dr. Dietmar Spitzer IVF-Zentren Prof. Zech A-5020 Salzburg, Austria e-mail: [email protected] Krause & Pachernegg GmbH Verlag für Medizin und Wirtschaft Postfach 21, Mozartgasse 10 A-3003 Gablitz, Austria phone +43/2231/61 258-0 fax +43/2231/61 258-10 www.kup.at/reproduktionsmedizin Embryology and Molecular Biology Chief Editor Prof. Dr. med. Hermann M. Behre Zentrum für Reproduktionsmedizin und Andrologie Universitätsklinikum Halle Martin-Luther-Universität Halle-Wittenberg Ernst-Grube-Str. 40 D-06120 Halle, Germany phone +49/345/557-4782 fax +49/345/557-4788 e-mail: [email protected] Official Organ of the Following Scientific Societies Arbeitsgemeinschaft Reproduktionsbiologie des Menschen (AGRBM) Bundesverband Reproduktionsmedizinischer Zentren Deutschlands (BRZ) Dachverband Reproduktionsbiologie und -medizin (DVR) Deutsche Gesellschaft für Andrologie (DGA) Deutsche Gesellschaft für Gynäkologische Endokrinologie und Fortpflanzungsmedizin (DGGEF) Deutsche Gesellschaft für Reproduktionsmedizin (DGRM) Deutsches IVF-Register (D·I·R) Embryologenforum Austria (EFA) Österreichische Gesellschaft für Reproduktionsmedizin und Endokrinologie (OEGRM) Sektion Reproduktionsbiologie und -medizin der Deutschen Gesellschaft für Endokrinologie (SRBM/DGE) Prof. em. Dr. med. Dr. rer. nat. Henning M. Beier Direktor des Instituts für Anatomie und Reproduktionsbiologie a.D. Institut für Molekulare und Zelluläre Anatomie RWTH Aachen D-52057 Aachen, Germany e-mail: [email protected] Andrology Prof. Dr. med. Hans-Christian Schuppe Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie Universitätsklinikum Gießen u. Marburg GmbH D-35392 Gießen, Germany e-mail: [email protected] Prim. Univ.-Prof. Dr. med. Joerg Keckstein Abteilung für Gynäkologie und Geburtshilfe Landeskrankenhaus Villach A-9500 Villach, Austria e-mail: [email protected] Prof. Dr. med. Michael Ludwig Facharzt für frauenheilkunde und Geburtshilfe Gynäkologische Endokrinologie und Reproduktionsmedizin amedes Zentrum für Endokrinologie – Kinderwunsch – Pränatale Medizin im Barkhof D-20095 Hamburg, Germany e-mail: [email protected] Univ.-Prof. Dr. Gottfried Dohr Institut für Zellbiologie, Histologie und Embryologie Medizinische Universität Graz A-8010 Graz, Austria e-mail: [email protected] Prof. Dr. med. Hans Heinrich van der Ven Abt. für Gynäkologische Endokrinologie und Reproduktionsmedizin Zentrum für Geburtshilfe und Frauenheilkunde Rheinische Friedrich-Wilhelm-Universität D-53105 Bonn-Venusberg, Germany e-mail: [email protected] Endocrinology Contraception Prof. Dr. med. Dr. h. c. mult. Thomas Rabe Universitäts-Frauenklinik D-69120 Heidelberg, Germany e-mail: [email protected] Prim. Dr. Hans Concin Abteilung für Frauenheilkunde und Geburtshilfe Landeskrankenhaus Bregenz A-6900 Bregenz, Austria e-mail: [email protected] Prof. Dr. med. Ludwig Wildt Klinische Abteilung für Gynäkologische Endokrinologie und Reproduktionsmedizin Universitäts-Frauenklinik Innsbruck A-6020 Innsbruck, Austria e-mail: [email protected] Prof. Dr. med. Dr. h. c. mult. Thomas Rabe Universitäts-Frauenklinik D-69120 Heidelberg, Germany e-mail: [email protected] Ethics and Law Prof. Dr. med. Heribert Kentenich Fertility Center Berlin D-14050 Berlin, Germany e-mail: [email protected] Prof. Dr. med. Franz Geisthövel Centrum für Gynäkologische Endokrinologie und Reproduktionsmedizin Freiburg (CERF) D-79098 Freiburg i. Br., Germany e-mail: [email protected] Dr. med. Ulrich Hilland Fertility Center Münsterland D-46399 Bocholt, Germany e-mail: [email protected] Prof. Dr. med. Herbert Zech Institut für Reproduktionsmedizin und Endokrinologie A-6900 Bregenz, Austria e-mail: [email protected] Editors Gynaecology Genetics Psychosomatic Medicine PD Dipl.-Psych. Dr. sc. hum. Tewes Wischmann Universitätsklinikum Heidelberg D-69115 Heidelberg, Germany e-mail: [email protected] Reproductive Medicine Dr. Klaus Bühler Kinderwunsch-Zentrum Ulm & Stuttgart D-70174 Stuttgart, Germany e-mail: [email protected] [email protected] Prof. Dr. med. Wolfgang Urdl Universitätsklinik für Frauenheilkunde Graz A-8010 Graz, Austria e-mail: [email protected] Prof. Dr. Dr. med. Wolfgang Würfel Kinderwunsch Centrum München (KCM) D-81241 München, Germany e-mail: [email protected] CME/DFP PD Dr. med. Tina Buchholz Zentrum für Polkörperdiagnostik, Praxis für Gynäkologie und Genetik, Labor für Reproduktionsgenetik D-80538 München, Germany e-mail: [email protected] Dipl. Med. Jens W. Jacobeit Praxis im Chilehaus Praxis für Andrologie, Endokrinologie und Transsexualität D-20095 Hamburg, Germany e-mail: [email protected] Univ.-Prof. Mag. Dr. Markus Hengstschläger Vorstand des Instituts für Medizinische Genetik Medizinische Universität Wien A-1090 Wien, Austria e-mail: [email protected] Prof. Dr. med. Sabine Kliesch Centrum für Reproduktionsmedizin und Andrologie, Klinische Andrologie Universitätsklinikum Münster D-48149 Münster, Germany e-mail: [email protected] Urology See the entire Editorial Board online: http://www.kup.at/journals/reproduktionsmedizin/editorial.html 234 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Contents D·I·R D·I·R Annual 2013 – German IVF-Registry V. Blumenauer, U. Czeromin, K. Fiedler, C. Gnoth, L. Happel, J.-S. Krüssel, M.S. Kupka, A. Tandler-Schneider 236 Current Reviews Options for Fertility Preservation in Cancer Patients R. Dittrich, L. Lotz, J. Hackl, S. Nichols-Burns, T. Hildebrandt, H. Schneider, I. Hoffmann, M. W. Beckmann 274 From classical to molecular physiology and back again N. Einer-Jensen, H. F. R. Hunter 280 CATEGORIES Mitteilungen der Gesellschaften 286 Medizintechnik 297 Editorial Board 234 Cover Design: Soo-Hee Kim Cover Pictures:Top down: 1. ICSI. Modified with grateful permission from De Geyter C, De Geyter M, Behre HM. Assisted reproduction. In: Nieschlag E, Behre HM, Nieschlag S (eds). Andrology – Male Reproductive Health and Dysfunction. 3rd completely revised and updated ed. Springer Verlag GmbH, Heidelberg, 2010; 2. Embryo in the 8-cell stage. With grateful permission from Lennart Nilsson and Lars Hamberger (Göteborg). Presentation © H. M. Beier (Aachen); 3. Light microscope demonstration of human sperms in the ejaculate. With grateful permission from Lennart Nilsson and Lars Hamberger from the book “Ein Kind entsteht”, Goldmann Verlag, München, and Albert Bonnier Förlag AB, Stockholm. Imprint Official Organ of Following Scientific Societies: • Arbeitsgemeinschaft Reproduktionsbiologie des Menschen (AGRBM) • Bundesverband Reproduktionsmedizinischer Zentren Deutschlands (BRZ) • Dachverband Reproduktionsbiologie und -medizin (DVR) • Deutsche Gesellschaft für Andrologie (DGA) • Deutsche Gesellschaft für Gynäkologische Endokrinologie und Fortpflanzungsmedizin (DGGEF) • Deutsche Gesellschaft für Reproduktionsmedizin (DGRM) • Deutsches IVF-Register (D·I·R) • Embryologenforum Austria (EFA) • Österreichische Gesellschaft für Reproduktionsmedizin und Endokrinologie (OEGRM) • Sektion Reproduktionsbiologie und -medizin der DeutschenGesellschaft für Endokrinologie (SRBM/DGE) Chief Editor: Prof. Dr. med. Hermann M. Behre Zentrum für Reproduktionsmedizin und Andrologie Universitätsklinikum Halle Martin-Luther-Universität Halle-Wittenberg Ernst-Grube-Str. 40, D-06120 Halle, Germany phone +49/345/557-4782, fax +49/345/557-4788 e-mail: [email protected] Publisher’s Office: Krause & Pachernegg GmbH Verlag für Medizin und Wirtschaft Mozartgasse 10, A-3003 Gablitz, Austria phone +43/2231/61 258, fax +43/2231/61 258-10 www.kup.at/repromedizin Production: Krause & Pachernegg GmbH, Dr. Th. Haunold, H. Manz, G. Voss Printers: Ueberreuter Print GmbH A-2100 Korneuburg Industriestraße 1 Deutsche Post: Vertriebskennzeichen Y 64238 Place of Publication: A-3003 Gablitz, Austria Policy: The Journal of Reproductive Medicine and Endocrinology welcomes submission of clinically and research oriented reviews in the fields of andrology, embryology, molecular biology, endocrinology, ethics and law, genetics, gynaecology, contraception, psychosomatic medicine, urology etc. Copyright: All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanic, including photocopy, recording, or any information storage and retrieval system, without written permission from Krause & Pachernegg GmbH. © 2014 Krause & Pachernegg GmbH Authors, editors and publisher do not accept responsibility for any loss or damage arising from actions or decisions based on information contained in this publication: ultimate responsibility for the treatment of patients and interpretation of published material lies with the medical practitioner. Statements and opinions expressed in articles herein are those of the authors and not necessarily those of the editors or publisher. Great care is devoted to the compilation of the articles. Even so, however, errors in data processing cannot always be avoided. In view of this and because developments in medical science advance very quickly, it is recommended that the reader conducts his own independent inquiries and/or research as regards the stated diagnostic methods, measurements of medication dosis etc. The editors and publisher disclaim any responsibility or liability for the correctness of such material and do not guarantee, warrant or endorse any product or service advertised in this publication nor do they guarantee any claim made by the manufacturer of such product or service. Ethical Approval: All original research involving human subjects must be accompanied by evidence of prior ethics committee approval. Authors must supply evidence of informed consent of research participants (patients). The use of general descriptive names, trade names, trademarks etc. in this publication even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 235 Contents Preface D·I·R Annual 2013 – German IVF-Registry V. Blumenauer, U. Czeromin, K. Fiedler, C. Gnoth, L. Happel, J.-S. Krüssel, M.S. Kupka, A. Tandler-Schneider Responsible for this Edition 237 238 Tables Outcome of ART 2013 239 Registry Participants 1982–2013 239 Total Number of Treatment Cycles 2013 240 Number of Ovum Pick-up Cycles (OPC) 1982–2013 240 Number of Treatments 1982–2013 241 Summary of Statistics in Brief 2013 241 Summary of Statistics in Brief 2012 241 D·I·R Statistics in Brief 2013 242 D·I·R Statistics in Brief 2012 243 Clinical Pregnancies (CP), Miscarriages (MISC), Ectopic Pregnancies (EP), and Still Births (SB) 2012 244 Multiple Births 2012 245 Births as a Function of Number of Embryos Transferred and Age Groups 2000–2012 246 Births as a Function of Number of Embryos Transferred and Treatment Method 2000–2012 247 Fertilisation Rate 2013 248 Distribution of Indications 2013 249 IVF and ICSI – Results 2013 250 TESE and Cryo Transfer – Results 2013 251 Cryo Transfer – Results 2013 251 Outcome (Clinical Pregnancy [CP]) as a Function of Female Age 2013 – IVF 252 Outcome (Clinical Pregnancy [CP]) as a Function of Female Age 2013 – ICSI 253 Clinical Pregnancies (CP)/ET as a Function of the Number of Embryos Transferred and Age Groups 2013 254 Clinical Pregnancies (CP)/Fresh Transfer as a Function of Embryo Quality 2013 255 Clinical Pregnancies (CP)/Frozen Transfer as a Function of Embryo Quality 2013 255 Miscarriage (MISC) Rates as a Function of Female Age and Number of Embryos Transferred 2013 256 Clinical Pregnancy Rate (CPR) as a Function of the Stimulation Protocol 2013 257 Mean Age for Women and Men 1997–2013 258 Duration of Unwanted Childlessness Prior to First Treatment 1997–2013 259 Number of all Treatment Cycles per Woman 1997–2013 259 Children Born 1997–2013 – IVF, ICSI, IVF/ICSI 260 Children Born 1997–2013 – Total (IVF, ICSI, IVF/ICSI, Cryo Transfer) 261 Children as a Function of Week of Gestation (WoG) and Birth Weight (BW) 2012 262 Complications as a Function of Ovum Pick-up (OPU) 2013 264 Ovarian Hyperstimulation Syndrome (OHSS) as a Function of the Stimulation Protocol 265 List of D·I·R Registry Participants 2013 Sponsors 236 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 266 273 Preface Annual 2013 – The German IVF-Registry V. Blumenauer, U. Czeromin, K. Fiedler, C. Gnoth, L. Happel, J.-S. Krüssel, M.S. Kupka, A. Tandler-Schneider It is our great pleasure to present the annual report of the data collected by the German IVF-Registry. The Registry looks back onto more than 30 years of data collection, extraction, and evaluation. The great advantage of the German IVFRegistry is the electronic data collection for each initiated treatment cycle since 1996. Meanwhile, more than 1.2 million ART cycles have been documented in the database. The prospective documentation as well as the cycle by cycle data collection are of particular value. In 2013, 130 of the 131 centers organized in the association “D·I·R” had reported their data to the German IVFRegistry by September 18, 2014. 84,051 cycles have been documented. A total of 51,242 women were treated in 2013, resulting in a mean of 1.64 cycles per woman. We are happy to note that despite the grave changes in reimbursement regulations, the number of treatment cycles has increased steadily again. Prof. Dr. med. Jan Krüssel Over all the years, an increase in the pregnancy rate (PR) has been achieved. In 2013, the CPR/ET for IVF treatments was 32.76%; 29.96% after ICSI, and after “Cryo transfer” (frozen-thawed transfer, mostly in the 2-PN stage) 22.19%. These data demonstrate the high quality of reproductive medicine in Germany, arriving at impressive results despite the restrictive legislation: in accordance with the “Embryo Protection Act“ of 1990, the elective single embryo transfer (eSET) is forbidden in Germany. Egg donation is prohibited as well. Cryopreservation is allowed but usually only of 2-PN stage oocytes. Yet the regulation that only a maximum of three embryos may be transferred has certainly led to positive effects. Due to the increasing quality of stimulation, improved oocyte treatment, and changes in transfer technology, the number of transferred embryos has decreased by 20% in fresh cycles since 1997. By transferring no more than an average of 1.87 embryos in fresh cycles, the doctors for reproductive medicine in Germany have continued to adhere to their responsible approach to- Dr. med. Ute Czeromin Chairwoman wards the reduction of multiples! The number of twins was cut back from 1,914 in the year 2012 to 1,487 in 2013; the number of triplets from 61 to 56. This development certainly is among the Registry’s many merits and it will continue to vigorously pursue and support quality assurance of reproductive medicine in Germany. The results of the comprehensive data collection in the German IVF-Registry and its reports have been cited in numerous scientific publications, nationally as well as internationally, lending support and impetus to scientific research. They have furthermore contributed to the continuous improvement of quality within the German centers for reproductive medicine. Medical doctors, biologists, and patients alike have benefited from the tedious work necessary to collect, export and evaluate as well as publish the data. Therefore, we express our gratitude to all involved: Thank you and keep up the good work! Dr. med. Andreas Tandler-Schneider J Reproduktionsmed Endokrinol 2014; 11 (5–6) 237 Responsible for this Edition Deutsches IVF-Register e. V. German IVF Registry Members of the Board Dr. med. U. Czeromin (Chairwoman 2014) Prof. Dr. med. J.-S. Krüssel Dr. med. Andreas Tandler-Schneider (Member of the Board 2014) Curators Dipl.-Biol. V. Blumenauer Dr. med. K. Fiedler PD Dr. med. C. Gnoth Prof. Dr. med. M. Kupka Dr. med. L. Happel Past Chairmen Dr. med. Klaus Bühler (2007–2014) Prof. Dr. med. R. Felberbaum (1995–2007) Prof. Dr. med. H.-K. Rjosk (1992–1995) Prof. Dr. med. F. Lehmann (1982–1992) D·I·R Office Monika Uszkoreit · MRU-Consulting GbR Mommsenstr. 34, 10629 Berlin Fon +49 30 39 800 743 E-Mail: [email protected] Web: www.deutsches-ivf-register.de D·I·R-Data Management W&A – Weise & Associates consulting & technology GmbH Fon +49 211 522948 - 10 Fax +49 211 522948 - 11 E-Mail [email protected] Web: www.weise-associates.de Contact: Stefan Fitzthum, Manager Customer Care and Markus Kimmel, Kimmelnet Mobile: +49 157 383 261 93 E-Mail: [email protected] Web: www.kimmelnet.de Design and Layout a.umi design etc. Dipl.-Des. Soo-Hee Kim Fon +49 176 1250 6007 E-Mail: [email protected] Copyright D·I·R Deutsches IVF-Register® 2014 238 J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables Outcome of ART 2013 Centers for IVF-, ICSI-, and Cryo Transfer Treatments Members of the German IVF-Registry 2013 n = 131 Registry Participants 2013 n = 130 Data Received by Deadline Sep 18 2014 n = 130 Documented Treatment Cycles n = 84,051 (100.00 %) Plausible n = 80,955 (96.32 %) Prospective (all Cycles) n = 69,441 (85.78 %) Prospective (IVF, ICSI, IVF/ICSI) n = 45,375 (82.63 %) Number of Women Treated* n = 51,242 Mean Number of Treatment Cycles per Woman 1.64 Registry Participants 1982 – 2013 IVF-, ICSI- and Cryo Transfer Treatments 1982 1986 1990 [ ... ] 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 IVF 5 28 53 114 118 117 120 118 117 119 121 124 117 128 ICSI 0 0 0 116 120 117 120 118 120 119 124 128 120 129 Cryo 0 0 0 For values from 1991 to 2002 see www.deutsches-ivfregister.de 101 112 109 109 112 112 117 120 125 119 128 Total 5 28 53 116 120 117 121 118 120 121 124 128 120 129** *) Base quantity: Total number of women, including implausible treatment cycles **) 1 Member did not export the 2013 data. Another center had not recorded their cycles for 2013. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 239 D·I·R Annual 2013 – Tables Total Number of Treatment Cycles 2013 IVF, ICSI, IVF/ICSI, Cryo Transfer – Prospective Data IVF ICSI IVF/ICSI Cryo Transfer No Treatment Total n 10,053 34,376 946 19,429 4,637 69,441 % 14.48 49.50 1.36 27.98 6.68 100.00 Number of Ovum Pick-up Cycles (OPU) 1982 – 2013 IVF, ICSI* – Prospective and Retrospective Data IVF ICSI 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 13 20 12 20 11 20 10 20 09 20 08 20 07 20 06 20 05 20 04 20 03 20 02 20 01 20 00 20 99 19 98 19 97 19 96 19 95 19 94 19 93 19 92 19 91 19 90 19 89 19 88 19 87 19 86 19 85 19 84 19 83 19 82 19 IVF 1982 1986 1990 [ ... ] 742 3,806 7,343 For values from 1991 to 2002 see www.deutsches-ivfregister.de ICSI Total** 742 3,806 7,343 2003 2004 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 2006 2007 2008 2009 2010 2011 2012*** 2013 28,058 11,848 11,410 11,082 11,362 11,264 11,585 11,346 11,341 12,047 12,156 51,389 25,339 26,370 28,015 31,452 34,333 36,712 38,463 40,641 38,897 40,952 80,434 37,633 38,382 39,769 43,612 46,431 49,170 50,798 53,076 51,958 54,237 *) OPUs leading to an IVF- and/or ICSI oocyte treatment **) In each case, "Total“ also contains values for IVF/ICSI. For 2013 e.g. 1,129 OPUs ***) Starting in 2012, based on registry participants 2012 ff. 240 2005 D·I·R Annual 2013 – Tables Number of Treatmentà 1982 – 2013 IVF, ICSI, IVF/ICSI, Cryo Transfer – Plausible Data IVF 1982 1986 1990 [ ... ] 742 3,806 7,343 For values from 1991 to 2002 see www. deutsches-ivfregister.de ICSI IVF/ICSI Cryo 2004 2005 2006 2007 2008 2009 2010 2011 2012*** 2013 28,058 11,848 11,098 11,082 11,362 11,264 11,585 11,346 11,341 12,047 12,156 51,389 25,339 25,532 28,015 31,452 34,333 36,712 38,463 40,641 38,897 40,952 987 446 590 672 798 834 873 989 1,094 1,014 1,129 14,265 16,883 14,471 14,926 16,566 17,646 17,866 17,969 19,228 19,293 20,365 None* Total** 2003 11,133 742 4,201 8,653 4,928 4,539 4,600 5,137 5,825 5,946 6,289 6,618 6,117 6,353 105,854 59,448 56,232 59,295 65,316 69,902 72,984 75,056 78,922 77,368 80,955 From 1999 on each initiated cycle is documented. *) No treatment: treatments aborted prior to oocyte culture **) "Total" may contain GIFT cases. Documentation has been neglected since 2005 due to lack of statistical relevance ***) Starting in 2012, based on registry participants 2012 ff. The total for the year 2010 was corrected Summary of Statistics in Brief 2013 – CoD Sep 18 2014 IVF, ICSI and IVF/ICSI – Prospective and Retrospective Data Summary of Statistics in Brief 2012 – CoD Sep 18 2014 IVF, ICSI and IVF/ICSI – Prospective and Retrospective Data J Reproduktionsmed Endokrinol 2014; 11 (5–6) 241 D·I·R Annual 2013 – Tables D·I·R Statistics in Brief 2013 – CoD Sep 18 2014 German IVF Registry 242 J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables D·I·R Statistics in Brief 2012 – CoD Sep 18 2014 German IVF Registry J Reproduktionsmed Endokrinol 2014; 11 (5–6) 243 D·I·R Annual 2013 – Tables Clinical Pregnancies (CP), Miscarriages (MISC), Ectopic Pregnancies (EP), and Still Births (SB) 2012 Prospective and Retrospective Data Birth Rate/Transfer for patients with two embryos transferred and a surplus of at least two 2-PN-stage embryos: IVF 22.04%, ICSI 22.00%, IVF/ICSI 25.36% IVF n ICSI % IVF/ICSI % n 38,897 n Cryo Transfer % 1,014 n % Treatment Cycles 12,047 19,293 Clinical Pregnancies 3,280 100.00 10,286 100.00 328 100.00 3,870 100.00 No Information 572 17.44 1,507 14.65 37 11.28 572 14.78 Live Births 2,142 65.30 7,011 68.16 224 68.29 2,439 63.02 Miscarriages 499 15.21 1,620 15.75 60 18.29 791 20.44 Induced Abort. + Fetal Reduc.* 35 (50) 1.07 155 (243) 1.51 6 (7) 1.83 58 (80) 1.50 Ectopic Pregnancies 67 2.04 148 1.44 7 2.13 68 1.76 Children 2,613 Still Births** 18 Malformations 26 Baby-Take-Home-Rate*** 8,525 0.55 38 0.79 82 275 0.37 4 0.80 6 2,827 1.22 7 1.83 44 18.02 22.09 12.58 18.67 1 18.751 22.931 12.96 1 20.88 2 20.66 2 24.56 2 14.44 2 **) Number of still births in relation to the number of children born ***) Percentage of births per number of treatments ) Total cycles reduced by the number of cycles with unknown pregnancy outcome ) For cycles with unknown pregnancy outcome, the probable birth rate (births/pregnancy) was calculated and added to the number of known births 2 244 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 1.14 17.78 *) Number of cycles in which an induced abortion was documented. A more detailed differeniation cannot be supplied at this time. The brackets contain the number of embryos 1 0.18 D·I·R Annual 2013 – Tables Multiple Births 2012 Prospective and Retrospective Data % Singletons Twins Triplets 100 90 80 70 30 20 10 0 IVF ICSI IVF/ICSI IVF CP/ET n % 3,280 100.00 Cryo ICSI % n % 10,286 100.00 IVF/ICSI % n % 328 100.00 Cryo Transfer % n % 3,867 100.00 % Births 2,142 65.30 100.00 7,011 68.16 100.00 224 68.29 100.00 2,438 63.05 100.00 Singletons 1,685 51.37 78.66 5,543 53.89 79.06 174 53.05 77.68 2,068 53.48 84.82 Twins 443 13.51 20.68 1,422 13.82 20.28 49 14.94 21.88 354 9.15 14.52 Triplets 14 0.43 0.65 46 0.45 0.66 1 0.30 0.45 17 0.44 0.70 Quadruplets 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 No Information 572 17.44 1,507 14.65 37 11.28 570 14.74 Miscarriages 499 15.21 1,620 15.75 60 18.29 791 20.46 EPs 67 2.04 148 1.44 7 2.13 68 1.76 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 245 D·I·R Annual 2013 – Tables Births as a Function of Number of Embryos Transferred and Age Groups 2000 – 2012* IVF, ICSI, IVF/ICSI, Cryo Transfer – Prospective and Retrospective Data Woman´s Age in Years Singletons n < = 24 25 – 29 30 – 34 35 – 39 > = 40 % n Triplets % 1 Embryo 138 100.00 0 0.00 n 0 Quadruplets Total % n % n 0.00 0 0.00 138 2 Embryos 1,617 76.71 482 22.87 9 0.43 0 0.00 2,108 3 Embryos 271 67.75 107 26.75 20 5.00 2 0.50 400 Total 2,026 76.57 589 22.26 29 1.10 2 0.08 2,646 1 Embryo 1,406 95.32 67 4.54 2 0.14 0 0.00 1,475 2 Embryos 15,667 75.62 4,955 23.92 93 0.45 2 0.01 20,717 3 Embryos 2,684 68.71 1,005 25.73 214 5.48 3 0.08 3,906 Total 19,757 75.70 6,027 23.09 309 1.18 5 0.02 26,098 1 Embryo 3,544 96.17 137 3.72 4 0.11 0 0.00 3,685 2 Embryos 32,691 77.49 9,322 22.10 174 0.41 1 0.00 42,188 3 Embryos 7,626 70.83 2,706 25.13 428 3.98 6 0.06 10,766 Total 43,861 77.44 12,165 21.48 606 1.07 7 0.01 56,639 1 Embryo 3,761 96.24 143 3.66 4 0.10 0 0.00 3,908 2 Embryos 24,242 83.11 4,838 16.59 79 0.27 1 0.00 29,160 3 Embryos 10,363 76.72 2,813 20.83 311 2.30 2 0.01 13,489 Total 38,366 82.36 7,794 16.73 394 0.85 3 0.01 46,557 1 Embryo 827 96.27 32 3.73 0 0.00 0 0.00 859 2 Embryos 3,086 90.82 305 8.98 6 0.18 1 0.03 3,398 3 Embryos 2,668 87.02 382 12.46 16 0.52 0 0.00 3,066 Total 6,581 89.87 719 9.82 22 0.30 1 0.01 7,323 Total number of births 2000 – 2012: 139,263 *) Starting in 2012, based on registry participants 2012 ff. 246 Twins J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables Births as a Function of Number of Embryos Transferred and Treatment Method 2000 – 2012* Prospective and Retrospective Data IVF Singletons n % 1 Embryo 2,016 2 Embryos 18,897 3 Embryos 5,966 26,879 76.80 Total Twins n 98.53 Triplets % n Quadruplets Total % n % 0 0.00 0 0.00 2,046 30 1.47 77.98 5,242 21.63 93 0.38 1 0.00 24,233 68.43 2,383 27.33 364 4.17 6 0.07 8,719 7,655 21.87 457 1.31 7 0.02 34,998 ICSI Singletons n Twins % n Triplets % n Quadruplets % n % Total 1 Embryo 4,201 98.50 64 1.50 0 0.00 0 0.00 4,265 2 Embryos 45,371 79.10 11,791 20.56 197 0.34 3 0.01 57,362 3 Embryos 12,640 74.92 3,723 22.07 502 2.98 6 0.04 16,871 Total 62,212 79.25 15,578 19.85 699 0.89 9 0.01 78,498 Cryo Transfer Singletons Twins Triplets % n n % 0.00 0 0.00 2,120 56 0.37 0 0.00 15,070 123 2.04 1 0.02 6,035 0.77 1 0.00 23,225 % 1 Embryo 2,068 97.55 2 Embryos 12,991 86.20 2,023 13.42 3 Embryos 4,653 77.10 1,258 20.85 19,712 84.87 3,333 14.35 179 52 2.45 Total % n Total n Quadruplets 0 *) Starting in 2012, based on registry participants 2012 ff. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 247 D·I·R Annual 2013 – Tables Fertilisation Rate 2013 IVF and ICSI – Prospective Data Embryos per Transfer3 and Children After IVF, ICSI 1997 – 2013 Prospective and retrospective Data IVF ICSI 1997 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011* 2012 2013 Embryos Transf. 2.49 2.25 2.19 2.17 2.15 2.11 2.08 2.08 2.06 2.03 2.01 1.99 1.88 1.87 Children/Transf. 0.21 0.24 0.22 0.23 0.23 0.24 0.25 0.25 0.24 0.24 0.22 0.15 0.24 0.18 Children/Deliv. 1.31 1.27 1.26 1.26 1.25 1.23 1.23 1.24 1.24 1.22 1.24 1.26 1.22 1.27 Embryos Transf. 2.56 2.3 2.21 2.17 2.15 2.11 2.09 2.08 2.08 2.06 2.05 2.02 1.91 1.88 Children/Transf. 0.22 0.24 0.22 0.23 0.23 0.24 0.24 0.24 0.23 0.23 0.22 0.15 0.24 0.17 Children/Deliv. 1.29 1.23 1.23 1.23 1.22 1.22 1.20 1.21 1.22 1.21 1.21 1.22 1.22 1.23 CryoEmbryos Transf. Transfer Children/Transf. 2.34 2.20 2.14 2.12 2.14 2.10 2.10 2.07 2.07 2.05 2.04 2.02 1.78 1.67 0.10 0.12 0.12 0.12 0.12 0.14 0.14 0.14 0.14 0.14 0.14 0.10 0.15 0.12 Children/Deliv. 1.14 1.16 1.16 1.16 1.17 1.16 1.16 1.16 1.15 1.16 1.16 1.18 1.16 1.17 1) In 507 cases no IVF- or ICSI treatment was performed. 149 are cases in which oocytes were recovered but nevertheless a cryo transfer was performed 2) Reason: e.g. immature oocytes or no sperm available 3) Mean *) The obvious discrepancy in the figures results from the incomplete data transfer in 2011 248 J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables Distribution of Indications 2013 IVF and ICSI – Prospective Data IVF Male Factor Normal Female Factor Reduced Semen Quality n % Normal 1,259 Tubal Pathology Endometriosis Other** Total n % n % n % 12.52 721 7.17 828 8.24 2,808 27.93 1,301 12.94 399 3.97 555 5.52 2,255 22.43 573 5.70 198 1.97 331 3.29 1,102 10.96 Hyperandrog./PCO 221 2.20 81 0.81 137 1.36 439 4.37 Ovulatory Dysf. 397 3.95 228 2.27 209 2.08 834 8.30 Psychogen. Factors 4 0.04 1 0.01 3 0.03 8 0.08 Other* 1,096 10.90 274 2.73 822 8.18 2,192 21.80 No Information 17 0.17 10 0.10 388 3.86 415 4.13 3,273 32.56 Total 4,868 48.42 1,912 19.02 10,053 100.00 ICSI Male Factor Female Factor Normal n % Normal 847 2.46 Tubal Pathology 334 0.97 Endometriosis 241 0.70 Hyperandrog./PCO 65 0.19 Reduced Semen Qual. n % 9,882 Azoospermia n % 28.75 959 2.79 1,418 4.12 39 1,270 3.69 37 952 2.77 57 Other** n Total % n % 3,224 9.38 14,912 43.38 0.11 573 1.67 2,364 6.88 0.11 671 1.95 2,219 6.46 0.17 383 1.11 1,457 4.24 Ovulatory Dysf. 157 0.46 1,680 4.89 125 0.36 484 1.41 2,446 7.12 Psychogen. Factors 0 0.00 24 0.07 0 0.00 14 0.04 38 0.11 Other* 503 1.46 4,515 13.13 281 0.82 3,282 9.55 8,581 24.96 No Information 14 0.04 39 0.11 6 0.02 2,300 6.69 2,359 6.86 Total 2,161 6.29 57.54 1,504 4.38 10,931 31.80 34,376 19,780 100.00 *) The indications "sperm antibodies“ and "cervical factor“ are included here **) The indication "pathological function test“ is included here J Reproduktionsmed Endokrinol 2014; 11 (5–6) 249 D·I·R Annual 2013 – Tables IVF and ICSI – Results 2013 Prospective Data IVF 2013 n % Fertilisation % Embryo % IVF 10,053 100.00 Successful Fertilis.* 9,337 92.88 100.00 Minimum 1 Embryo 8,920 88.73 95.53 100.00 Transfer % Clin. Preg. % ET Performed 8,824 87.77 94.51 98.92 100.00 Clin. Pregnancy 2,950 29.34 31.59 33.07 33.43 Birth 1,318 44.68 100.00 Miscarriage 459 15.56 Ectopic Pregnancy 56 1.90 Not Yet Recorded 1,117 37.86 ICSI 2013 Total n Fertilisation % ICSI 34,376 100.00 Successful Fertilis.* 32,713 95.16 100.00 Minimum 1 Embryo 30,923 89.96 94.53 Embryo % Transfer % Clin. Preg. % 100.00 ET Performed 30,710 89.34 93.88 99.31 100.00 Clin. Pregnancy 9,382 27.29 28.68 30.34 30.55 Birth 4,330 46.15 100.00 Miscarriage 1,505 16.04 Ectopic Pregnancy 121 1.29 Not Yet Recorded 3,426 36.52 *) Successful fertilisation of at least one oocyte per cycle 250 % J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables TESE and Cryo Transfer – Results 2013 Prospective Data ICSI/TESE 2013 n % Fertilisation % ICSI 1,996 100.00 Successful Fertilis.* 1,824 91.38 100.00 Minimum 1 Embryo 1,799 90.13 98.63 Embryo % Transfer % Clin. Preg. % 100.00 ET Performed 1,702 85.27 93.31 94.61 100.00 Clin. Pregnancy 462 23.15 25.33 25.68 27.14 100.00 Birth 206 44.59 Miscarriage 66 14.29 Ectopic Pregnancy 8 1.73 Not Yet Recorded 182 39.39 Cryo Transfer – Results 2013 Prospective Data Cryo Transfer 2013 n % Cryo Transfer Cycles 19,429 100.00 PN % Transfer % Clin. Preg. % Thawed PN 17,982 92.55 100.00 ET Performed 17,719 91.20 98.54 100.00 Clin. Pregnancy 3,999 20.58 22.24 22.57 Birth 1,817 45.44 Miscarriage 721 18.03 100.00 Ectopic Pregnancy 68 1.70 Not Yet Recorded 1,393 34.83 *) Successful fertilisation of at least one oocyte per cycle J Reproduktionsmed Endokrinol 2014; 11 (5–6) 251 D·I·R Annual 2013 – Tables Outcome (Clinical Pregnancy (CP)) as a Function of Female Age 2013 Prospective Data IVF 2013 % Clin. Preg./ET Miscarriages/Clin. Preg. % 50 100 45 90 40 80 35 70 30 60 25 50 20 40 15 30 10 20 5 10 0 0 n <=24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 >=44 Years 42 68 140 187 229 286 421 481 513 587 591 656 677 683 669 747 735 389 265 199 259 ET % 33.33 48.53 41.43 40.64 44.98 40.56 38.24 39.71 42.69 41.91 40.10 38.41 35.16 32.94 29.45 27.58 26.12 21.85 18.49 13.57 9.65 CP/ET Oocytes1 Insemin.1 1,092 11.94 11.70 30 – 34 2,932 10.52 35 – 39 3,856 8.49 Age in Years < = 29 OPU ET/OPU % Trans. Embr.1 CP CP/OPU % CP/ET % CP/ET: 2 Embr. transf. + min. 2 2-PN surplus 952 87.18 1.86 400 36.63 42.02 44.35 10.35 2,593 88.44 1.88 1,054 35.95 40.65 43.10 8.34 3,432 89.00 1.90 1,118 28.99 32.58 35.61 40 853 7.01 6.85 735 86.17 1.99 192 22.51 26.12 29.31 41 472 6.28 6.14 389 82.42 1.93 85 18.01 21.85 25.70 42 295 6.01 5.92 265 89.83 1.94 49 16.61 18.49 22.99 43 242 5.83 5.74 199 82.23 2.06 27 11.16 13.57 16.46 44 184 5.11 5.00 149 80.98 1.91 13 7.07 8.72 12.24 45 80 6.63 6.43 73 91.25 2.00 8 10.00 10.96 12.73 >=46 47 3.74 3.60 37 78.72 1.73 4 8.51 10.81 20.00 10,053 8.99 8.83 8,824 87.77 1.90 2,950 29.34 33.43 36.72 Gesamt 1) Mean 252 ET J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables Outcome (Clinical Pregnancy (CP)) as a Function of Female Age 2013 Prospective Data ICSI 2013 % Clin. Preg./ET Miscarriages/Clin. Preg. % 50 100 45 90 40 80 35 70 30 60 25 50 20 40 15 30 10 20 5 10 0 0 n <=24 25 26 27 28 191 248 477 609 873 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1,102 1,412 1,759 2,001 2,210 2,204 2,320 2,348 2,322 2,060 2,292 2,255 1,343 1,092 43 719 >=44 Years 873 ET % 41.36 37.90 40.88 39.24 39.52 41.02 38.60 36.38 36.43 37.96 33.94 32.80 32.58 30.32 28.40 25.70 22.48 18.09 15.75 12.80 6.76 CP/ET Oocytes1 Insemin.1 Age in Years OPU < = 29 3,859 12.44 9.75 30 – 34 10,506 11.15 8.82 35 – 39 12,594 9.06 7.22 2,530 7.51 6.06 40 ET ET/OPU % Trans. Embr.1 CP CP/OPU % CP/ET % CP/ET: 2 Embr. transf. + min. 2 2-PN surplus 3,500 90.70 1.89 1,404 36.38 40.11 42.25 9,586 91.24 1.89 3,501 33.32 36.52 38.43 11,342 90.06 1.90 3,404 27.03 30.01 33.12 2,255 89.13 1.94 507 20.04 22.48 26.05 41 1,521 6.70 5.37 1,343 88.30 1.92 243 15.98 18.09 21.10 42 1,271 6.25 5.02 1,092 85.92 1.93 172 13.53 15.75 18.44 43 899 5.79 4.73 719 79.98 1.89 92 10.23 12.80 14.99 44 552 5.36 4.38 462 83.70 1.82 45 8.15 9.74 13.41 45 309 4.67 3.84 250 80.91 1.85 13 4.21 5.20 7.95 >=46 231 3.77 3.14 161 69.70 1.58 1 0.43 0.62 1.37 34,272 9.54 7.58 89.61 1.89 9,382 27.38 30.55 Gesamt 30,710 33.73 1) Mean J Reproduktionsmed Endokrinol 2014; 11 (5–6) 253 D·I·R Annual 2013 – Tables Clinical Pregnancies (CP)/ET as a Function of the Number of Embryos Transferred and Age Groups 2013 IVF, ICSI, Cryo Transfer – Prospective Data IVF 1 Embryo Age in Years ET < = 24 2 Embryos CP/ET % 3 66.67 ET 3 Embryos CP/ET % 35 34.29 ET Total CP/ET % 2 0.00 ET CP/ET % 40 33.33 25 – 29 107 23.36 803 45.29 25 32.00 935 42.42 30 – 34 327 25.08 2,133 43.06 129 43.41 2,589 40.65 35 – 39 580 18.62 2,446 36.06 379 32.45 3,405 32.58 40 – 44 383 9.40 945 24.13 420 26.27 1,748 21.07 > = 45 32 0.00 47 17.02 28 10.71 107 10.91 Total 1,432 17.67 6,409 37.66 983 30.57 8,824 33.43 ICSI 1 Embryo Age in Years < = 24 ET 2 Embryos CP/ET % 22 ET 3 Embryos CP/ET % 22.73 150 44.67 ET Total CP/ET % ET CP/ET % 12 50.00 184 41.36 25 – 29 383 27.94 2,746 42.33 194 38.66 3,323 40.04 30 – 34 1,284 25.20 7,627 38.79 667 34.33 9,578 36.52 35 – 39 2,063 17.29 7,817 33.74 1,476 29.66 11,356 30.01 40 – 44 1,549 9.21 3,004 21.07 1,316 22.10 5,869 18.04 > = 45 176 0.57 132 4.55 92 7.61 400 3.41 Total 5,477 17.08 21,476 34.76 3,757 27.82 30,710 30.55 Cryo Transfer 1 Embryo Age in Years < = 24 254 ET 2 Embryos CP/ET % 11 0.00 ET 90 3 Embryos CP/ET % 25.56 ET 12 Total CP/ET % 25.00 ET CP/ET % 113 24.22 25 – 29 271 11.55 1,192 29.78 298 26.36 1,761 26.68 30 – 34 982 17.78 4,173 26.30 1,354 28.68 6,509 25.32 35 – 39 1,289 15.16 4,283 23.19 1,386 25.79 6,958 22.18 40 – 44 525 10.10 1,280 14.30 448 18.30 2,253 15.20 > = 45 32 6.25 60 3.33 33 6.06 125 4.58 Total 3,110 14.70 23.88 3,531 24.89 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 11,078 17,719 22.57 D·I·R Annual 2013 – Tables Clinical Pregnancies (CP)/Fresh Transfer as a Function of Embryo Quality 2013 IVF, ICSI, IVF/ICSI – Prospective Data Quality Ideal < = 29 Years Not Ideal ET CP/ET % 30 – 34 Years ET 35 – 39 Years CP/ET % ET CP/ET % > = 40 Years ET Total CP/ET % ET CP/ET % 0 1 79 11.39 272 12.87 484 7.23 545 10.28 1,380 9.78 0 2 258 24.03 813 21.65 885 17.29 350 8.57 2,306 18.26 0 3 20 20.00 67 11.94 117 22.22 92 10.87 296 16.22 1 0 491 31.16 1,465 29.49 2,532 17.14 1,553 12.49 6,041 20.08 1 1 443 34.54 1,236 33.25 1,364 21.77 657 18.72 3,700 26.59 1 2 31 32.26 82 24.39 126 25.40 197 19.80 436 23.17 2 0 3,042 45.38 7,849 42.64 8,057 37.35 3,064 23.20 22,011 38.38 2 1 31 41.94 123 33.33 294 28.23 291 16.49 739 25.03 3 0 157 41.40 574 39.72 1,346 31.72 1,351 24.13 3,428 30.51 4,552 40.63 37.84 15,205 29.57 8,100 18.98 40,337 31.32 Total 12,481 Clinical Pregnancies (CP)/Frozen Transfer as a Function of Embryo Quality 2013 Cryo Transfer – Prospective Data Quality IVF Ideal Not Ideal 0 1 177 7.91 576 10.42 0 2 340 10.00 1,106 13.83 0 3 66 7.58 222 12.16 1 0 602 18.77 2,093 18.16 1 1 482 18.88 1,501 22.45 1 2 83 25.30 236 21.19 2 0 1,651 25.86 5,850 26.62 2 1 110 30.00 668 27.25 3 0 321 29.28 942 26.54 3,832 21.71 Total* ET ICSI CP/ET % ET 13,194 CP/ET % 22.71 *) In 84 cases the preceding treatment was IVF / ICSI; in 609 cases the preceding treatment is unknown. From these 693 cases, an additional 171 pregnancies resulted. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 255 D·I·R Annual 2013 – Tables Miscarriage (MISC) Rates as a Function of Female Age and Number of Embryos Transferred 2013 Prospective Data IVF, ICSI, IVF/ICSI 1 Embryo Age in Years CP < = 24 2 Embryos MISC/CP % 8 37.50 CP MISC/CP % 79 10.13 3 Embryos CP Total MISC/CP % 6 0.00 CP MISC/CP % 93 11.83 25 – 29 140 13.57 1,504 10.04 83 14.46 1,727 10.54 30 – 34 425 13.65 3,999 12.55 285 16.14 4,709 12.87 35 – 39 485 17.73 3,622 16.54 546 17.77 4,653 16.81 40 – 44 190 33.16 836 27.15 400 34.50 1,426 30.01 > = 45 1 0.00 14 21.43 10 80.00 25 44.00 Total 1,249 18.33 10,054 14.82 1,330 22.63 12,633 15.99 Cryo Transfer 1 Embryo Age in Years 256 CP 2 Embryos MISC/CP % CP MISC/CP % 3 Embryos CP Total MISC/CP % CP MISC/CP % < = 24 0 0.00 23 21.74 3 0.00 26 19.23 25 – 29 29 17.24 455 17.36 58 10.34 542 16.61 30 – 34 222 15.77 1,066 17.73 238 18.07 1,526 17.50 35 – 39 241 24.07 969 15.38 271 21.40 1,481 17.89 40 – 44 102 14.71 183 24.04 133 25.56 418 22.25 > = 45 2 0.00 2 50.00 2 0.00 6 16.67 Total 596 18.96 2,698 17.31 705 20.00 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 3,999 18.03 D·I·R Annual 2013 – Tables Clinical Pregnancy Rate (CPR) as a Function of the Stimulation Protocol 2013 Prospective Data IVF u-FSH rec-FSH hMG recLH u. recFSH recLH u. hMG Other* No Info. Total Short GnRHa 3 226 302 32 103 1 2 669 Transfer Rate (%) 100.00 93.78 91.24 91.43 91.96 100.00 100.00 91.77 CP/ET (%) 66.67 28.76 32.12 43.75 20.39 0.00 0.00 29.75 88 1,218 537 175 361 19 4 2,402 Transfer Rate (%) 89.80 88.58 92.91 89.29 93.04 61.29 100.00 89.96 CP/ET (%) 37.50 39.49 33.15 34.29 34.63 36.84 25.00 36.84 20 245 203 64 132 14 161 839 Long GnRHa No GnRHa-Analoga Transfer Rate (%) 86.96 92.11 90.63 98.46 84.08 93.33 72.20 86.23 CP/ET (%) 45.00 35.10 34.48 29.69 34.09 28.57 19.88 31.59 GnRHa-Antagonists 83 2,790 923 517 495 88 18 4,914 Transfer Rate (%) 93.26 86.86 86.97 84.20 86.54 83.81 60.00 86.46 CP/ET (%) 38.55 34.91 28.88 26.89 31.92 31.82 22.22 32.59 194 4,479 1,965 788 1,091 122 185 8,824 u-FSH rec-FSH hMG Other* No Info. Total Total ICSI recLH u. recFSH recLH u. hMG Short GnRHa 27 727 733 87 336 63 21 1,994 Transfer Rate (%) 84.38 90.65 91.51 90.63 98.82 53.39 0.00 90.51 CP/ET (%) 18.52 24.48 23.87 24.14 14.88 17.46 0.00 22.52 139 4,446 1,702 691 1,646 139 21 8,784 Transfer Rate (%) 94.56 93.72 93.16 90.45 91.70 89.68 80.77 92.87 CP/ET (%) 39.57 35.70 31.37 31.69 33.05 30.94 38.10 34.04 38 870 572 147 563 38 624 2,852 Long GnRHa No GnRHa-Analoga Transfer Rate (%) 88.37 89.60 86.14 84.48 83.28 97.44 0.00 83.81 CP/ET (%) 39.47 33.22 31.29 30.61 27.00 42.11 0.00 28.37 GnRHa-Antagonists 148 9,323 2,951 1,957 2,278 325 98 17,080 Transfer Rate (%) 90.24 89.92 89.78 85.76 83.69 89.04 79.03 88.44 CP/ET (%) 26.35 32.97 24.03 29.94 27.88 0.00 16.33 29.62 352 15,366 5,958 2,882 4,823 565 764 30,710 Total *) e.g. u-FSH and hMG, Clomifen/rec-FSH, Clominfen/hMG etc. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 257 D·I·R Annual 2013 – Tables Mean Age for Women and Men 1997 – 2013* IVF, ICSI, IVF/ICSI – Prospective and Retrospective Data n = 757,532 Treatment Cycles with Plausible Age Documentation Age in Years 40.0 38.6 Man 38.4 Woman 38.2 Mean Man 2013: 38.64 38.0 95% Confidence Interval (CI) (e.g. with a probability of 95 %, the mean women´s age is between 32.51 and 32.65 years in 1997) 37.8 37.6 37.4 37.2 37.0 36.8 36.6 36.4 36.2 36.0 35.8 35.6 35.4 35.2 35.0 34.8 Woman 2013: 35.20 34.6 34.4 34.2 34.0 33.8 33.6 33.4 33.2 33.0 32.8 32.6 32.4 32.2 32.0 13 20 12 20 11 20 10 20 09 20 08 20 07 20 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 06 20 4 258 05 20 0 20 03 20 02 20 0 01 20 0 20 99 19 98 19 97 19 *) Starting in 2012, based on registry participants 2012 ff. Year D·I·R Annual 2013 – Tables Duration of Unwanted Childlessness Prior to First Treatment 1997 – 2013* IVF, ICSI, IVF/ICSI – Prospective and Retrospective Data n = 374,725 First Treatments with Known Duration of Unwanted Childlessness Duration of Unwanted Childlessness Prior to First Treatment in Years 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 13 20 12 20 11 20 10 20 09 20 08 20 07 20 06 20 4 05 20 0 20 03 20 02 20 0 01 20 0 20 99 19 98 19 97 19 Year *) Starting in 2012, based on registry participants 2012 ff. Number of all Treatment Cycles per Woman 1997 – 2013* IVF, ICSI, IVF/ET, Cryo ET – Prospective and Retrospective Data, Regardless of the Result n Treatments per Woman n = 477,252 Women 10 9 8 7 6 5 4 3 2 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 % [Proportion of Women with n Treatments] *) Starting in 2012, based on registry participants 2012 ff. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 259 D·I·R Annual 2013 – Tables Children Born 1997 – 2013** Prospective and Retrospective Data IVF, ICSI, IVF/ICSI Singletons Twins Triplets Quadruplets Total n % n % n % n % n 2001 * 6,798 (6,774) 60.89 (61.04) 3,956 (3,919) 35.43 (35.31) 411 (405) 3.68 (3.65) 0 (0) - 11,165 (11,098) 2002 * 7,746 (7,724) 62.59 (62.78) 4,256 (4,210) 34.39 (34.22) 366 (362) 2.96 (2.94) 8 (7) 0.06 (0.06) 12,376 (12,303) 2003 * 10,723 (10,688) 62.13 (62.78) 5,960 (5,866) 34.53 (34.22) 552 (533) 3.20 (2.94) 24 (24) 0.14 (0.14) 17,259 (17,111) 2004 * 5,368 (5,352) 63.69 (62.46) 2,826 (2,801) 33.53 (34.28) 234 (223) 2.78 (3.11) 0 (0) - 8,428 (8,376) 2005 * 5,527 (5,515) 63.84 (63.90) 2,936 (2,906) 33.91 (33.44) 183 (179) 2.11 (2.66) 12 (11) 0.14 (0.13) 8,658 (8,611) 2006 * 5,906 (5,894) 65.50 (64.05) 2,922 (2,890) 32.41 (33.75) 189 (174) 2.10 (2.08) 0 (0) - 9,017 (8,958) 2007 * 6,663 (6,628) 65.45 (64.69) 3,504 (3,471) 33.9. (33.88) 150 (143) 1.45 (1.40) 4 (4) 0.04 (0.04) 10,231 (10,246) 2008 * 6,696 (6,672) 64.09 (64.34) 3,528 (3,481) 33.77 (33.57) 216 (209) 2.07 (2.02) 8 (8) 0.08 (0.08) 10,448 (10,370) 2009 * 7,253 (7,217) 65.89 (66.02) 3,560 (3,523) 32.34 (32.23) 186 (183) 1.69 (1.67) 8 (8) 0.07 (0.07) 11,007 (10,931) 2010 * 6,767 (6,724) 64.42 (64.62) 3,554 (3,507) 33.83 (33.70) 183 (175) 1.74 (1.68) 0 (0) - 10,504 (10,406) 2011 * 6,940 (6,880) 63.64 (63.95) 3,856 (3,832) 35.00 (35.06) 219 (216) 1.98 (1.97) 0 (0) - 11,015 (10,928) 2012 * 7,424 (7,402) 64.53 (64.86) 3,892 (3,828) 33.83 (33.54) 189 (183) 1.64 (1.60) 0 (0) - 11,505 (11,413) 2013 * 5,127 (5,112) 61.45 (61.93) 3,030 (2,974) 36.32 (36.03) 186 (168) 2.23 (2.04) 0 (0) - 8,343 (8,254) *) The values in brackets indicate live births. Totalling 1997 – 2013: 107,134 (103,697) singletons, 58,533 (57,814) twins, 5,497 (5,223) triplets, 88 (85) quadruplets. In total: 171,252 (166,819) **) Starting in 2012, based on registry participants 2012 ff. 260 J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables Children Born 1997 – 2013** Prospective and Retrospective Data Total (IVF, ICSI, IVF/ICSI, Cryo Transfer) Singletons Twins Triplets Quadruplets Total n % n % n % n % n 2001 * 7,795 (7,764) 62.20 (62.33) 4,288 (4,248) 34.21 (34.10) 450 (444) 3.59 (3.56) 0 (0) - 12,533 (12,456) 2002 * 8,930 (8,902) 63.84 (64.02) 4,662 (4,615) 33.33 (33.19) 387 (382) 2.77 (2.75) 8 (7) 0.06 (0.05) 13,987 (13,906) 2003 * 11,922 (11,887) 63.16 (63.48) 6,334 (6,237) 33.55 (33.31) 597 (578) 3.16 (3.09) 24 (24) 0.13 (0.13) 18,877 (18,726) 2004 * 6,891 (6,869) 65.63 (65.81) 3,336 (3,306) 31.77 (31.68) 273 (262) 2.6 (2.51) 0 (0) - 10,500 (10,437) 2005 * 7,038 (7,020) 65.76 (65.93) 3,440 (3,408) 32.14 (32.01) 213 (209) 1.99 (1.96) 12 (11) 0.11 (0.10) 10,703 (10,648) 2006 * 7,419 (7,402) 66.87 (67.14) 3,450 (3,417) 31.10 (30.99) 222 (202) 2.00 (1.83) 4 (4) 0.04 (0.04) 11,095 (11,025) 2007 * 8,407 (8,364) 66.35 (66.45) 4,976 (4,043) 32.17 (32.12) 183 (176) 1.44 (1.40) 4 (4) 0.03 (0.03) 12,670 (12,587) 2008 * 8,444 (8,416) 65.79 (66.07) 4,142 (4,084) 32.27 (32.06) 240 (230) 1.87 (1.81) 8 (8) 0.06 (0.06) 12,834 (12,738) 2009 * 9,016 (8,969) 67.32 (67.42) 4,152 (4,114) 31.00 (30.92) 216 (213) 1.61 (1.60) 8 (8) 0.06 (0.06) 13,392 (13,304) 2010 * 8,619 (8,566) 66.18 (66.35) 4,156 (4,105) 31.91 (31.80) 249 (239) 1.91 (1.85) 0 (0) - 13,024 (12,910) 2011 * 8,839 (8,767) 64.55 (64.03) 4,556 (4,526) 33.27 (33.05) 298 (294) 2.18 (2.15) 0 (0) - 13,693 (13,587) 2012 * 9,498 (9,470) 66.23 (66.50) 4,602 (4,536) 32.09 (31.85) 240 (234) 1.67 (1.64) 0 (0) - 14,340 (14,240) 2013 * 6,744 (6,724) 63.50 (63.95) 3,652 (3,584) 34.38 (34.08) 225 (207) 2.12 (1.97) 0 (0) - 10,621 (10,515) *) The values in brackets indicate live births. Totalling 1997 – 2013: 129,947 (129,810) singletons, 66,326 (65,558) twins, 6,016 (5,828) triplets, 92 (89) quadruplets. In total: 202,381 (201,285) **) Starting in 2012, based on registry participants 2012 ff. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 261 D·I·R Annual 2013 – Tables Children as a Function of Week of Gestation (WoG) and Birth Weight (BW) 2012* Singletons 2012 WoG n < 25 25 26 27 28 29 30 31 32 33 34 35 36 23 7 7 16 18 23 24 33 53 98 158 226 436 1,088 1,924 2,280 1,886 380 950 37 38 39 40 41 > 41 Total 43 8,723 BW Q 25 450 620 800 830 BW Median 550 670 890 925 1,130 1,200 1,450 1,480 1,980 2,200 2,375 2,550 2,840 3,020 3,130 3,270 3,390 3,220 2,980 BW Q 75 650 790 980 1,100 1,320 1,560 1,770 1,920 2,170 2,390 2,680 2,920 3,110 3,420 3,590 3,710 3,860 3,960 3,870 3,660 1,048 1,324 1,492 1,650 1,800 2,167 2,460 2,600 2,835 3,110 3,300 3,410 3,570 3,650 3,400 3,320 Percentiles 2012: p25 = 38th WoG, p50 = 39th WoG, p75 = 40th WoG; Percentiles 1997–2012: p25 = 38th WoG, p50 = 39th WoG, p75 = 40th WoG Proportion of children born before the completion of the 37th WoG: 25.34% Twins 2012 WoG n < 25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Total** 50 24 20 38 48 72 78 114 192 314 392 540 908 916 277 77 10 4,071 905 960 BW Q 25 505 740 830 1,190 1,350 1,490 1,700 1,830 1,990 2,180 2,380 2,510 2,580 2,460 2,840 2,020 BW Median 578 808 927 1,050 1,200 1,365 1,480 1,700 1,880 1,980 2,235 2,400 2,600 2,743 2,800 2,820 2,940 2,430 BW Q 75 700 890 963 1,150 1,320 1,490 1,650 1,820 2,085 2,160 2,420 2,640 2,810 2,980 3,060 3,290 3,000 2,760 Percentiles 2012: p25 = 34th WoG, p50 = 36th WoG, p75 =37th WoG; Percentiles 1997–2012: p25 = 34th WoG, p50 = 36th WoG, p75 = 37th WoG Proportion of children born before the completion of the 37th WoG: 91.03% **) The total contains 1 case with a WoG > 40 Triplets 2012 WoG n 24 25 26 27 28 29 30 31 32 33 34 35 Total*** 0 3 0 15 3 21 24 39 42 48 6 9 210 BW Q 25 - 810 - 840 905 1,100 1,240 1,350 1,490 1,770 1,760 2,110 1,340 BW Median - 850 - 960 1,170 1,440 1,405 1,554 1,730 1,945 1,855 2,430 1,655 BW Q 75 - 860 - 1,025 1,210 1,575 1,590 1,800 1,800 2,150 1,900 2,880 1,900 Percentiles 2012: p25 = 31st WoG, p50 = 32nd WoG, p75 =34th WoG; Percentiles 1997–2012: p25 = 30th WoG, p50 = 32nd WoG, p75 = 33th WoG Proportion of children born before the completion of the 37th WoG: 100.00% ***) The total does not contain a single case of birth weight at gestational week > 35 *) Children with plausible birth weight and week of gestation, using prospective and retrospective data 262 J Reproduktionsmed Endokrinol 2014; 11 (5–6) D·I·R Annual 2013 – Tables Children as a Function of Week of Gestation (WoG) and Birth Weight (BW) 2012* Singletons 2012 n 2,400 2,200 2,100 2,000 1,900 1,800 1,700 1,600 1,500 g 4,000 3,750 3,500 3,250 3,000 2,750 2,500 2,250 2,000 1,750 1,500 1,250 1,000 750 500 250 0 BW 25th , 50th, 75th Percentile WoG 1,400 1,300 1,200 1,100 1,000 900 800 700 600 500 400 300 200 100 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 >41 WoG 0 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 >41 WoG Twins 2012 g BW 25th , 50th, 75th Percentile WoG 3,500 3,250 3,000 2,750 2,500 2,250 2,000 1,750 1,500 1,250 1,000 750 500 250 0 n 900 800 700 600 500 400 300 200 100 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 >41 WoG 0 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 >41 WoG Triplets 2012 g 3,000 2,750 2,500 2,250 2,000 1,750 1,500 1,250 1,000 750 500 250 0 BW 25th , 50th, 75th Percentile WoG n <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 >41 WoG <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 >41 WoG *) Children with plausible birth weight and week of gestation, using prospective and retrospective data J Reproduktionsmed Endokrinol 2014; 11 (5–6) 263 D·I·R Annual 2013 – Tables Complications as a Function of Ovum Pick-up (OPU) 2013 Prospective Data Total OPU´s 46,898 100.00% No Information 1 0.00% No Complications 46,477 99.10% Complications 420 0.90% Complications n % Vaginal Bleeding 234 55.71 Intraabdom. Bleeding 104 24.76 Intestinal Tract Injury 2 0.48 Peritonitis 1 0.24 Hospitalisation 21 5.00 Surgery 35 8.33 Other 23 5.48 Total 264 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 420 100.00 D·I·R Annual 2013 – Tables Ovarian Hyperstimulation Syndrome (OHSS) as a Function of the Stimulation Protocol IVF, ICSI, IVF/ICSI – Prospective Data Stimulation % Oocytes Retrieved OHSS III OHSS III/Stim % Short GnRH 3,272 6.64 7.05 1 0.03 FSH only 1,181 8.17 1 0.03 hMG only 1,291 6.62 0 - FSH + hMG 642 6.21 0 - Other 150 5.79 0 - No Information 8 3.50 0 - Long GnRH 12,954 10.23 50 0.39 FSH only 6,746 11.34 23 0.18 26.27 hMG only 2,638 8.54 3 0.02 FSH + hMG 2,444 9.55 23 0.18 Other 1,105 9.00 0 - No Information 21 7.71 1 0.01 No Analoga 5,764 5.48 3 0.05 FSH only 2,192 6.22 1 0.02 hMG only 1,480 4.70 1 0.02 FSH + hMG 28 5.93 1 0.02 Other 1,409 7.33 0 - No Information 655 0.80 0 - GnRH-Antagonists 27,317 8.86 71 0.26 FSH only 15,003 10.30 50 0.18 11.69 55.40 hMG only 5,088 5.82 2 0.01 FSH + hMG 3,690 7.73 12 0.04 Other 3,409 8.47 7 0.03 No Information 127 3.73 0 - Total 49,307 8.70 125 0.25 100.00 J Reproduktionsmed Endokrinol 2014; 11 (5–6) 265 Registry Participants 2013 Kinderwunschzentrum Dresden Praxisklinik Dr. med. H.-J. Held Dr. med. Hans-Jürgen Held Prager Straße 8a 01069 Dresden T: 0351-50100-0, F: 0351-501400-28 [email protected] www.ivf-dresden.de Gynäkologische Endokrinologie und Reproduktionsmedizin der Universitätsfrauenklinik Dresden Dr. med. Maren Goeckenjan, Prof. Dr. med. Henry Alexander, Constanze Reisenbüchler, Dr. rer. nat. Gudrun Keck Fetscherstraße 74 01307 Dresden T: 0351-4583491, F: 0351-4585351 [email protected] www.uniklinikum-dresden.de/gyn Kinderwunschzentrum Leipzig-Chemnitz Dr. med. Fayez Abu Hmeidan, Dr. med. Petra Jogschies, Dörte Geistert, Laila Shugair Goldschmidtstraße 30 04103 Leipzig T: 0341-141200, F: 0341-1412081 [email protected] www.ivf-leipzig.de Kinderwunschzentrum Praxisklinik City Leipzig Dr. med. Astrid Gabert, Dr. med. Katharina Bauer, Dr. med. Isabel Schwandt, Jana Sonneck, Dr. med. Doreen Marx, Prof. Dr. med. Henry Alexander, Dr. rer. nat. Stefanie Breuer Petersstraße 1 04109 Leipzig T: 0341-215855-0, F: 0341-215855-17 [email protected] www.ivf-city-leipzig.de Universitätsklinikum Halle (Saale) Zentrum für Reproduktionsmedizin und Andrologie Univ.-Prof. Dr. med. Hermann M. Behre, Dr. med. Petra Kaltwaßer, Dr. med. Solveig Köller, Dr. rer. nat. Ewald Seliger, Dr. rer. nat. Thomas Greither Ernst-Grube-Straße 40 06120 Halle (Saale) T: 0345-557-3332, F: 0345-557-4788 [email protected] www.kinderwunsch-halle.de 266 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Klinikum der Friedrich Schiller Universität Jena Klinik für Frauenheilkunde und Geburtshilfe Prof. Dr. med. Ingo Runnebaum, Prof. Dr. med. Jürgen Weiss, Dr. rer. nat. Ines Hoppe Bachstraße 18 07743 Jena T: 03641-933529, F: 03641-933064 [email protected] www.uni-jena.de/ufk Praxis für Fertilität – Kinderwunsch- und Endometriose-Zentrum Berlin Dr. med. Gülden Halis, Dr. med. David J. Peet, Dipl.-Biol. Sonja Zeitler Friedrichstraße 79 10117 Berlin T: 030-8321190-0, F: 030-8321190-19 [email protected] www.fertilitaet.de Zentrum für Reproduktionsmedizin Jena & Erfurt PD Dr. med. habil. Heidi Fritzsche, Dr. med. Andreas Fritzsche Markt 4 07743 Jena Juri-Gagarin-Ring 96–98 99084 Erfurt T: 03641-829610, F: 03641-829681 [email protected] www.kinderwunschnet.de www.kinderwunsch-thueringen.de Wunschkinder Berlin Dr. Björn Horstkamp, PD Dr. Bernd Krause, Dr. Petra Rudolph, Dr. Anja BretschneiderSchwarz, Dr. Bettina Pfüller Uhlandstraße 20–25 10623 Berlin T: 030-880349056, F: 030-880349050 [email protected] www.wunschkinder-berlin.de Kinderwunschzentrum Leipzig-Chemnitz Dr. med. Fayez Abu Hmeidan, Dr. med. Petra Jogschies, Dörte Geistert, Laila Shugair Jakobikirchplatz 4 09111 Chemnitz T: 0371-5034980, F: 0371-50349881 [email protected] www.ivf-chemnitz.de Kinderwunschzentrum Praxisklinik City Leipzig Standort Chemnitz Dr. med. Astrid Gabert, Dr. med. Katharina Bauer, Dr. med. Isabel Schwandt, Jana Sonneck, Dr. med. Doreen Marx, Dr. rer. nat. Stefanie Breuer Flemmingstraße 2a 09116 Chemnitz T: 0371-433130-0, F: 0371-433130-17 [email protected] www.ivf-city-leipzig.de Kinderwunschzentrum am Potsdamer Platz Dr. med. Hanadi Awwadeh, Dr. med. Anja Mutz Leipziger Platz 7 10117 Berlin T: 030-2008950-0, F: 030-2008950-99 [email protected] www.kinderwunsch-potsdamerplatz.de MVZ Praxisklinik Sydow am Gendarmenmarkt GmbH Dr. med. Peter Sydow, Dr. med. Carmen Sydow, Dr. med. Ulrike Bergmann-Hensel, Dr. med. Birgit Bestvater, Dr. med. Wibke Wilkening Kronenstraße 55–58 10117 Berlin T: 030-20626720, F: 030-206267218 [email protected] www.praxisklinik-sydow.de Kinderwunschzentrum Berlin Dr. med. Reinhard Hannen, Dr. med. Christian Friedrich Stoll Landgrafenstraße 14 10787 Berlin T: 030-263983-0, F: 030-263983-99 [email protected] www.kinderwunschzentrum.de Reproduktionsmedizinisches Zentrum im Lützow Center GLC Dr. med. Detlef H. G. Temme Wichmannstraße 5 10787 Berlin T: 030-2309980, F: 030-23099830 [email protected] www.ivf-berlin.de Kinderwunsch am Wittenbergplatz Praxis Dr. med. Rolf Metzger in Praxisgemeinschaft mit Berliner Kinderwunschzentrum Dr. med. Rolf Metzger, Dr. med. Christiane Peters, Rainer Mogalle Tauentzienstraße 6 10789 Berlin T: 030-21962428, F: 030-23607395 [email protected] www.berlin-ivf-praxis.de Kinderwunschzentrum an der Gedächtniskirche Dr. med. Matthias Bloechle, Dr. med. Silke Marr Rankestraße 34 10789 Berlin T: 030-219092-0, F: 030-219092-99 [email protected] www.kinderwunsch-berlin.de D·I·R Annual 2013 – Registry Participants Kinderwunschzentrum FERA im WenckebachKlinikum Dr. med. Andreas Jantke, Dr. med. Anna Stegelmann, Dipl.-Biol. Cornelia Meyer Wenckebachstraße 23 12099 Berlin T: 030-760070130, F: 030-760070160 [email protected] www.kinderwunsch-ivf-berlin.de Kinderwunschzentrum am Innsbrucker Platz Berlin Babette Remberg, Dr. med. Susanne TewordtThyselius, Dr. rer. nat. Thomas Jeziorowski Hauptstraße 65 12159 Berlin T: 030-85757930, F: 030-85757935 [email protected] www.kinderwunschpraxis-berlin.de Praxis für Kinderwunschtherapie Berlin HelleMitte Dr. med. Muna Zaghloul-Abu Dakah, Dr. med. Swetlana Hoffmann Stendaler Straße 24 12627 Berlin T: 030-992779-0, F: 030-99277922 [email protected] www.berliner-kinderwunsch.de Fertility Center Berlin – Auf dem Gelände der DRK Kliniken Westend Prof. Dr. med. Heribert Kentenich, Dr. med. Gabriele Stief, Dr. med. Andreas TandlerSchneider, Dr. med. Anette Siemann, Dr. med. Marina Werling, Dr. rer. nat. Ulrike Montag, Dr. rer. nat. Claus Sibold, Dipl.-Biopharmak. Jacqueline Ulrich Spandauer Damm 130 14050 Berlin T: 030-233208110, F: 030-233208119 [email protected] www.fertilitycenterberlin.de Kinderwunschzentrum Potsdam Dr. med. Kay-Thomas Moeller, Dr. med. Kathleen Linca, Dr. Manzoor Nowshari Babelsberger Straße 8 14473 Potsdam T: 0331-23189292, F: 0331-23189293 [email protected] www.kinderwunsch-potsdam.de Praxiszentrum Frauenheilkunde Rostock PD Dr. med. Heiner Müller, Annette Busecke, Anja Bossow Südring 81 18059 Rostock T: 0381-4401-2030, F: 0381-4401-2031 [email protected] www.ivf-rostock.de amedes experts Facharzt-Zentrum für Kinderwunsch, Pränatale Medizin, Endokrinologie und Osteologie Hamburg Prof. Dr. med. Michael Ludwig, Prof. Dr. med. Frank Nawroth, Dr. med. Sabine Neubeck, PD Dr. med. Barbara Sonntag, Dr. med. Astrid Dangel, Prof. Dr. med. Klaus Diedrich, Prof. Dr. med. Christoph Dorn, Dr. med. Cathrin Grave, Dr. med. Ines Doll, Dr. med. Ute Hugo, Dr. rer. nat. Beatrice Maxrath Mönckebergstraße 10 20095 Hamburg T: 0800-5891688, F: 040-380708310 [email protected] www.amedes-experts-hamburg.de MVZ Fertility Center Hamburg GmbH Prof. Dr. med. Klaus Rudolf, Dr. med. (IL) Robert Fischer, Dr. med. Kay Christian Löbbecke, Dr. med. Urte Reinhardt, Prof. Dr. med. Wolfgang Schulze, Dr. med. Katja Schwenn Speersort 4 20095 Hamburg T: 040-30804400, F: 040-30804952 [email protected] www.kinderwunsch-hamburg.de Kinderwunschzentrum Altonaer Straße im Gynaekologicum Hamburg Dr. med. Annick Horn, Dr. med. Wolf Michel, Dr. med. Tim Cordes, Prof. Dr. med. Markus S. Kupka Altonaer Straße 59 20357 Hamburg T: 040-306836-0, F: 040-306836-69 [email protected] www.ivf-hamburg.de KinderwunschZentrum Hafencity Hamburg Dr. med. Ekbert Göhmann, Dr. med. Thomas Krämer Überseeallee 1 20457 Hamburg T: 040-30088-100, F: 040-30088-1010 [email protected] www.kinderwunsch-hafencity.de Kinderwunsch Praxisklinik Fleetinsel Hamburg Tip/Dr. univ. Ist. Semsettin E. Koçak, Dr. med. Peter List, Cemile Ballnus, Dr. rer. nat. Uwe Weidner Admiralitätsstraße 4 20459 Hamburg T: 040-38605553, F: 040-38605551 [email protected] www.kinderwunschzentrum-hamburg.de MVZ Endokrinologikum Hamburg – Zentrum für Hormon- und Stoffwechselerkrankungen, Reproduktionsmedizin und Pränatale Medizin Prof. Dr. med. Christoph Keck, PD Dr. med. Michael Graf, Dr. med. Tina Osterholz-Zaleski, Dr. med. Raquel Pozo Ugarte, PD Dr. med. Sabine Segerer, Dr. med. Nina Wegmann, Dr. rer. nat. Birthe Nitz, Nicole Becker Lornsenstraße 4–6 22767 Hamburg T: 040-30628200, F: 040-30628349 [email protected] www.endokrinologikum.com Universitäres Kinderwunschzentrum Lübeck und Manhagen Zentrum für Gynäkologische Endokrinologie und Reproduktionsmedizin am Universitätsklinikum Schleswig-Holstein Universitäre Kinderwunschzentren GmbH Prof. Dr. med. Georg Griesinger, M. Sc., PD Dr. med. Askan Schultze-Mosgau, Dr. med. Marion Depenbusch Ratzeburger Allee 111–125 23562 Lübeck T: 0451-505-778-10, F: 0451-505-778-299 [email protected] www.kinderwunsch-luebeck.de fertilitycenterkiel Dr. med. Martin Völckers, Dr. med. Nevin Inan Prüner Gang 15 24103 Kiel T: 0431-9741333, F: 0431-9741322 [email protected] www.fertilitycenter.de Universitäres Kinderwunschzentrum Kiel PD Dr. med. Sören von Otte, Dr. med. Andreas Schmutzler, Dr. rer. nat. Heike Eckel Arnold-Heller-Straße 3, Haus 24 24105 Kiel T: 0431-5978877, F: 0431-5978878 [email protected] www.uksh.de/kinderwunsch-kiel KinderwunschKiel Dr. med. Kurt Brandenburg, Dr. med. Angela Carstensen, Dr. med. Kirsten Schem, Dr. sc. agr. Annette Bonhoff Im Brauereiviertel 5 24118 Kiel T: 0431-553433, F: 0431-5192745 [email protected] www.kinderwunschkiel.de Team Kinderwunsch Oldenburg Dr. med. Saif Jibril, Dr. med. Gerhard Pohlig Leo-Trepp-Straße 5 26121 Oldenburg T: 0441-2489091, F: 0441-2480611 [email protected] www.teamkinderwunsch.de J Reproduktionsmed Endokrinol 2014; 11 (5–6) 267 D·I·R Annual 2013 – Registry Participants Tagesklinik Oldenburg – Zentrum für Kinderwunschbehandlung Dr. med. Jörg Hennefründ, Dr. med. Heike Boppert, Dr. med. Michael Heeder Achternstraße 21 26122 Oldenburg T: 0441-922700, F: 0441-9227028 [email protected] www.tagesklinik-oldenburg.de Kinderwunschzentrum Ostfriesland Dr. med. Grita Hasselbach, Dr. rer. nat. Isabell Motsch Hafenstraße 6d 26789 Leer (Ostfriesland) T: 0491-45425-0, F: 0491-45425-10 [email protected] www.kinderwunschostfriesland.de Kinderwunsch Bremen Dr. med. Achim von Stutterheim, Tanja Finger, Dr. med. Anjarasoa Jung Emmastraße 220 28213 Bremen T: 0421-224910, F: 0421-2249122 [email protected] www.kinderwunschbremen.de BZF-Bremer Zentrum für Fortpflanzungsmedizin Dr. med. Olaf Drost, Prof. Dr. med. Ernst Heinrich Schmidt, Dr. sc. hum. Martin Pinteric Gröpelinger Heerstraße 406–408 28239 Bremen T: 0421-6102-1212, F: 0421-6102-1213 [email protected] www.icsi.de Team Kinderwunsch Hannover Dr. med. Nabil Saymé, PD Dr. med. Ulrich A. Knuth, Dipl.-Biol. T. Krebs Brühlstraße 19 30169 Hannover T: 0511-313095, F: 0511-313096 [email protected] www.team-kinderwunsch-hannover.de Medizinische Hochschule Hannover Bereich Gynäkologische Endokrinologie und Reproduktionsmedizin, OE 6410 Dr. med. Cordula Schippert, Dr. med. Guillermo-José Garcia-Rocha, PD Dr. Frauke von Versen-Höynck Carl-Neuberg-Straße 1 30625 Hannover T: 0511-532-6099, F: 0511-532-6094 [email protected] www.mh-hannover.de/11327.html Kinderwunschzentrum Langenhagen & Wolfsburg MVZ Ärztlicher Leiter: Dr. med. Thilo Schill Ostpassage 9 30853 Langenhagen Sauerbruchstraße 7 38440 Wolfsburg T: 0511-972300, F: 0511-9723018 [email protected] www.kinderwunsch-langenhagen.de 268 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Zentrum für Reproduktionsmedizin und Humangenetik Dr. med. Franz-J. Algermissen, Dr. med. Georg Wilke, Dr. med. Notker Graf, Dr. med. Natascha Peper Gartenstraße 18–20 31141 Hildesheim T: 05121-20679-30, F: 05121-20679-11 [email protected] www.kinderwunsch-hildesheim.de Zentrum für Kinderwunschbehandlung und pränatale Medizin Dr. med. Dipl.-Biochem. Onno Buurman, Dr. med. Michael Dumschat, Dr. med. Ralf Menkhaus Simeonsplatz 17 32423 Minden T: 0571-972600, F: 0571-9726099 [email protected], [email protected] www.kinderwunsch.net Praxisklinik Prof. Volz Prof. Dr. med. Joachim Volz, PD Dr. med. Stefanie Volz-Köster Adenauer Platz 7 33602 Bielefeld T: 0521-9883060, F: 0521-98830622 [email protected] www.frog.de.com Bielefeld Fertility-Center – Zentrum für Reproduktionsmedizin und Gynäkologische Endokrinologie Paul A. Ebert, Dr. med. Karl Völklein, Beata Szypajlo, Dr. med. Wiebke Rübberdt, Dr. med. Beate Harms Werther Straße 266 33619 Bielefeld T: 0521-101005, F: 0521-101079 [email protected] www.kinderwunsch-bielefeld.de MVZ für Reproduktionsmedizin am Klinikum Kassel Dr. med. Marc Janos Willi, Dr. med. Oswald Schmidt, Prof. Dr. (UBsAs) Miguel J. Hinrichsen Mönchebergstraße 41–43, Haus F 34125 Kassel T: 0561-980-2980, F: 0561-9802981 [email protected] www.kinderwunsch-kassel.de RepKo – Reproduktionsmedizinisches Kompetenzzentrum am Universitätsklinikum Gießen & Marburg GmbH PD Dr. med. Volker Ziller, Prof. Dr. med. Uwe Wagner Baldingerstraße 35043 Marburg T: 06421-58-61330, F: 06421-5867070 Klinikstraße 33 35392 Gießen T: 0641-98545207, F: 0641-98557099 www.repko-ukgm.de Kinderwunschzentrum Mittelhessen Dr. med. Amir Hajimohammad, Berthold Oels Sportparkstraße 9 35578 Wetzlar T: 06441-2002020, F: 06441-20020299 [email protected] www.ivf-mh.de gyn-medicum Zentrum für Kinderwunsch Dr. med. Monica Tobler, Dr. med. Andreas Schmutzler, Dr. sc. agr. Manuela RopeterScharfenstein Waldweg 5 37073 Göttingen T: 0551-41337, F: 0551-41722 www.gyn-medicum.de Kinderwunschzentrum Göttingen Dr. med. Rüdiger Moltrecht, Dr. med. Sabine Hübner, Dr. med. Thomas Welcker, Dr. rer. nat. Stephanie Mittmann, Dr. med. Peter Schulzeck, Dr. med. Filiz Sakin-Kaindl Kasseler Landstraße 25a 37081 Göttingen T: 0551-99888-0, F: 0551-99888-99 [email protected] www.kiwu-goettingen.de Kinderwunschzentrum Magdeburg Dr. med. Ingrid Nickel, Dr. med. Evelyn Richter, Dipl. Biol. Katrin Pribbernow Ulrichplatz 1 39104 Magdeburg T: 0391-662489-0, F: 0391-662489-29 [email protected] www.kinderwunschzentrum-magdeburg.de Otto-von Guericke-Universität Magdeburg Universitätsklinik für Reproduktionsmedizin Prof. Dr. med. Prof. h. c. Jürgen Kleinstein, Carina Strecker, Dr. rer. nat. Katja Seidel Gerhart-Hauptmann-Straße 35 39108 Magdeburg T: 0391-6717390, F: 0391-6717389 [email protected] www.krep.ovgu.de Kinderwunsch-Kö Dr. med. Martina Behler, Tanja Emde Königsallee 63–65 40215 Düsseldorf T: 0211-3113550, F: 0211-31135522 [email protected] www.kinderwunsch-koe.de Interdisziplinäres Kinderwunschzentrum Düsseldorf MVZ GmbH Dr. Michael C. W. Scholtes, Ph. D., Dipl. med. Kersten Marx, Prof. Dr. med. Stefan Kißler, Dr. med. Petra Hubert, Dr. med. Selma Yildirim-Assaf, Katja Neldner, Dr. med. Ingrid Hass-Wenzel, Dr. med. Werner H. Fabry, Dr. Dipl.-Biol. Ralf Böhm Völklinger Straße 4 40219 Düsseldorf T: 0211-90197-0, F: 0211-9019750 [email protected] www.kids4nrw.de D·I·R Annual 2013 – Registry Participants UniKiD – Universitäres interdisziplinäres Kinderwunschzentrum Düsseldorf Prof. Dr. med. Jan-Steffen Krüssel, Dr. med. Nina Bachmann, Dr. med. Daniel Fehr, M.Sc., Dr. med. Tanja Freundl-Schütt, PD Dr. med. Alexandra Hess, Dr. med. Barbara MikatDrozdzynski, Dr. med. Andrea Schanz, Sonja Schu, Dr. rer. nat. Jens Hirchenhain, Dr. rer. nat. Dunja M. Baston-Büst Moorenstraße 5 40225 Düsseldorf T: 0211-8104060, F: 0211-811-6787 [email protected] www.unikid.de novum – Zentrum für Reproduktionsmedizin Essen – Duisburg Prof. Dr. med. Thomas Katzorke, Dr. med. Susanne Wohlers, Najib N. R. Nassar, Dr. med. Sylvia Bartnitzki, Prof. Dr. med. Peter Bielfeld Akazienallee 8–12 45127 Essen T: 0201-29429-0, F: 0201-29429-14 Ärzteforum in der Tonhallenpassage Friedrich-Wilhelm-Straße 71 47051 Duisburg T: 0203-713958-0, F: 0203-713958-15 [email protected] www.ivfzentrum.de pro-Kindwunsch – Kinderwunschzentrum Niederrhein Dr. med. Georg M. Döhmen, Dr. med. Thomas Schalk, Dr. rer. nat. Ezzaldin Alazzeh Von-Groote-Straße 175 41066 Mönchengladbach T: 02161-49686-0, F: 02161-49686-19 Melanchthonstraße 36 47805 Krefeld T: 02151-150231-0, F: 02151-150231-1 [email protected] www.pro-kindwunsch.de REProVita – Kinderwunschzentrum Recklinghausen Dr. med. Cordula Pitone Hertener Straße 29 45657 Recklinghausen T: 02361-904188-0, F: 02361-904188-41 [email protected] www.reprovita.de green-ivf – Grevenbroicher Endokrinologie- & IVF-Zentrum Dr. med. Kerstin Friol, PD Dr. med. Christian Gnoth, Dr. med. Therese Skonieczny Rheydter Straße 143 41515 Grevenbroich T: 02181-4915-13, F: 02181-4915-34 [email protected] www.green-ivf.de Bergisches Kinderwunschzentrum Remscheid Dr. med. Johannes Luckhaus, Dr. med. Anke Beerkotte Elberfelder Straße 49 42853 Remscheid T: 02191-79192-0, F: 02191-79192-39 [email protected] www.kinderwunsch-remscheid.de Überörtliche Berufsausübungsgemeinschaft der Kinderwunschzentren Dortmund, Siegen, Dorsten GbR Prof. Dr. med. Stefan Dieterle, Dr. med. Andreas Neuer, Prof. Dr. med. Robert Greb, Dr. med. Katharina Möller-Morlang, Dr. med. Thomas von Ostrowski Olpe 19 44135 Dortmund T: 0231-557545-0, F: 0231-55754599 Hermelsbacher Weg 41 57072 Siegen T: 0271-7701810, F: 0271-77018129 Südwall 15 46282 Dorsten T: 02362-27001, F:02362-27002 [email protected] www.kinderwunschzentrum.org Kinderwunschpraxis Gelsenkirchen Dr. med. Ute Czeromin, Dr. med. Ina WalterGöbel, Dr. med. Kathrin Fißeler Munscheidstraße 14 45886 Gelsenkirchen T: 0209-167-1470, F: 0209-167-1471 [email protected] www.kinderwunsch-gelsenkirchen.de FCM Fertility Center Münsterland Dr. med. Ulrich Hilland Crispinusstraße 12 (am Europaplatz) 46399 Bocholt T: 02871-23943-43, F: 02871-23943-44 [email protected] www.fcm-net.de Kinderwunschpraxis an der Promenade Mempel & Stratmann Dr. med. Andrea Mempel, Susanne Stratmann, Dr. rer. nat. Melanie Rickert-Föhring Von-Vincke-Straße 14 48143 Münster T: 0251-414312-0, F: 0251-414312-20 [email protected] www.kinderwunsch-promenade.de MVZ Kinderwunsch- und Hormonzentrum Münster GmbH Dr. med. Dr. rer. nat. Lutz Belkien, Dr. med. Caroline Niehoff, Prof. Dr. med. Axel Kamischke, Dr. med. Juliane Burchard Hötteweg 5–7 48143 Münster T: 0251-48267-0, F: 0251-48267-77 [email protected] www.kinderwunschtherapie.de UKM Kinderwunschzentrum Universitätsklinikum Münster PD Dr. med. Andreas Schüring, Prof. Dr. med. Sabine Kliesch Albert-Schweitzer-Campus 1, Gebäude D11 48149 Münster T: 0251-8358280, F: 0251-8348267 [email protected] www.kinderwunschzentrum.uk-muenster.de Zentrum für Kinderwunschbehandlung Osnabrück/Nordhorn Irene Coordes, Dr. med. Manfred Schneider Rheiner Landstraße 93–95 49078 Osnabrück Osnabrücker Straße 1 48529 Nordhorn T: 0541-404500, F: 0541-4045040 [email protected] www.kinderwunsch123.de GMP Frauenheilkunde & Reproduktionsmedizin Dr. med. Dieter Struller, Dr. med. Christof Etien Graf-Salm-Straße 10 50181 Bedburg, Erft T: 02272-7778, F: 02272-7773 [email protected] www.kinderwunsch-erft.de MVZ PAN Institut für Endokrinologie und Reproduktionsmedizin Dr. med. Stefan Palm, Dr. med. Irene Pütz, Dr. med. Mirko Dannhof, PD Dr. med. Dolores Foth, Dipl. Psych. Anika Nöllgen, Dipl. Psych. Andrea Gilles, Dr. med. Georg Mansmann, PD Dr. med. Torsten Schmidt, Prof. Dr. med. Martina Breidenbach, Dr. med. Sigrid Gerards, Dr. med. Jürgen Laser, Dr. rer. nat. Bastian Schäferhoff, Dr. rer. nat. Maike Warnstedt, Dana Gonzalez M. B. Zeppelinstraße 1 Neumarkt Galerie 50667 Köln T: 0221-2776-229, F: 0221-2776-201 [email protected] www.mvz-pan-institut.de Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe der Universität zu Köln Gynäkologische Endokrinologie und Reproduktionsmedizin Prof. Dr. med. Peter Mallmann, PD Dr. med. Gohar Rahimi, Dr. rer. nat. Evgenia Isachenko Kerpener Straße 34 50931 Köln T: 0221-478-87550, F: 0221-478-86201 [email protected] www.frauenklinik.uk-koeln.de/reproduktionsmedizin-kryokonservierung MVZ Amedes für IVF und Pränatalmedizin Dr. med. Markus Merzenich Schönhauser Straße 3 50968 Köln T: 0221-340307-0, F: 0221-340307-77 [email protected] www.kinderwunschzentrum-koeln.de J Reproduktionsmed Endokrinol 2014; 11 (5–6) 269 D·I·R Annual 2013 – Registry Participants Zentrum für Kinderwunschbehandlung Köln Eva Schwahn Schönhauser Straße 3 50968 Köln T: 0221-3402280, F: 0221-3406017 [email protected] www.wunschkind-koeln.de Kinderwunschzentrum Aachen Dr. med. Klaus Grunwald Kasernenstraße 25 52064 Aachen T: 0241-99774141, F: 0241-99774144 [email protected] www.kinderwunsch-aachen.de Klinik für Gynäkologische Endokrinologie und Reproduktionsmedizin Uniklinik – RWTH Aachen Prof. Dr. med. Joseph Neulen, Dr. med. Benjamin Rösing Pauwelsstraße 30 52074 Aachen T: 0241-8088971, F: 0241-8082518 [email protected] www.gyn-endokrinologie.ukaachen.de Universitätsklinikum Bonn – Gynäkologische Endokrinologie und Reproduktionsmedizin Prof. Dr. med. Hans H. van der Ven, Prof. Dr. med. Katrin van der Ven, Dr. med. Ulrike Bohlen, Dr. med. Marietta Kühr, Dipl. hum. biol. Jana Liebenthron Sigmund-Freud-Straße 25 53127 Bonn T: 0228-287-19186, F: 0228-28715795 [email protected] www.kinderwunsch-uni-bonn.de Praxisklinik für Gynäkologische Endokrinologie und Reproduktionsmedizin PD Dr. Dr. med. Gernot Paul Prietl, Dr. med. Monika Prietl, Dr. med. Peter Henschen Theaterplatz 18 53177 Bonn-Bad Godesberg T: 0228-3503910, F: 0228-364892 [email protected] Kinderwunsch Praxisklinik Trier Dr. med. Mohsen Satari, Prof. Dr. med. Jürgen P. Hanker Wissenschaftspark (WIP) Max-Planck-Straße 15 54296 Trier T: 0651-97906-0, F: 0651-97906-20 [email protected] www.kinderwunsch-trier.de Kinderwunsch Zentrum Mainz Dr. med. Robert Emig, Dr. med. Christine Molitor, Prof. Dr. med. Thomas Steck Fort Malakoff Park Rheinstraße 4 55116 Mainz T: 06131-603020, F: 06131-6030210 [email protected] www.kinderwunschzentrum-mainz.de 270 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Kinderwunschzentrum der Universitätsmedizin Mainz Prof. Dr. Rudolf Seufert M. Sc., Dr. Ruth Gomez, Dr. Ch. Haidner Langenbeckstraße 1 55101 Mainz T: 06131-173929 [email protected] www.wunschkind-mainz.de Kinderwunschzentrum Mittelrhein Dr. med. Josef Beran, Dr. med. Sebastian Hagelauer, Dr. med. Birgit Müller, Özgül Duman, Dr. Valentina Alupei Marktstraße 83 56564 Neuwied Viktoriastraße 15 56068 Koblenz T: 02631-3968-0, F: 02631-3968-29 [email protected] www.kinderwunsch-mittelrhein.de repromedicum Kinderwunschzentrum Reproduktionsmedizin – Gyn. Endokrinologie Prof. Dr. med. Dr. med. habil. Ernst Siebzehnrübl, Dr. med. Anja Weidner Hanauer Landstraße 328–330 60314 Frankfurt am Main T: 069-4260770, F: 069-42607710 [email protected] www.repromedicum.de Kinderwunschzentrum Frankfurt Prof. Dr. med. Prof. h. c. Eberhard Merz, Dr. med. Marie-Theres Swayze, Ines Voß, Dr. Claas Mehnert Steinbacher Hohl 2–26, Haus 2 60488 Frankfurt am Main T: 069-7601-3611, F: 069-76013321 [email protected] www.kinderwunschzentrumfrankfurt.de Fertilitätszentrum und Gynäkologische Endokrinologie – Klinik für Frauenheilkunde und Geburtshilfe Goethe-Universität Dr. med. Nicole Sänger, Dr. med. Annette Bachmann, Dr. Anna Michaelis Theodor-Stern-Kai 7 60590 Frankfurt am Main T: 069-6301-5708, F: 069-6301-7120 [email protected] www.kgu.de/zfg/gyn Kinderwunsch- und Endometriosezentrum am Büsing Park Dr. med. Konstantin Manolopoulos, Dr. med. Birgit Lühr, Daniela Chemogo, Dr. med. Meral Gündüz Herrnstraße 51 63065 Offenbach T: 069-80907571, F: 069-80907573 [email protected] www.offenbach-kinderwunsch.de Kinderwunschzentrum Darmstadt Dr. med. Aysen Bilgicyildirim, Dr. med. Matthias Inacker, Prof. Dr. med. Gerhard Leyendecker Bratustraße 9 64293 Darmstadt T: 06151-50098-0, F: 06151-50098500 [email protected] www.kinderwunschzentrum-da.de MVZ Kinderwunschzentrum Wiesbaden GmbH Dr. med. Martin Schorsch, Dr. med. Thomas Hahn, Dr. med. Geza Adasz, Karin Schilberz, Dr. med. Michael Amrani Mainzer Straße 98–102 65189 Wiesbaden T: 0611-976320, F: 0611-9763210 [email protected] www.kinderwunschzentrum-wiesbaden.de Kinderwunsch-Praxis IVF-Saar SaarbrückenKaiserslautern Dr. med. Lars Happel, Andreas Giebel, Dr. med. Sascha Tauchert, Dr. med. Anette Russu, Dr. med. Marika Otte, Dr. rer. medic. Martin Greuner Europaallee 15 66113 Saarbrücken T: 0681-93632-0, F: 0681-93632-10 Maxstraße 13 67659 Kaiserslautern T: 0631-70431, F: 0631-78568 [email protected] www.ivf-saar.de Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin – Universitätskliniken des Saarlandes Prof. Dr. med. E.-F. Solomayer, Dr. med. Peter Rosenbaum, Prof. Dr. Dr. M. E. Hammadeh, Dr. med. Kathrin Abel, Dr. med. Daniel Benndorf, Dr. med. Peter Jankowski, Dr. med. Simona Moga Kirrbergstraße 1 66421 Homburg T: 06841-1628213, F: 06841-1628061 [email protected] www.uniklinikum-saarland.de/einrichtungen/ kliniken_institute/frauenklinik/ Kinderwunschzentrum Ludwigshafen Dr. med. Tobias Schmidt, Dr. med. Elena Hartschuh, Dr. med. Claudia Schmidt, Dr. rer. nat. Nicole Hirschmann Ludwigstraße 54b 67059 Ludwigshafen T: 0621-59298688, F: 0621-59298690 [email protected] www.kinderwunschzentrum-ludwigshafen.de Kinderwunschzentrum der Universitätsmedizin Mannheim Prof. Dr. med. Marc Sütterlin, Dr. med. Regine Schaffelder, Dr. med. Julia Rehnitz, Dr. med. Jade Mayer, Dr. sc. hum. Monika Gentili Theodor-Kutzer-Ufer 1–3 68167 Mannheim T: 0621-383-3638, F: 0621-383-3814 [email protected] www.umm.de/64.0.html D·I·R Annual 2013 – Registry Participants Viernheimer Institut für Fertilität PD Dr. med. S. Volz-Köster, Dr. med. C. Nell Walter-Gropius-Allee 2 68519 Viernheim T: 06204-918290, F: 06204-9182910 [email protected] www.vif-kinderwunsch.de Kinderwunschzentrum Heidelberg Dr. med. Waltraud Parta-Kehry, Dr. sc. hum. Suat Parta, Friederike Tesarz, Dr. med. Daniela Seehaus, Dr. med. Christina Thöne Römerstraße 3 69115 Heidelberg T: 06221-89300-0, F: 06221-89300-20 [email protected] www.kwz-hd.de Abt. für Gynäkologische Endokrinologie und Fertilitätsstörungen – Universitätsklinikum Heidelberg Prof. Dr. med. Thomas Strowitzki, Prof. Dr. Bettina Toth, PD Dr. med. Ariane Germeyer, Dr. med. Sabine Rösner, Dr. med. Julia Rehnitz, Dr. med. Verena Holschbach, Dr. rer. nat. Inge Eberhardt, Dr. rer. nat. Jens Dietrich Im Neuenheimer Feld 440 69120 Heidelberg T: 06221-567910, F: 06221-564099 [email protected] www.klinikum.uni-heidelberg.de/Kinderwunschambulanz.583.0.html Kinderwunsch-Zentrum Stuttgart Prof. Dr. med. Dieter H. A. Maas, Dr. med. Friedrich Gagsteiger, Dr. med. Klaus Bühler, Dr. med. Nina Kircher, Dr. med. Lisa Beiglböck, Dr. med. Gerhild Weiß Friedrichstraße 45 70174 Stuttgart T: 0711-997806-0, F: 0711-997806-10 [email protected] www.kidz-stuttgart.de Kinderwunsch-Zentrum-Stuttgart, Praxis Villa Haag Dr. med. Dieter B. Mayer-Eichberger Herdweg 69 70174 Stuttgart T: 0711-221084, F: 0711-221085 [email protected] www.kinderwunschpraxis.de Kinderwunschzentrum Ludwigsburg Dr. med. Andreas Ott, Dr. med. Annette Schmid, Dr. med. Katja Becker Pflugfelder Straße 22 71636 Ludwigsburg T: 07141-688760, F: 07141-688769 [email protected] www.kinderwunschzentrum-ludwigsburg.com KinderwunschPraxis Dres. Göhring Dr. med. Ulrich Göhring, Dr. med. Inés Göhring Hagellocher Weg 63 72070 Tübingen T: 07071-94663-0, F: 07071-94663-99 [email protected] www.kinderwunschpraxis.com IVF-Zentrum der Universitäts-Frauenklinik Tübingen Dr. med. Melanie Henes Calwerstraße 7 72076 Tübingen T: 07071-2983117, F: 07071-292250 [email protected] www.uni-frauenklinik-tuebingen.de Kinderwunschzentrum Aalen Dr. med. Rainer Rau, Dr. med. Birgit Schröppel, Dr. rer. nat. Roland Eid Weidenfelder Straße 1 73430 Aalen T: 07361-62021, F: 07361-62026 [email protected] www.kinderwunsch-aalen.de IVF-Zentrum Esslingen Praxis Dr. J. E. Costea Dr. med. Johann Emil Costea, Dipl.-Ing. Luminitza Costea, Dr. rer. nat. Michael Troge Martinstraße 15 73728 Esslingen T: 0711-31059160, F: 0711-31059161 [email protected] www.ivf-praxis.com Centrum für Kinderwunsch Pforzheim Verena Peuten Zerrenner Straße 22–24 75172 Pforzheim T: 07231-2808280, F: 07231-28082888 [email protected] www.kinderwunsch-pforzheim.de Kinderwunschzentrum Karlsruhe Arbeitsgemeinschaft für Fortpflanzungsmedizin Hans-Jürgen Gräber, Dr. med. Daniela Plathow, Dr. Frank Tetens, Laborärzte Dr. Ehrfeld & Kollegen, Humangenetik Dr. Schlüter Waldstraße 2 76133 Karlsruhe T: 0721- 8246700, F: 0721-82467090 [email protected] www.ivf-programm.de Klinikum Mittelbaden Zentrum für Minimal Invasive Gynäkologie, Endometriose und Reproduktionsmedizin Prof. Dr. med. Wolfgang Küpker Engelstraße 39 76437 Rastatt T: 07222-389-5400, F: 07222-389-65400 [email protected] www.kinderwunschzentrum-mittelbaden.de Kinderwunsch Bodensee Dr. med. Andreas Heine, Dr. med. Katja Drescher, Dr. Angela Panhans Maggistraße 5 78224 Singen T: 07731-912999-0, F: 07731-912999-99 [email protected] www.endlichnachwuchs.de Centrum für gynäkologische Endokrinologie und Reproduktionsmedizin Freiburg (CERF) Dr. med. Rudolf Weitzell, Dr. med. Maria Thiemann, PD Dr. med. Birgit Wetzka, Prof. Dr. med. Franz Geisthövel, Dr. med. Veronika Wolk Bismarckallee 7f 79098 Freiburg T: 0761-20743-0, F: 0761-32111 [email protected] www.kinderwunsch-hormone.de Universitätsklinikum Freiburg Klinik für Frauenheilkunde – Abteilung für Endokrinologie und Reproduktionsmedizin Dr. med. R. Schwab, Dr. rer. nat. B. Acar-Perk Hugstetter Straße 55 79106 Freiburg T: 0761-270-31500, F: 0761-270-29120 [email protected] www.uniklinik-freiburg.de/frauenheilkunde/ endokrinologie-und-reproduktionsmedizin. html Reproduktionsmedizin München Medizinisches Versorgungszentrum Partnerschaftsgesellschaft Dr. med. Walter Bollmann, Dr. med. Thomas Brückner, Dr. med. Ulrich Noss, Dr. med. Daniel Noss, PD Dr. med. Robert Ochsenkühn, Dr. med. Barbara Wiedemann Ärzte für Laboratoriumsmedizin Dr. med. Gerhard Noss, Risto Gjavotchanoff Tal 11 80331 München T: 089-242295-0, F: 089-242295-60 [email protected] www.ivf-bbn.de kïz) kinderwunsch im zentrum Praxis für gynäkologische Endokrinologie und Reproduktionsmedizin PD Dr. med. Roxana Popovici, Dr. med. Anja Kuhlmann Bayerstraße 3 80335 München T: 089-4522178-0, F: 089-4522178-45 [email protected] www.kiiz.de Zentrum für Gynäkologische Endokrinologie und Reproduktionsmedizin Klinikum der LMU München-Innenstadt Prof. Dr. med. Christian J. Thaler, Dr. med. Nina Rogenhofer, Dr. Panos Papadopoulos Ph. D., Prof. Dr. med. Klaus Friese Maistraße 11 80337 München T: 089-4400-54214, F: 089-4400-54918 www.kinderwunsch-uni-muenchen.de J Reproduktionsmed Endokrinol 2014; 11 (5–6) 271 D·I·R Annual 2013 – Registry Participants Kinderwunsch Zentrum an der Oper Dr. med. Helmut Lacher, Dr. med. Jörg Puchta, PD Dr. med. Hans-Ulrich Pauer, Dr. med. Silke Michna Maximilianstraße 2a 80539 München T: 089-547041-0, F: 089-547041-34 [email protected] www.hormonzentrum.de Kinderwunsch Centrum München (MVZ) Dr. med. Klaus Fiedler, Dr. med. Gottfried Krüsmann, Prof. Dr. Dr. med. habil. Wolfgang Würfel, Dr. med. Irene von Hertwig, Dr. med. Jan Krüsmann, Ina Laubert, Osama Meri, Dr. med. Claudia Santjohanser, Sabine Völker Lortzingstraße 26 81241 München T: 089-244144-0, F: 089-244144-42 [email protected] www.ivf-muenchen.de Hormon- und Kinderwunschzentrum Klinikum der LMU München-Grosshadern Prof. Dr. med. Christian J. Thaler, Prof. Dr. med. Klaus Friese, Dr. rer. nat. Viktoria von Schönfeldt Marchioninistraße 15 81377 München T: 089-4400-76825, F: 089-4400-73844 www.kinderwunsch-uni-muenchen.de GMP Frauenärzte Prof. Berg, Dr. Lesoine Reproduktionsmedizin in Bogenhausen Prof. Dr. med. Dieter Berg, Dr. med. Bernd Lesoine Prinzregentenstraße 69 81675 München T: 089-414240-0, F: 089-414240-11 [email protected] www.ivf-muenchen.com Kinderwunsch Centrum Chiemsee Dr. med. Susann Böhm, Dr. med. Angelika Stachl Hochriesstraße 21 83209 Prien am Chiemsee T: 08051-5050, F: 08051-63499 [email protected] www.kinderwunsch-chiemsee.de IVF-Zentrum Augsburg GMP Dres. Hiller, Bauer, Kraus, SteinfeldBirg Dr. med. Klaus-Friedrich Hiller, Dr. med. Thomas Bauer, Dr. med. Harald Kraus, Dr. med. Dieter Steinfeld-Birg Prinzregentenstraße 25 86150 Augsburg T: 0821-502780, F: 0821-5027878 [email protected] www.ivf-augsburg.de 272 J Reproduktionsmed Endokrinol 2014; 11 (5–6) KinderWunschKempten (KWK) Zentrum für Reproduktionsmedizin am Klinikum Kempten Prof. Dr. med. Ricardo Felberbaum, Dr. med. Anke Brössner, Dr. med. Elisabeth Büchele, Dipl. Biol. Mohammad Kousehlar Robert-Weixler-Straße 50 87439 Kempten T: 0831-530-3380, F: 0831-530-3378 [email protected] www.kinderwunsch-kempten.de Praxisklinik Frauenstraße Ulm Prof. Dr. med. Karl Sterzik, Dr. med. Erwin Strehler, Prof. Dr. med. Wolfgang Hütter Frauenstraße 51 89073 Ulm T: 0731-966510, F: 0731-9665130 [email protected] www.kinderwunsch-ulm.de Kinderwunschzentrum Erlangen Dr. med. Jan van Uem, Dr. med. Madeleine Haas Michael-Vogel-Straße 1e 91052 Erlangen T: 09131-8095-0, F: 09131-8095-30 [email protected] www.kinderwunschzentrum-erlangen.de Universitäts-Fortpflanzungszentrum Franken (UFF) Prof. Dr. Matthias W. Beckmann, PD Dr. Susanne Cupisti, Prof. Dr. Ralf Dittrich, PD Dr. Stefan P. Renner, MBA Universitätsstraße 21–23 91054 Erlangen T: 09131-85-33553, F: 09131-85-33456 [email protected] www.reproduktionsmedizin.uk-erlangen.de Universitätsfrauenklinik und Poliklinik Ulm Zentrum für Reproduktionsmedizin und Gynäkologische Endokrinologie PD Dr. med. Katharina Hancke Prittwitzstraße 43 89075 Ulm T: 0731-50058663, F: 0731-50058664 [email protected] www.uni-ulm.de/ivf Kinderwunschzentrum Amberg Am Klinikum St. Marien Amberg Dr. med. Jürgen Krieg Mariahilfbergweg 7 92224 Amberg T: 09621-381519, F: 09621-381941 [email protected] www.kinderwunsch-amberg.de Kinderwunsch-Zentrum Ulm Dr. med. Friedrich Gagsteiger, Dr. med. Natalie Reeka, Dr. med. Kerstin Eibner, Dr. med. Nilofar Huzurudin, Dr. med. Verena Domschat, Julia Koglin Einsteinstraße 59 89077 Ulm T: 0731-151590, F: 0731-1515915 [email protected] www.kwz-ulm.de KITZ Regensburg – KinderwunschTherapie im Zentrum Prof. Dr. med. Bernd Seifert, Dr. med. Claudia Gaßner Hemauerstraße 1 93047 Regensburg T: 0941-992577-0, F: 0941-992577-23 [email protected] www.kitz-regensburg.de Kinderwunsch und Frauen-Hormon Centrum Nürnberg Dr. med. Joachim Neuwinger, Dr. med. Barbara Munzer-Neuwinger, Prof. Dr. med. Peter Licht Agnesgasse 2–4 90403 Nürnberg T: 0911-2355500, F: 0911-2355516 [email protected] www.kinderwunschzentrum-nuernberg.de Kinderwunschzentrum profertilita Prof. Dr. med. Monika Bals-Pratsch, M. Sc., Dr. med. Angelika Eder, M. Sc. Hildegard-von-Bingen-Straße 1 93047 Regensburg T: 0941-89849944, F: 0941-89849945 [email protected] www.profertilita.de GMP Dres. Hamori, Behrens, Hammel Dr. med. Miklos Hamori, Dr. med. Rolf Behrens, Dr. med. Andreas Hammel Nürnberger Straße 35 91052 Erlangen T: 09131-89520, F: 09131-205410 [email protected] www.ivf-erlangen.de Kinderwunschzentrum Niederbayern Dr. med. Hans-Joachim Kroiss, Dr. med. Samuel Dadze, Dr. IM Tem. Elfriede Bernhardt Stadtfeldstraße 50 94469 Deggendorf T: 0991-29799332, F: 0991-29799331 [email protected], [email protected] www.kinderwunsch-niederbayern.de D·I·R Annual 2013 – Registry Participants / Sponsors Klinik am Hofgarten – Kinderwunsch-Zentrum Bayreuth Dr. med. Dr. phil. Stefan Todorow, Dr. med. Erika Schwarz Richard-Wagner-Straße 34–36 95444 Bayreuth T: 0921-7454440, F: 0921-74544410 [email protected] www.ivf-bayreuth.de Zentrum für Reproduktionsmedizin, Medizinische Genetik und Pränataldiagnostik Dr. med. Reinhard Mai, Dr. med. Wolfgang Schmitt, Dr. med. Lore Mulfinger Juliuspromenade 7 97070 Würzburg T: 0931-321230, F: 0931-3212377 [email protected] www.drs-mai-schmitt-mulfinger.de Universitätsklinikum Würzburg Frauenklinik und Hebammenschule Zentrum für gynäkologische Endokrinologie und Reproduktionsmedizin Prof. Dr. med. Ursula Zollner, Dr. med. Michael Schwab, Dr. rer. nat. Claudia Staib Josef-Schneider-Straße 4 97080 Würzburg T: 0931-201-25619, F: 0931-201-25406 [email protected] www.frauenklinik.uni-wuerzburg.de Sponsors Without generous support, publishing this Annual would not have been possible. Our gratitude goes to: FERRING Arzneimittel GmbH, Kiel www.ferring.de 4,500 EUR Merck Serono GmbH, Darmstadt www.merckserono.de 4,500 EUR MSD Sharp & Dohme GmbH, Haar bei München www.msd.de 4,500 EUR J Reproduktionsmed Endokrinol 2014; 11 (5–6) 273 Options for Fertility Preservation in Cancer Patients R. Dittrich, L. Lotz, J. Hackl, S. Nichols-Burns, T. Hildebrandt, H. Schneider, I. Hoffmann, M. W. Beckmann Little attention was given to fertility loss as a potential consequence of radio-/chemotherapy in the past. In recent years, interest in fertility preserving measures for cytotoxic therapy has risen sharply and includes the establishment of the network FertiPROTEKT. Cryoconservation of sperm is an established method of fertility preservation for males. Options for females include transposition of the gonads prior to radiotherapy, protection of the gonads using gonadotropin-releasing hormone (GnRH) analogues, and cryoconservation of embryos, oocytes, and ovarian tissue. Although most of the aforementioned methods are currently regarded as experimental, they make it possible for affected women to have children after recovering from disease. Fertility-preserving procedures should therefore be offered to all patients facing fertility loss before cytotoxic treatment is administered. Rapid and simultaneous collaboration with a specialized fertility center and provision of correct and detailed information for the patient are of extreme importance. This article discusses the importance of fertility-preserving methods for the specialty of gynecology and outlines the currently available techniques. J Reproduktionsmed Endokrinol 2014; 11 (5–6): 274–9. Key words: fertility preservation, family planning, cancer, ovary Introduction Increasing survival rates for cancer patients and an increasing awareness of the quality of life after chemo-/radiotherapy have focused attention on the preservation of fertility after cancer treatment. Due to great progress in reproductive medicine, measures that make it possible for affected women to have children after recovering from the disease can now be offered. The effects of malignant disease on gonadal function are caused in most cases indirectly by the influence of cytotoxic therapy. Chemotherapy and/or radiotherapy very often lead to partial or complete impairment of the ovaries and spermatozoa, severely reducing or eliminating fertility. The gonadotoxic effects are strongly dependent on the patient’s age (older age correlating to higher risk), the type, dose and duration of chemotherapy and radiation therapy (Table 1, 2). The aim of the present article is to provide basic information on fertility-preserving measures and to enhance awareness among medical staff treating affected patients that such measures are available. Our main focus is on fertility preservation for women, but options for men are also mentioned. Options for Fertility Preservation in Women In general, diseases that require treatment that is gonadotoxic represent an in- Table 1. Infertility after Treatment with Different Cytotoxic Drugs Toxic effect on spermatozoa Initiation of ovarian dysfunction High risk – Chlorambucil – Cyclophosphamid – Nitrosoharnstoff – Busulfan – Fludarabin – Procarbazin – CCNU – Chlorambucil – Cyclophosphamid – Busulfan – CCNU – Mitomycin C Moderate risk – Doxorubicin – Vinblastin – Cytarabin – Cisplatin – Topoisomerase-I-Hemmstoffe – Doxorubicin – Vinblastin – Cisplatin – Topoisomerase-I-Hemmstoffe Low risk – Methotrexat – 5–Fluorouracil – 6–Mercaptopurin – Vincristin – Methotrexat – 5–Fluorouracil – 6–Mercaptopurin – Vincristin Unknown risk – Bleomycin – Etoposid – Gemcitabin – Taxane – Oxaliplatin – Irinotecan – Antibody – Small molecules – Etoposid – Nitrosoharnstoffe – Gemcitabin – Taxane – Oxaliplatin – Irinotecan – Antibody – Small molecules Table 2. Radiotoxicity and Ovarian Insufficiency. Adapted from [Demewood MD 1986] Risk of Sterility Ovarian radiation dosage (Gy) (Patient age in years [y]) No effect Some risk 60% 70% 100% 100% 0.6 1.5 2.5–5 (15–40y) 5–8 (15–40y) > 8 (15–40y) 2.5–5 (> 40y) Received: June 20, 2014; accepted after revision: September 1, 2014. From the Department of Gynecology, Erlangen University Hospital, University of Erlangen-Nuremberg Correspondence: Prof. Dr. rer. nat. Ralf Dittrich, Department of Gynecology, Erlangen University Hospital, D-91054 Erlangen, Universitätsstraße 21–23; e-mail: [email protected] 274 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Options for Fertility Preservation in Cancer Patients dication for measures to protect the ovary. Fertility-preserving measures have to be customized to match the patient’s individual clinical situation. Aspects to be taken into account include the time available before the start of oncological therapy, patient’s age, relationship status, potential ovarian involvement in the cancer, and gonadotoxic measures that are to be used (Fig. 1). If possible, it should be ensured that operations are carried out as fertility-conserving surgeries. In terms of radiotherapy, attention must be paid to sufficient gonad protection by the choice of treatment fields and lead aprons. Transposition of the Ovaries (Ovariopexy) In patients with Hodgkin or non-Hodgkin lymphomas, cervical carcinoma, colorectal carcinoma, or other solid malignancies which require radiotherapy to the pelvis, the ovaries can be surgically repositioned away from the radiotherapy field before starting treatment. The ovaries are laparoscopically mobilized after transection of the ovarian ligaments or by opening the retroperitoneum via bilateral division of the peritoneum along the infundibulo-pelvic ligament, so that a transection of the fallopian tube is not necessary in most cases. Subsequently, the mobilized ovary is fixed cranio-laterally to the peritoneum of each paracolic gutter. Ovaries can be marked with radiopaque metal clips, so their location can be checked during treatment. The proportion of patients < 40 years of age who recover regular ovulatory cycles after radiotherapy with this technique is up to 85% [2]. The success rate with this method depends on applied radiation dosage and scattered radiation. Rare complications include pain during ovulation, cyst formation, thrombosis, and ischemia [3]. GnRH Analogues Gonadotropin-releasing hormone (GnRH) agonists may be utilized to inhibit the release of follicle-stimulating hormone in postpubertal women, inducing transient hypogonadotropic hypogonadism and placing the ovaries in a “resting” state. Hereby, it is anticipated that follicles can be protected and fertility be preserved. The latest meta-analysis including only randomized controlled studies (n = 6) reported a reduced rate of premature ovarian failure with GnRH agonist administration, with an odds ratio of 3.5 [4]. Preliminary results of the most recent study Figure 1. Planned Approach at German University Reproductive Centers. Mod. from [1]. * CHT = Chemotherapy treatment of LHRH analog during chemotherapy to reduce ovarian failure in early stage, hormone receptor-negative breast cancer (Prevention of Early Menopause Study[POEMS-] SWOG S0230) show a reduced rate of premature ovarian failure by using LHRH analogue (OR = 0.3; 95%-CI: 0.10–0.87; p = 0.3 [unadjusted analyses]) [5]. On the other hand, other studies on administration of GnRH agonists in adjuvant chemotherapy for breast cancer and lymphoma did not demonstrate a significant benefit [6, 7]. When used, GnRH analogues should be administered at least 1 week before starting chemotherapy due to the initial increase in the release of gonadotropins (known as the “flare-up” effect), and administration should continue for at least 1–2 weeks after the last chemotherapy cycle. If the time window before the start of chemotherapy is less than a week, it is possible to combine GnRH agonists with GnRH antagonists in order to reduce flare-up [8]. Side effects of GnRH analogues can include menopausal symptoms (although this is also possible with chemotherapy alone) and a reduction in bone mass if the drug exposure is longer than 6 months. It should also be noted that possible negative effects of GnRH analogues on the prognosis for patients with estrogen receptor-positive diseases (e.g., breast carcinoma) have not yet been clarified. This method is currently regarded as safe, noninvasive, and easy to administer [9] and may be considered on an individual basis in combination with other fertility-protecting measures if possible. Statements regarding the chance of pregnancy cannot be made at the present time and must be discussed in detail during the information talk with the patient. Further randomized prospective studies are lacking. Cryopreservation of Unfertilized and Fertilized Oocytes Prophylactic cryopreservation of unfertilized and fertilized oocytes is a wellestablished assisted reproductive technique (ART) and is especially applicable in the frame of fertility preservation prior to gonadotoxic therapy. Ovarian stimulation to harvest oocytes can be carried out with most postmenarchal women aged 40 years. With the development of new protocols, stimulation can begin at any point during the menstrual cycle of the patient, so that the working time frame requires only 2 weeks prior to start of cytotoxic therapy. Use of GnRH-antagonists and ovulation induction with a GnRH-agonist prevents ovarian hyperstimulation syndrome, which would require postponement of chemotherapy. Cytotoxic therapy can begin 1–2 days after follicle puncture [10]. Freezing pronuclear stage zygotes using traditional slow cryopreservation has been well established, especially in J Reproduktionsmed Endokrinol 2014; 11 (5–6) 275 Options for Fertility Preservation in Cancer Patients countries like Germany where planned cryopreservation of human embryos by nuclear fusion is prohibited by law. Survival rates after conventional slow freezing of zygotes are between 70 and 80%. Clinical pregnancy rates amount to 18% with an implantation rate of 10% per transferred embryo [11, 12]. Survival rate for vitrified zygotes is > 90% with a cleavage rate of 80% on day 2 and blastocyst formation rate on day 5 > 30% [13]. Al Hasani et al have published clinical pregnancy and implantation rates of 30% and 17% [11]. Another ART is the cryopreservation of unfertilized oocytes. Despite publication of the first birth after cryopreservation of unfertilised oocytes with a slow freezing protocol in humans 1986 [14], this technique was considered controversial due to the low survival rates of the cells. Based on improved survival rates due to slight modifications of slow freezing and vitrification protocols, the cryopreservation of unfertilized oocytes now represents an effective ART. Pregnancy rates can be achieved comparable to those resulting from IVF treatment using fresh eggs [15]. In a randomized controlled trial, pregnancy rate was compared with surplus slow freeze and vitrified oocytes. Results demonstrated that vitrification leads to a better survival of oocytes (81% vs. 67%; p < 0.001), higher rate of fertilization (77% vs 67%; p = 0.03), and higher pregnancy rate per thawed oocytes compared to slow freeze oocytes (5.2% vs 1.7%; p = 0.03) [16]. However, other clinics report equivalent success of the two freezing methods in observational studies [17], and it is likely that clinic-specific success rates vary with different cryopreservation protocols. Today, over 1000 children worldwide have been born through cryopreservation of unfertilized oocytes. Based on available data, no increased risk of congenital anomalies has been observed [18]. The malformation rate of children born by cryopreserved oocytes does not differ from those after spontaneous concep- tion. Due to these advances, the American Society for Reproductive Medicine no longer considers cryopreservation of unfertilised oocytes experimental, but an established method for retaining fertility [19]. Risks associated with ovarian stimulation are low. In the complication register of the FertiPROTEKT network no shift of chemotherapy due to complication was required in 205 stimulations. In patients with hormone-dependent tumors, such as hormone receptor-positive breast cancer or hormone-dependent genital tumors, ovarian stimulation should be critically discussed because of increased estradiol levels. In consultation with the oncologist, gonadotropins, antiestrogens (e.g., tamoxifen) or aromatase inhibitors (e.g., letrozole) could be administered during ovarian stimulation to reduce the unwanted rise of estradiol and to carry out an antiestrogenic effect on the tumor cells with a reduced risk of cancer progression [10]. One point against cryopreservation of zygotes or unfertilized oocytes as an option for fertility preservation in cancer patients is the need of hormonal stimulation to achieve more than 1 oocyte. Stimulation is accompanied with a delay of the chemotherapy because normally the start of the stimulation procedure, which already needs at least 10 days, is at the beginning of the follicular phase. When the patient is in the luteal phase, it is necessary to wait until bleeding occurs. An alternative is already to initiate the ovarian stimulation in the luteal phase together with the administration of Gonadotropin-Releasing Hormone antagonist (GnRH-antagonist), which is administered to induce immediate luteolysis. The success of this application was already shown by von Wolff et al in 2009 [20] and recently at the Meeting of the European Society of Human Reproduction and Embryology in 2014, where the results of 674 cases of luteal phase stimulation were presented [21]. In-vitro maturation In-vitro maturation (IVM) involves obtaining immature oocytes, maturing them, and then fertilizing them. Immature oocytes from small antral follicles are obtained by transvaginal aspiration after short stimulation with follicle-stimulating hormone (FSH) and/or human chorionic gonadotropin (HCG), if necessary. Harvested oocytes are matured invitro into fertilizable metaphase II oocytes and can then be cryopreserved. It is unnecessary to expose patients to highdose gonadotropin therapy with this method, and the time required before follicular puncture is shorter than with conventional stimulation, making it easier to avoid a delay in the start of chemotherapy. Immature oocytes can also be obtained during processing of biopsied ovarian tissue. IVM of oocytes during cryopreservation of ovarian tissue offers an additional option of fertility preservation without additional risk and expense for the patient [22]. However, with the exception of results from a few research groups, data on pregnancy rates with this procedure are still very limited and the reported rates are lower than those with conventional in-vitro fertilization (IVF) [23, 24]. Cryopreservation of Ovarian Tissue Cryopreservation of ovarian tissue has been investigated as a method of fertility preservation for more than a decade and has recently achieved considerable success. Over 25 live births have been reported following transplantation of cryopreserved ovarian tissue ([25] and personal communication). Technically, ovarian extraction is a simple procedure. Ovarian tissue can be obtained using minimally invasive techniques during laparoscopy, with unilateral ovariectomy or partial ovariectomy. Cryopreservation of ovarian tissue can be carried out independent of menstrual phase and, therefore, does not lead to any delay in oncological therapy (Table 3). In centers that offer cryopreservation of ovarian tissue, Table 3. Comparison of the Fertility Preservation Options in Women Cryopreservation of ovarian tissue Cryopreservation of unfertilized oocytes Cryopreservation of fertilized oocytes 276 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Characteristics Time required Pregnancy rate Laparoscopy, retransplantation Stimulation Partner, stimulation Immediately 10–14 d 10–14 d Over 25 live births worldwide 20–30% 20–35% Options for Fertility Preservation in Cancer Patients Table 4. Comparison of the Fertility Preservation Options in Women Advantages Disadvantages – Risk that tumor cells may be reimplanted – Limited experience Cryopreservation of unfertilized oocytes – No treatment delay – Only way to preserve fertility in prepubertal girls – Treatment of women without a partner – No unwanted estrogen peak – Can be used in chemo- and radiotherapy – Restoration of fertility and endocrine function – Can be used in chemo- and radiotherapy – Treatment of women without a partner Cryopreservation of fertilized oocytes – Established method with high pregnancy rate – Can be used in chemo- and radiotherapy Cryopreservation of ovarian tissue the procedure can be performed 1 day after the patient’s first visit. After the tissue has been removed, it can be processed immediately or transferred in specific transportation containers to a center that is specialized in the cryopreservation of ovarian tissue with an associated cryobank. A transport duration of 4–5 hours before cryopreservation is possible without any problems [26]. In addition, the viability of the tissue appears also to be preserved for longer periods of time (overnight transport), as the first live birth in Germany after re-transplantation of cryopreserved ovarian tissue has demonstrated [27]. In general, cryopreservation of ovarian tissue involves similar cryogenic processes as those utilized for cryopreservation of oocytes or embryos. “Slow freezing” is currently recommended for freezing ovarian tissue due to current higher efficiency with this method. In all previously published births following retransplantation of cryopreserved ovarian tissue, the tissue underwent slow freezing [22]. Of note, however, experimental tests demonstrate increasingly better results for vitrification [28].The main purpose of cryopreservation of ovarian tissue is to preserve viable ovarian tissue for potential reimplantation if ovarian function fails following cancer treatment. Ovarian tissue is usually reimplanted at the natural site (orthotopically), in a peritoneal pocket, or in the residual ovarian bed, in order to allow spontaneous conception. The first reimplantation of ovarian tissue in Germany was performed in 2007 at the Department of Gynecology at Erlangen University Hospital [29]. Resumption of hormonal function in reimplanted tissue has now been documented on many occasions, and there have been over 25 recently reported births following orthotopic reimplantation of cryoconserved ovarian tissue. The first birth after reimplantation of cryoconserved ovarian tissue in Germany occurred on October 10, 2011 [30]. The first international surveys of birth rate per ovarian tissue transplantation report a success rate of approximately 15%, which is likely to increase in the future. The possibility that tumor cells may be concurrently reimplanted is a problem that must be discussed with the patient. To date, there have been no cases in which this has been confirmed, although considerable caution is advised regarding cryopreserved tissue from patients with leukemia, borderline ovarian tumor, or with a high risk of ovarian metastases (e.g., in adenocarcinoma of the cervix or stage III–IV breast cancer) [31, 32]. An option for these patients could be the maturation of follicles in vitro without transplantation. The ability of primordial follicles of ovarian tissue to fully mature in vitro and produce fertilizable, viable ova has only been demonstrated in a few animal model reports. Total in-vitro maturation of human oocytes from cryopreserved ovarian tissue is not yet possible [33]. However, it is quite conceivable that in the next few years this technique will be successful in humans [34]. Another option is ovarian tissue xenotransplantation. Ovarian tissue is transplanted into a surrogate host, such as immunodeficient mice (e.g., SCID mice), which do not have rejection reactions against foreign tissue. Follicles that mature can be punctured to obtain oocytes. This method has been used experimentally to test the vitality of frozen ovarian – Treatment delay – Not for prepubertal girls – Unwanted estrogen peak – Partner – Treatment delay – Not for prepubertal girls – Unwanted estrogen peak tissue and to assess any malignant contamination [32] (Table 4). Combination of Different Techniques To increase the effectiveness of individual measures, a combination of the described fertility preservation strategies could be considered. For example, when 2 weeks are left before starting chemotherapy, ovarian stimulation could be performed and on the day of oocyte retrieval, ovarian tissue could also be harvested for cryopreservation at the same time [35]. Removing ovarian tissue first and starting ovarian stimulation approximately 1–2 days later is an alternative approach. The partial removal of ovarian tissue does not substantially affect the average number or quality of oocytes retrieved after ovarian stimulation [36]. Moreover, GnRH analogues could also be administered simultaneously with the induction of ovulation in these patients, thereby protecting remaining follicles. Options for Fertility Preservation in Men In men, cryopreservation of ejaculate or testicular tissue are established means of creating a fertility reserve. A therapeutically effective method that protects testicular function from gonadotoxic effects of chemotherapy or radiotherapy has to be developed [37]. Hormonal suppression of spermatogenesis in cytostatic chemotherapy (e.g. using GnRH analogues) has been attempted, but does not provide sufficient gonadal protection [38]. In radiotherapy, shielding of the testes from radiation or removal from the radiation field offers an effective measure to prevent unwanted damage and is widely practiced. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 277 Options for Fertility Preservation in Cancer Patients Cryopreservation of Sperm Cryopreservation of an ejaculate is the established method of choice. Multiple sperm donations can be provided and a frozen depot created and maintained in reproductive medical centers, prior to the start of gonadotoxic treatment. This reserve could be used for ART-measures at a later date. Spermatozoa are relatively cryoresistant and post-thaw survival rate is high. Many pregnancies have been achieved using this method [39]. For prepubertal boys, cryopreservation of sperm is inappropriate because provision of an ejaculate is not yet possible. For adolescent boys undergoing puberty, germ cells can be obtained for cryopreservation through extraction from testicular biopsies or by electroejaculation. However, both methods are invasive procedures [40]. Cryopreservation of Sperm from Testicular Tissue (TESE) A testicular biopsy could be performed to isolate spermatozoa from testicular tissue when no spermatozoa are found in the ejaculate. With this method, sperm cells are present in up to 75% of cases. TESE is an established process and is combined with intracytoplasmic sperm injection (ICSI) for later fertility. However, the success rate depends on the amount of viable spermatozoa present in testicular tissue at the time of cryopreservation [41]. The so-called Onco-TESE is particularly useful in patients with unilateral or bilateral testicular tumors, as well as patients with azoospermia before or after gonadotoxic therapy. Even for long-term survivors of oncological diseases with azoospermia, Onco-TESE can be offered as an opportunity for future fatherhood [42]. Experimental Approaches Recovery of testicular tissue via biopsy provides a method for recovery of germline stem cells before the start of treatment which can be maintained through cryopreservation. This is currently the only conceivable method to preserve fertility for prepubertal boys and, therefore, the cryopreservation of immature testicular tissue should be considered for these patients. After a successful treatment, the tissue or the germ line stem cells contained therein could be used for process278 J Reproduktionsmed Endokrinol 2014; 11 (5–6) es which initiate the differentiation of germ cells. The intact tissue could be transplanted ectopically or orthotopically (autografts or ectopic xenografting). Future studies should elucidate the most appropriate method for clinical application [35]. Conclusion In view of the good treatment options recently available for oncological diseases, it is now virtually essential to provide patients of reproductive age with counselling regarding fertility preservation. Fertility preservation is of great importance to many young women and men diagnosed with cancer, and in general the quality of counselling performance regarding fertility preservation is highly valued by patients [43]. Today, there is a large range of potential fertility preservation techniques available. For men, sperm cryopreservation remains the gold standard; by combination of cryopreservation with TESE/MESA or TESE/ICSI there is a good chance to realize a desire to have children. In women, transposition of the gonads before radiotherapy, the use of GnRH analogues, and cryopreservation of embryos, oocytes and ovarian tissue are available. The decision as to which treatment is most suitable in the patient’s individual situation has to be made during a personal discussion with her and requires intensive interdisciplinary communication, among oncologists, radiotherapists, and reproductive medicine specialists. The individual approach is determined above all by the patient’s age, the nature of the tumor entity, the remaining time before oncological treatment, the planned treatment measures, and the urgency of the patient’s wish to have children. Support and advice are available in German-speaking countries from centers affiliated with the FertiPROTEKT network, as well as from the present authors. Details are available on the network’s website, www.fertiprotekt.eu Conflict of Interest The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript. References: 1. Sonmezer M, Oktay K. Fertility preservation in female patients. Hum Reprod Update 2004; 10: 251–66. 2. Bisharah M, Tulandi T. Laparoscopic preservation of ovarian function: an underused procedure. Am J Ostet Gynecol 2003; 188: 367–70. 3. Han SS, Kim YH, Lee SH, Kim GJ, Kim HJ, et al. Underuse of ovarian transposition in reproductive-aged cancer patients treated by primary or adjuvant pelvic irradiation. J Obstet Gynecol Res 2011; 37: 825–9. 4. Bedaiwy MA, Abou-Setta AM, Desai N, Hurd W, Starks D, et al. Gonadotropin-releasing hormone analog cotreatment for preservation of ovarian function during gonadotoxic chemotherapy: a systematic review and meta-analysis. Fertil Steril 2011; 95: 906–14. 5. Halle CF, Moore JMU, Phillips KA, Boyle FM, Hitre E, et al. Phase III trial (Prevention of Early Menopause Study [POEMS]SWOG S0230) of LHRH analog during chemotherapy (CT) to reduce ovarian failure in early-stage, hormone receptor-negative breast cancer: An international Intergroup trial of SWOG, IBCSG, ECOG, and CALGB (Alliance). J Clin Oncol 2014; 32 (Suppl): LBA 505. 6. Munster PN, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol 2012; 30: 533–8. 7. Demeestere I, Brice P, Peccatori FA, Kentos A, Gaillard I, et al. Gonadotropin-releasing hormone agonist for the prevention of chemotherapy-induced ovarian failure in patients with lymphoma: 1-year follow-up of a prospective randomized trial. J Clin Oncol 2013; 31: 903–9. 8. von Wolff M, Kammerer U, Kollmann Z, Santi A, Dietl J, Frambach T. Combination of gonadotropin-releasing hormone (GnRH) agonists with GnRH antagonists before chemotherapy reduce but does not completely prevent a follicle-stimulating hormone flare-up. Fertil Steril 2011; 95: 452–4. 9. Behringer K, Thielen I, Mueller H, Goergen H, Eibl AD, et al. Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial. Ann Oncol 2012; 23: 1818–25. 10. Chung K, Donnez J, Ginsburg E, Meirow D. Emergency IVF versus ovarian tissue cryopreservation: decision making in fertility preservation for female cancer patients. Fertil Steril 2013; 99: 1534–42. 11. Horne G, Critchlow JD, Newman MC, Edozien L, Matson PL, Lieberman BA. A prospective evaluation of cryopreservation strategies in a two-embryo transfer programme. Hum Reprod 1997; 12: 542–7. 12. Al-Hasani S, Ozmen B, Koutlaki N, Schoepper B, Diedrich K, Schultze-Mosgau A. Three years of routine vitrification of human zygotes: is it still fair to advocate slow-rate freezing? Reprod Biomed Online 2007; 14: 288–93. 13. Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ. Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reprod Biomed Online 2002; 4: 146–50. 14. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; 1: 884–6. 15. Cil AP, Seli E. Current trends and progress in clinical applications of oocyte cryopreservation. Current Opin Obstet Gynecol 2013; 25: 247–54. 16. Smith GD, Serafini PC, Fioravanti J, Yadid I, Coslovsky M, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril 2010; 94: 2088–95. 17. Grifo JA, Noyes N. Delivery rate using cryopreserved oocytes is comparable to conventional in vitro fertilization using fresh oocytes: potential fertility preservation for female cancer patients. Fertil Steril 2010; 93: 391–6. 18. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online 2009; 18: 769–76. 19. Mature oocyte cryopreservation: a guideline. Fertil Steril 2013; 99: 37–43. 20. von Wolff M, Thaler CJ, Frambach T, Zeeb C, Lawrenz B, et al. Ovarian stimulation to cryopreserve fertilized oocytes in cancer patients can be started in the luteal phase. Fertil Steril 2009; 92: 1360–5. 21. Germeyer A CE, Jauckus J, Strowitzki T, von Wolff M. Timing of ovarian stimulation in patients prior to chemo- or radiotherapy – an analysis of 674 stimulations [P-505]. Poster at the ESHREmeeting in Munich, 2014, http://www.posters2view.eu/eshre 2014/view.php?nu=505 (last accessed: September 8, 2014). Options for Fertility Preservation in Cancer Patients 22. Huang JY, Tulandi T, Holzer H, Tan SL, Chian RC. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril 2008; 89: 567–72. 23. Chian RC, Uzelac PS, Nargund G. In vitro maturation of human immature oocytes for fertility preservation. Fertil Steril 2013; 99: 1173–81. 24. Roesner S, von Wolff M, Eberhardt I, Beuter-Winkler P, Toth B, Strowitzki T. In vitro maturation: a five-year experience. Acta Obstet Gynecol Scand 2012; 91: 22–7. 25. Donnez J, Dolmans MM, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril 2013; 99: 1503–13. 26. Rosendahl M, Schmidt KT, Ernst E, Rasmussen PE, Loft A, et al. Cryopreservation of ovarian tissue for a decade in Denmark: a view of the technique. Reprod Biomed Online 2011; 22: 162– 71. 27. Dittrich R, Lotz L, Keck G, Hoffmann I, Mueller A, et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 2012; 97: 387–90. 28. Amorim CA, Curaba M, Van Langendonckt A, Dolmans MM, Donnez J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online 2011; 23: 160–86. 29. Dittrich R, Mueller A, Binder H, Oppelt PG, Renner SP, et al. First retransplantation of cryopreserved ovarian tissue following cancer therapy in Germany. Dtsch Arzteblatt Intern 2008; 105: 274–8. 30. Muller A, Keller K, Wacker J, Dittrich R, Keck G, et al. Retransplantation of cryopreserved ovarian tissue: the first live birth in Germany. Dtsch Arzteblatt Intern 2012; 109: 8–13. 31.Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood 2010; 116: 2908–14. 32. Lotz L, Montag M, van der Ven H, von Wolff M, Mueller A, et al. Xenotransplantation of cryopreserved ovarian tissue from patients with ovarian tumors into SCID mice – no evidence of malignant cell contamination. Fertil Steril 2011; 95: 2612–4. 33. Liebenthron J, Koster M, Drengner C, Reinsberg J, van der Ven H, Montag M. The impact of culture conditions on early follicle recruitment and growth from human ovarian cortex biopsies in vitro. Fertil Steril 2013; 100: 483–91. 34. Telfer EE, McLaughlin M. In vitro development of ovarian follicles. Semin Reprod Med 2011; 29: 15–23. 35. Dittrich R, Lotz L, Mueller A, Hoffmann I, Wachter DL, et al. Oncofertility: combination of ovarian stimulation with subsequent ovarian tissue extraction on the day of oocyte retrieval. Reprod Biol Enocrinol 2013; 11: 19. 36. Huober-Zeeb C, Lawrenz B, Popovici RM, Strowitzki T, Germeyer A, et al. Improving fertility preservation in cancer: ovarian tissue cryobanking followed by ovarian stimulation can be efficiently combined. Fertil Steril 2011; 95: 342–4. 37. Jahnukainen K, Ehmcke J, Hou M, Schlatt S. Testicular function and fertility preservation in male cancer patients. Metabol 2011; 25: 287–302. 38. Shetty G, Meistrich ML. Hormonal approaches to preservation and restoration of male fertility after cancer treatment. J Natl Cancer Inst Monogr 2005; 34: 36–9. 39. Schlatt SKS. Fertilitätsprotektion bei Männern. Gyn Endokrinol 2012; 10: 91–7. 40. Meseguer M, Garrido N, Remohi J, Pellicer A, Simon C, et al. Testicular sperm extraction (TESE) and ICSI in patients with permanent azoospermia after chemotherapy. Hum Reprod 2003; 18: 1281–5. 41. Ramasamy R, Lin K, Gosden LV, Rosenwaks Z, Palermo GD, Schlegel PN. High serum FSH levels in men with nonobstructive azoospermia does not affect success of microdissection testicular sperm extraction. Fertil Steril 2009; 92: 590–3. 42. Hsiao W, Stahl PJ, Osterberg EC, Nejat E, Palermo GD, et al. Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. J Clin Oncol 2011; 29: 1607–11. 43. Denschlag D, Germeyer A, Nawroth F, Lawrenz B, Henes M, et al. Counselling performance about fertility preservation in young women facing cancer: a prospective multicentric evaluation of patient’s concerns and experiences in 146 women. Selected oral communication session at the ESHRE-meeting in Munich, June 2–July 2, 2014. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 279 From classical to molecular physiology and back again N. Einer-Jensen1, H. F. R. Hunter2 Combining classical organ physiology with cellular and molecular approaches would create a symbiosis. Local effects due to local counter-current transfer of signal substances are underestimated. The authors have included suggestions for future experimental evaluation of these points. This essay is an attempt to document the potential benefits if traditional organ physiological science is revitalised and combined with cellular and molecular physiology. This should create a symbiotic effect. Suggestions taken mainly from reproductive physiology are mentioned, as are possible benefits, not least if applied in clinical situations. These include a) gamete and embryo culture systems with computerised control of specific temperature shifts, b) establishment of a very early pregnancy factor in women, c) using procedures of local counter-current brain cooling in hyperthermic emergencies, and d) applying nasal or rectal counter-current physiology in therapeutic situations. J Reproduktionsmed Endokrinol 2014; 11 (5–6): 280–5. Key words: counter-current transfer, hormones, blood vessels, local application, local effects Introduction The authors are no longer young and started working on experimental studies in physiology soon after the unravelling of DNA and invention of the electronic library. In those days, physiology was mainly in vivo and in vitro organ physiology, and research tried to describe the interaction between cells and organs [1]. During our careers, we have seen the development of cellular, biochemical and molecular physiology. The new disciplines are certainly successful and have produced dramatic results and major steps forward, while traditional physiology has starved – it seems to be out of fashion. Nonetheless, there has been development of modern electronic equipment, improved quality of experimental animals and procedures of anaesthesia etc., yet these are still not fully utilized. Clinical pharmacology investigations financed by industry are common, while basic clinical physiological research has suffered. As a result, references in the present article tend to be historic. The paragraphs that follow concern physiological integration between different organ systems, such as the importance of the cardio-vascular system for organ function and organ interaction. It is much more than a simple transfer of a substance from A to B. Attempts will be made to pin-point research results which could not have been created in test tubes alone. We will also suggest areas in need of more information and further research in domestic animals and humans. Most examples are taken from reproductive physiology since this is the research field of the authors. Without doubt, comparable examples could be taken from other areas. The authors do not want to downgrade the importance of any type of biochemical or molecular physiology research and knowledge, but rather wish to strengthen an understanding of the interactive aspects of physiology. Test tube physiology may be suitable to describe the function of an E. coli bacterium but it is insufficient to describe the function of a mammalian organism. The suggestion is to use the best of both worlds by reinvestigating classical physiology and combining it with the latest cellular and molecular techniques to obtain new knowledge. Such symbiotic studies represent a way forward. Young scientists perform literature searches with a computer. One consequence of this approach is that scientific activities and reports older than the rather recent computer age are overlooked or reinvented. This fact of modern life seems unavoidable. Young people never do as told. Mature scientists may diminish the loss or damage by publishing review articles in good journals (e.g. [2, 3]). This will transfer old knowledge to the present databases. Evolution of mammalian organisms has taken millions of years; the many special arrangements so developed have a purpose. There are of course differences between species, but also many similar mechanisms and likewise different mechanisms to achieve the same physiological goal. In most aspects, man seems to behave as a typical mammal. As a consequence, we may be able to answer some parts of the following questions, but further development of knowledge should keep future generations of physiologists usefully occupied and intellectually stimulated. Integration between the Circulatory System and Organs of the Reproductive-Endocrine Systems Humoral regulation is a transfer of regulatory substances from one cell (group of cells or whole organs) to another system of cells. “Regulatory substances” covers a broad range of substances, including traditional hormones, prostaglandins, and regulatory peptides. Three types of humoral distribution will be mentioned, Received: June 10, 2014; accepted after revision: October 31, 2014 From the 1Molecular Medicine, University of Southern Denmark, Odense, Denmark, and the 2Institute for Reproductive Medicine, Hannover Veterinary University, Hannover, Germany and Sidney Sussex College, University of Cambridge, Cambridge, U.K. Correspondence: Niels Einer-Jensen, DVM, DScDVM, DScMD. Molecular Medicine, University of Southern Denmark, Langelinie 144, DK-5230 Odense M, Denmark; e-mail: [email protected] 280 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Physiology, forward and back the third point being the main topic of this article: 1. Diffusion between neighbouring cells. A signal substance may diffuse to an adjacent cell through the extracellular fluid. This mode of action is termed paracrine. The maximum distance is probably of the order of 10 µ, otherwise the substance will diffuse into a capillary and the potential local effect will be abolished. Transmitter substances in the nervous system may be placed in this group as a special case with a closed diffusion space. 2. There is a high density of capillaries in every organ. The diffusion distance between a cell and a capillary is minute. When locally produced molecules diffuse in the extracellular space, they will, with a high probability, diffuse through a capillary wall into the lumen and be carried away. During the next passage of a capillary, such molecules may diffuse through the wall and extracellular space into a cell and perform an appropriate regulation. This mode of action is endocrine and represents traditional endocrinology. 3. Vessels to and from an organ, and even within an organ, may be anatomically very close and form a counter-current transfer system. This offers a local redistribution system that creates increased concentrations of locally-produced substances in the neighbouring artery compared with the aortic concentration. This increased concentration may have a local effect on other cell groups in the actual organ or in other organs supplied from the same local artery. This mode of action could be called counter-current endocrine and is a common but frequently overlooked mechanism. Basic Rules underlying Exchange from the Circulatory System to and from Organs The vascular system is not a passive set of tubes. Rather, it is a highly developed, dynamic, and exceedingly complicated system, which influences the transfer of substances and where many of the substances being transferred have an impact on the function of the exchange system itself. Diffusion in and out of blood vessels is mainly a passive process. Small molecules diffuse more effectively than larger ones, but even substances with a molecular weight of 500 Daltons or more may pass. Proteins will only pass to a minute degree. Lipophilic substances diffuse more effectively than hydrophilic substances of the same molecular weight. A low blood velocity in capillaries will facilitate equilibrium of substances between extracellular fluid and plasma. Excess fluid in the extracellular space (oedema) will delay diffusion to and from the capillaries and may disrupt normal capillary flow; substances will not be transferred properly. Many substances are bound effectively to plasma proteins (a single albumin and diverse globulins); close to 100% binding is common. Only the non-bound fraction is physiologically active. When a hormone diffuses from the production site into the venous blood, it is not protein-bound. It remains free in the blood for a limited period (seconds) before becoming bound; an equilibrium was not reached in bovine plasma even after 10 sec [4]. When a substance is transferred from venous to arterial blood through the walls of the vessels, it arrives unbound. If the binding takes just a few seconds, the free hormone will reach the capillaries before binding. A small percentage of unbound substance will therefore increase the total of free hormone substantially whereas the increase in total concentration will be small. Locally transferred hormones may thus have a huge impact. Plasma binding kinetics under in vivo conditions remains a critical but almost overlooked topic. Total blood flow through an organ may differ from the total capillary flow due to the presence of shunts. Functional arterio-venous anastomoses doubling the total blood flow are present, for example, in sheep ovaries without corpora lutea [5]. The reason is not obvious. Despite their low rate of flow, the lymphatic vessels are part of the local transfer system as the hormone concentrations are very high [6, 7]. Questions Demonstrating the Limitations of Knowledge in Physiological Science Why is the Temperature of the Testis and Epididymis lower than Body Temperature? It is basic physiological knowledge that testicular temperature is 1–2°C or more below deep body temperature in mammalian species with scrotal testes. The cooler testicular venous blood is in close contact with the artery in the Pampiniform plexus and cools the arterial blood [8]. The heat transfer is close to 100% effective, thus keeping the heat loss needed through the scrotum to a minimum [9]. The head of the epididymis is supplied from the testicular artery and therefore has a low temperature. The low temperature in scrotal mammals is thought to be essential for sperm maturation, including both nuclear and membranous changes, and for functioning as a cool storage site for sperm before ejaculation. These presumptions may be correct and indeed essential, but very large mammals like whales and elephants have testes in the abdomen. The reasons for a low temperature in scrotal mammals have not been clarified, although a possible reduction in the incidence of germ-line mutations is frequently mentioned. What is the Importance of Intra-Testicular and TesticularEpididymal Signals? One may postulate that cooling is just a side effect of hormonal redistribution. It is known that peptides and steroids are transferred to the testicular arterial blood in the Pampiniform plexus [10, 11]. Since the hormones are of testicular origin, they are recirculated to the testis and epididymis, thus creating a higher tissue concentration and essential effect locally. The increase in total hormonal content may be limited, but the hormones add significantly to the non-protein bound fraction for a brief period. Very few experiments have taken this into account. Local transfer of testosterone in primates has been found by several groups of scientists [12, 13], but we still need information about changes in the testis induced by local hormone transfer. Local peptides may be produced and transferred. They may be difficult to measure J Reproduktionsmed Endokrinol 2014; 11 (5–6) 281 Physiology, forward and back in peripheral blood samples due to dilution, although it could be possible to develop molecular probes to detect the levels in local samples. This would be an example of combining traditional physiology and molecular biology. Detection of peptides transferred via the local vascular system would add to our understanding of the regulation of sperm development. A testosterone binding protein in rete testis fluid was once thought to be essential for the transport of testosterone from testis to epididymis, but it may be of less importance due to the local vascular supply of the hormone. It could be tempting to stimulate testicular or epidymal function through appropriate intramuscular testosterone injections. The peripheral testosterone concentration in blood may increase. However, the overall testicular production would decrease due to decreased stimulation with gonadotrophins caused by negative feedback from the peripheral injection. In addition, the local influence of counter-current transfer of testosterone could be abolished. Why is the Temperature of large Graafian Follicles lower than in the rest of the Ovary? The close apposition between the ovarian vessels in man was observed long ago [14]. Such intimacy indicates a countercurrent mechanism, the presence of which was confirmed more than 300 years later [15, 16]. Many animal experiments in several species have also documented counter-current transfer [17]. Large pre-ovulatory follicles may be one or two degrees Centigrade cooler than the rest of the ovarian tissues [18, 19]. Nature has developed a local cooling system for pre-ovulatory follicles within a complicated organ positioned deep in the abdomen. The cooling may be important for the development process of the gamete or for the follicular tissues, but we do not know why or how. It is unlikely that evolution of such complicated processes involving both male and female gametes does not have a purpose. Fertility work involving follicle or oocyte culture could be performed at an appropriate reduced temperature although, in reality, subtle changes in temperature may be required. A computerized temperature control program should provide a way forward in this dynamic sphere. 282 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Cooling of the large follicles may be a “side effect”, since all known vascular networks exchanging heat energy also transfer substances. Such local transfer of regulatory substances may create a not-yet-investigated local environment. This is an area where traditional animal experiments and molecular physiology together may clarify a long-standing conundrum. What is the Significance of Intra-Ovarian Signals? The adult ovary is an organ with diverse tissue types (follicles, corpora lutea, corpora albicantia, interstitial cells) and a cyclic function. Small follicles grow to medium size and some of them are stimulated to become mature, others to degenerate. Follicular growth is influenced by larger follicles and corpora lutea. There is every reason to believe that much of the ovarian regulation is local through local diffusion between neighbouring cells or through exchange between the ovarian vein and arterial blood of steroids and peptides. Mid-size follicles may be stimulated or inhibited by hormones from one or several large follicles. Local recirculation of progesterone from one or multiple corpora lutea may also regulate follicular growth. The fine-tuning of stimulation versus degeneration as well as the selection of the large “successful” follicles are not fully understood. Ovulations tend to shift between the ovaries in species with a single ovulation (the shift is not obligatory) but the tendency to alternation indicates that a one-sided regulation is involved. The field is open for investigation. In this context, a regulatory influence of germ cells should not be overlooked. Indeed, one of the authors has proposed that the oocyte acts as a centrally-located computer, programming and integrating conversations with ovarian somatic cells [20]. What is the Importance of Local Signals from the Ovary to the Fallopian Tube and Uterus? The Fallopian tube receives the eggs and sperm, and fertilization occurs here. The young embryo(s) are maintained in the tube for some days (2–7 days), depending on species. The tube is a highly developed organ, much more than a simple conduit. Sperm transport and control of their numbers in the Fallopian tube are tightly regulated processes, as is move- ment of the fertilized eggs (embryos) stepwise through the tube. Nutrition of a developing embryo is made available through secretory processes in the tube. Immunological suppression may occur since the embryos contain foreign proteins from the male genes. Signals derived from the ovary prepare the tube for a developing embryo [21, 22]. A branch of the ovarian artery supplies the Fallopian tube. Ovarian hormonal signals transferred in the vascular plexus will reach the tube locally. In mono-ovulatory animals and man, progesterone and oestrogens will reach the ipsilateral tube in “higher than normal” concentrations due to local transfer. Since the function of the tube is hormone-dependent, a local impact must be expected – and the hormonal changes are not measurable in peripheral blood. The morphology and function of the Fallopian tube on the ovulatory and contralateral sides should be compared during the ovulatory cycle in man. Any difference between the two tubes would strongly support ipsilateral mechanisms. It is improbable that progesterone and oestrogens are the only regulatory substances. Signal peptides may be expected as well as prostaglandins. Here again is a rich field for investigation combining in vivo trials with molecular techniques. The ipsilateral aspect is documented in man [23, 24]. During the follicular and luteal phases, the border from either the uterine or ovarian arterial supply is moving in the ipsilateral side of blood supply during each ovulatory cycle. The ovulatory side is “preparing” the utero-tubal junctional region to receive the developing embryo through oestrogen secretion and later through progesterone secretion, both hormones being transferred unilaterally to the ovarian and thus tubal arterial blood. Observations suggest that miscarriage is less likely if the embryo implants in the ipsilateral fundus, again supporting the unilateral aspect. It is surprising that assisted fertility work is as successful as it is when considering our limited knowledge of early events in the primate uterus. What is the Purpose of Local Signals from the Fallopian Tube and Uterus to the Ovary? The ovarian veins drain the ovary and Fallopian tube and also parts of the uterus. Uterine blood supply may be an im- Physiology, forward and back portant factor in the regulation of the oestrous cycle [25]. This is a region in which arterial supply and venous return are not identical. In cows, sheep and several other species, PGF2 is secreted from the uterus late in the oestrous cycle if fertilization fails or if eggs are retained in the Fallopian tube or embryos fail to implant – this is a non-pregnant signal inducing degeneration of the corpus luteum. Counter-current transfer of prostaglandin takes place in the ovarian veinarterial plexus, the concentration in peripheral blood being hardly measurable due to metabolism of the hormone during the first pulmonary passage [26]. The same mechanism is not present in man, where a positive pregnancy stimulus (hCG, human Chorionic Gonadotrophin) is the accepted means of maintaining corpus luteum function. hCG is measurable in peripheral blood a week after conception, and commercially available urine assay kits will confirm conception after a missed menstrual period. hCG is probably too large a molecule to be transferred in the vascular plexus and an active transfer mechanism has so far not been documented. There is some indication that degeneration of the corpus luteum is prevented before the hCG level is significantly increased. Hormone-containing intra-uterine devices (IUDs) are documented to be effective in preventing pregnancies, whilst at the same time diminishing side effects of IUDs such as spotting and menstrual bleeding volume. Observations indicate that they also have an effect on ovarian function (which could involve local transfer mechanisms). Concerning signals from the uterus to the ovaries, there remain outstanding questions. For example, at the end of the luteal phase in pigs, there is controversy as to the mechanism of establishing pregnancy. In the presence of embryos, the uterine luteolysin PGF2 is said to be internalised into the uterine lumen (exocrine secretion) rather than entering the uterine veins [27]. However, results from another laboratory using the pig model show that high titres of PGF2 can indeed enter the uterine veins at the time of establishment of pregnancy (Days 13–16). The explanation proposed here was that luteotrophins from the many elongated conceptuses overcome the influence of uterine luteolysin and permit establishment of the corpora lutea of pregnancy [28]. Further studies are needed to reconcile these differences. A potent local impact of multiple viable conceptuses should not be overlooked. How soon does a Woman know she is Pregnant? Many years ago, an Australian group postulated the presence of an “early pregnancy factor” (EPF) in serum [29]. The work was controversial because, in the beginning, it was difficult to repeat the Rosette test in other laboratories. Nonetheless, later immunological investigations supported the idea. The putative factor was found in pregnant women [30]. This, together with the suspicion that hCG may on occasions be produced a few days too late to promote survival of the corpus luteum, make more work around EPF much needed. The present authors postulate that the young embryo secretes a “pregnancy signal” in minute concentrations which is amplified by the neighbouring suspension of follicular cells [31]. The signal is detected by the endosalpinx and induces a larger production of the “real” early pregnancy signal. Molecular biology should be applied in suitable animal experiments to test this hypothesis. The EPF may, especially during the first days of a pregnancy, be difficult to measure in peripheral blood due to dilution. It may also be difficult to investigate the topic in man for ethical reasons, but it is potentially of considerable importance and could be performed using in vitro culture material. Only 15–30% of the implanted embryos survive to give viable foetuses. This estimate is based on the assumption that most delayed menstruations are associated with early abortions. Vaginal progesterone treatment following egg transfer seems to increase the pregnancy rate to the normal range, but treatment with EPF, if it ever becomes available, may improve the outcome. Women sometimes describe “being sure” of their pregnancy a few days after conception, but a clinical trial around the issue is missing. A key trial could involve weekly blood samples from “just married women” lacking any contraception. hCG, EFP, and progesterone concentrations should be correlated with the subjective experiences of the women (when did you feel pregnant?). Why is the Adrenal Gland Producing both Adrenalin and Corticosteroids? The adrenal gland is a morphologically unusual combination: the cortex producing corticosteroids develops from mesoderm and the adrenalin producing medulla originates from ectoderm, combination of distinct tissues also exists in the pituitary gland. A probable explanation for this arrangement is that adrenalin producing tissues benefit from the close contact with the corticoid producing tissue [32]. It has been suggested that local transfer of corticoids from the small veins to the adrenal artery takes place and facilitates adrenalin production. Medication with corticoids will suppress the cortical production of hormones and this may influence adrenalin production. This possibility appears not to have been been investigated with modern techniques. What is the Purpose of a Cooling Mechanism to the Brain? The survival of a mammal is threatened if the body temperature increases by 5° or 6° C; the first organ to be damaged is the brain. Running (fight or escape), fever and environmental heat stress may thus be life-threatening. A brain cooling mechanism has been documented in ruminants including camels, likewise in pigs and rats [33]. A cooling mechanism has also been postulated in the horse and man. Respiratory air cools the nasal cavity and therefore the nasal venous blood. Heat energy is exchanged between this blood and carotid blood in the plexus, decreasing the temperature by several degrees Centigrade in carotid blood. Increased respiration due to running or heat stress will increase the cooling effect. Auto-regulation prevents cooling if the brain temperature is normal or low; the blood will be redirected from the deep veins to superficial veins before reaching the jugular veins. The mechanism has not been fully documented in man. In clinical studies, pressure and temperature probes are used in hypothermic patients, but the brain cooling thesis cannot be tested in this group of patients as the cooling mechanism is shut down in the hypothermic patient by an auto-regulatory mechanism. Weis et al. [34] have suggested a new method for temperature measurements in man based on Magnetic Resonance Spectroscopy J Reproduktionsmed Endokrinol 2014; 11 (5–6) 283 Physiology, forward and back Imaging (MRSI). We suggest a pre-hospital investigation on intubated, potential or actual hyperthermic patients: flush the nasal cavity in intubated patients with air or oxygen before arrival at the hospital. One logical consequence is that brain damage should be less extensive. Does a Local Hormonal Exchange System exist in the Brain? The short answer is “yes”. Steroid transfer from nasal vein blood or the nasal cavity has been demonstrated in isolated, perfused pig heads [35]. Transfer of several substances has also been found from the nasal cavity in rats [36]. It should be possible to treat patients by way of nasal application to obtain higher brain arterial concentrations than indicated by peripheral blood samples; one may call it a favourable therapeutic ratio. The topic is under-explored, and human trials and better animal models are needed. The clinical possibilities are considerable. Has the brain vascular transfer system developed to favour brain cooling or for signal substance transfer or both? Why have comparable transfer mechanisms of hormones evolved in the brain, the testis and the ovary? The physiological advantages must be significant. Could molecular studies give guidance here? Regulation of temperature is critical for nuclear, cytoplasmic and membrane function. Are hormones distributed by the Peritoneal Fluid? The peritoneal cavity is not passive, and its ability to combat infections is well known. However, the possible involvement of the peritoneum in distribution of hormones is seldom appreciated [37]. Man is predominately mono-ovulatory. In each cycle, the ovary producing the dominant follicle and corpus luteum creates a unilateral hormonal sphere influencing the function of the nearby organs (Fallopian tube, tip of uterus) [38]. The local hormonal environment is mainly created by local transfer of hormones between the blood and lymph vessels, and also by post-ovulatory leakage from the ruptured follicles which have elevated steroid concentrations in the coagulated follicular fluid. Local concentration differences in steroid hormones have been found in peritoneal fluid, and peritoneal fluid is in contact with the endosalpinx. Pre-ovulatory oestrogens and post-ovu284 J Reproduktionsmed Endokrinol 2014; 11 (5–6) latory progesterone in peritoneal fluid may influence diverse functions of the Fallopian tube. Peritoneal fluid may therefore prove part of the explanation for a local regulation. Hormones in peritoneal fluid may include not only those derived from the ovaries, but also from the intestines, its mesenteries and associated deposits of adipose tissue such as leptin. In this regard, post-operative surgical adhesions developing between the uterus and intestines in pigs induce maintenance of the corpora lutea, an observation corroborated by suturing together 15–20 cm portions of corresponding uterine and intestine tissues [Léglise PC, Hunter RHF, 1968, unpublished observations]. Why is Drug Administration via the Nose, Oral Cavity, Rectum, and Vagina not yet universally accepted when enhanced local Effects can result from such Treatment? The short answer is: lack of knowledge and little discussion in the medical school curriculum. There are many advantages in these special routes of administration. However, interest in such routes is limited and few investigations have been made. There may even be a built-in negative bias: patients and doctors do not like it, it is a nuisance; both groups want oral pills or injections. Rectal or vaginal treatment used to be quite common but it gradually went out of fashion. This was before the distinct benefits of local drug administration were documented. Doctors and veterinarians introduced long-acting antibiotics and sulphur pills, oil suspension or implants into the uterus or rectum. The dose was smaller than for general treatment (penicillin was expensive in those days) and, especially in ruminants, the effect on the stomach microflora was less dramatic. Few treatments survived: progesterone (gestagen) containing “vagitories”, the treatment seemed successful in preventing early abortions after embryo transplantation; and sublingual application of nitroglycerine against angina pectoris. Vaginal application of oestrogens may also be useful to treat incontinence, since local transfer of substances takes place from the vagina to the uterus and bladder. The underlying rationale is that the first-pass liver metabo- lism is avoided and a local favourable therapeutic ratio induced. Counter-current transfer mechanisms add a new argument for local treatment, and the following comments will indicate the possibilities: 1. Intubated individuals with a high body or brain temperature should anticipate less brain damage if air is blown into the nasal cavities to cool the brain arterial blood. Clearly, this will not work at low body temperatures, but it does offer a safe and easily applied pre-hospital tool. 2. Drugs in nasal sprays may be locally transferred to brain arterial blood, and this partly specific treatment would favour the CNS compared to the peripheral nervous system. The system works in some animal species and possibly also in man. The documentation remains weak and further studies would be valuable. 3. Oral deposition of drugs has a special use at present: nitroglycerine under the tongue to enhance cardiac circulation. This is a proven quick and effective treatment – one may think of other possibilities. 4. Rectal administration has also a proven history, but patients tend to dislike the method. A first pass of the liver is avoided. The vascular supply to the distal 5–10 cm of rectum indicates that local transfer to the uterus and bladder may take place. In gynaecological cases, the rectum may be as useful in this respect as the vagina. In the male, rectal administration could be used for local treatment of bladder and prostate problems, but systematic investigations are needed. 5. Vaginal administration may be useful under specific circumstances. At present it is the most widely used application exploiting the advantages of a local counter-current transfer system. It is probably often used without knowledge of the local transfer. Vaginal administration of small doses of oestrogens (pills glued to the vaginal wall) tends to diminish incontinence in mid-aged women. Administration of progesterone after embryo transfer seems effective in preventing early abortion. Vaginal introduction of prostaglandin is used after administration of anti-gestagens in early pregnancy to induce uterine contractions and abortion. Physiology, forward and back Conclusion 8. Morgentaler A, Stahl BC, Yin Y. Testis and temperature: an historical, clinical, and research perspective. J Androl 1999; 20: 189–95. The authors believe that studies combining classical organ physiology with cellular and molecular approaches would create a symbiosis that should increase our present knowledge dramatically. Furthermore, we believe that local effects due to local counter-current transfer of signal substances are underestimated and should always be included when discussing regulation of any organ function. The authors have included various suggestions for future experimental evaluation of these points. 9. Sørensen HG, Lambrechtsen J, Einer-Jensen N. Efficiency of the counter current transfer of heat and 133xenon between the pampiniform plexus and testicular artery of the bull under in vitro conditions. Int J Androl 1991; 14: 232–40. Conflicts of Interest 14. De Graaf R. De Mulierum Organis Generationi Inservientibus Tractatus Novus. Hack, Leyden, 1672. Both authors contributed to the manuscript. Neither has any conflicts of interest. 10. Free MJ, Tillson SA. Local increase in concentrations of steroids by venous-arterial transfer in the Pampiniform plexus. Curr Top Mol Endocrinology 1975; 2: 181–94. 11. Bayard F, Boulard PY, Huc A, Pontonnier F. Arterio-venous transfer of testosterone in the spermatic cord of man. J Clin Endocrinol Metab 1975; 40: 345–6. 12. Dierschke DJ, Walsh SW, Mapletoft RJ, Robinson JA, Ginther OJ. Functional anatomy of the testicular vascular pedicle in the rhesus monkey: evidence for a local testosterone concentrating mechanism. Proc Soc Exp Biol Med 1975; 148: 236– 42. 13. Einer-Jensen N, Waites GM. Testicular blood flow and a study of the testicular venous to arterial transfer of radioactive krypton and testosterone in the rhesus monkey. J Physiol 1977; 267: 1–15. 15. Bendz A, Einer-Jensen N, Lundgren O, Janson PO. Exchange of krypton-85 between the blood vessels of the human uterine adnexa. J Reprod Fertil 1979; 57: 137–42. 16. Einer-Jensen N, Hunter RHF. Physiological and pharmacological aspects of local transfer of substances in the ovarian adnexa in women. Hum Reprod Update 2000; 6: 132–8. References: 17. Ginther OJ. Comparative anatomy of the utero-ovarian vasculature. J Anim Sci 1974; 39: 550–64. 1. Hanngren Å, Einer-Jensen N, Ullberg S. Specific uptake in corpora lutea of a non-steroid substance with anti-gestagenic properties. Nature 1965; 208: 461–2. 18. Hunter RHF, Bogh IB, Einer-Jensen N, Müller S, Greve T. Preovulatory Graafian follicles are cooler than neighbouring stroma in pig ovaries. Hum Reprod 2000; 15: 273–83. 2. Einer-Jensen N. Counter current transfer in the ovarian pedicle and its physiological implications. Oxf Rev Reprod Biol 1988; 10: 348–81. 19. Hunter RHF. Temperature gradients in female reproductive tissues. Reprod Biomed Online 2012; 24: 377–80. 3. Einer-Jensen N, Hunter RHF. Counter-current transfer in reproductive biology. Reproduction 2005;129: 9–18. 4. Einer-Jensen N. Slow binding of progesterone to plasma proteins. Acta Pharmacol Toxicol 1984; 55: 18–20. 5. Mattner PE, Brown BW, Hales JR. Evidence for functional arterio-venous anastomoses in the ovaries of sheep. J Reprod Fertil 1981; 63: 279–84. 6. Setchell BP, Laurie MS, Flint AP, Heap RB. Transport of free and conjugated steroids from the boar testis in lymph, venous blood and rete testis fluid. J Endocrinol 1983; 96: 127–36. 7. Stefanczyk-Krzymowska S, Krzymowski T, Wasowska B, Chlopek J. Retrograde transfer of ovarian steroid hormones to the ovary in the porcine periovarian vascular complex. Exp Physiol 2002; 87: 361–71. 20. Hunter RHF. Physiology of the Graafian follicle and ovulation. Cambridge University Press, Cambridge, 2003. 21. Gabler C, Ojau S, Muller, Schon J, Bond A, Einspanier R. Exploring cumulus-oocyte-complex-oviductal cell interactions: gene profiling in the bovine oviduct. J Physiol Pharmacol 2008; 59 (Suppl. 9): 29–42. 22. Hunter RHF. Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc 2012; 87: 244–55. 23. Cicinelli E, Cignarelli M, Sabatelli S, Romano F, Schonauer LM, et al. Plasma concentrations of progesterone are higher in the uterine artery than in the radial artery after vaginal administration of micronized progesterone in an oil-based solution to postmenopausal women. Fertil Steril 1998; 69: 471–3. 24. Cicinelli E, Einer-Jensen N, Alfonso R, Marinaccio M, Nicoletti R, et al. A dominant ovarian follicle induces unilateral changes in the origin of the blood supply to the tubal corner of the uterus. Hum Reprod 2005; 20: 3208–11. 25. Krzymowski T, Stefanczyk-Kromowska S. Uterine blood supply as a main factor involved in the regulation of the oestrous cycle, a new theory. Reproductive Biology 2002; 2: 93–114. 26. McCracken JA, Carlson JC, Glew MF, Goding JR, Baird DT, Green K and Samuelson B. Prostaglandin F2 identified as a luteolytic hormone in the sheep. Nat New Biol 1972; 238: 129– 34. 27. Bazer FW, Thatcher WW. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin PGF2 by uterine endometrium. Prostaglandins 1977; 14: 397–401. 28. Hunter RHF, Poyser NL. Uterine secretion of prostaglandin PGF2 in anaesthetised pigs during the oestrous cycle and early pregnancy. Reprod Nutr Develop 1982; 22: 1013–23. 29. Morton H, Rolfe B, Clunie GJ. An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1977; 1: 394–7. 30. Haq A, Mothi BA, Al-Hussein K, Al-Tufail M, Hollanders J, et al. Isolation, purification and partial characterisation of early pregnancy factor (EPF) from sera of pregnant women. Eur J Med Res 2001; 6: 209–14. 31. Hunter RHF, Einer-Jensen N. Potential amplification of early pregnancy signals by ovarian follicular cells in suspension within the Fallopian tube. Zygote 2003; 11: 237–43. 32. Einer-Jensen N, Carter AM. Local transfer of hormones between blood vessels within the adrenal gland may explain the functional interaction between the adrenal cortex and medulla. Med Hypotheses 1995; 44: 471–4. 33. Einer-Jensen N, Khorooshi MH. Cooling of the brain through oxygen flushing of the nasal cavities in intubated rats: an alternative model for treatment of brain injury. Exp Brain Res 2000; 130: 244–7. 34. Weis J, Covaciu L, Rubertsson S, Allers M, Lunderquist A, et al. Phase-difference and spectroscopic imaging for monitoring of human brain temperature during cooling. Magn Reson Imaging 2012; 30: 1505–11. 35. Skipor J, Grzegorzewski W, Einer-Jensen N, Wasowska B. Local vascular pathway for progesterone transfer to the brain after nasal administration in gilts. Reprod Biol 2003; 3: 143–59. 36. Einer-Jensen N, Larsen L. Transfer of tritiated water, tyrosine, and propanol from the nasal cavity to cranial arterial blood in rats. Exp Brain Res 2000; 130: 216–20. 37. Hunter RHF, Cicinelli E, Einer-Jensen N. Peritoneal fluid as an unrecognised vector between female reproductive tissues. Acta Obstet Gynecol Scand 2007; 86: 260–5. 38. Cicinelli E, Einer-Jensen N, Hunter RHF, Cignarelli M, Cignarelli A, et al. Peritoneal fluid concentrations of progesterone in women are higher close to the corpus luteum compared with elsewhere in the abdominal cavity. Fertil Steril 2009; 92: 306–10. J Reproduktionsmed Endokrinol 2014; 11 (5–6) 285 Mitteilungen der Gesellschaften – AGRBM www.agrbm.de Gesellschaftsmitteilungen AGRBM Arbeitsgemeinschaft Reproduktionsbiologie des Menschen e.V. Mitgliedsgesellschaft von DVR | VBIO | NFM | www.agrbm.de Einladung zum 6. Praxisseminar der AGRBM 17. – 19. April 2015 in Düsseldorf Liebe Kolleginnen und Kollegen, wir möchten Sie und Euch ganz herzlich zum 6. Praxisseminar der AGRBM nach Düsseldorf einladen. Vom 17. bis 19. April 2015 bietet sich uns die Möglichkeit, in bewährter Form Erfahrungen und Meinungen auszutauschen und neue Ideen für die tägliche Arbeit zu sammeln. Neben einem grundlagenwissenschaftlichen Block zur Physiologie der regelrechten und fehlerhaften Implantation möchten wir einen Blick über den Tellerrand des Laboralltags wagen und uns einem Themenblock widmen, der in vielen Zentren immer mehr Raum einnimmt. Traditionelle chinesische Medizin, Hypnose und die psychosomatische Begleitung des Kinderwunschpaares – alles Hokuspokus oder wichtiger Bestandteil einer ganzheitlichen Behandlung? Die Seminarthemen spiegeln die vielen Facetten der Reproduktionsbiologie wider. Eine Neuerung ist die Verlängerung des Seminarteiles auf zwei Blöcke, so dass die Möglichkeit besteht, zwei Seminare zu besuchen. Die Abendveranstaltung wird Düsseldorf von seiner schönsten Seite zeigen – vom Rhein aus – beste Voraussetzungen für einen stimmungsvollen Abend! Abgerundet wird unser Treffen durch die traditionelle Diskussionsrunde am Sonntagvormittag, zudem wird die Industrie ihre Produkte im Bereich Labormonitoring vorstellen. In Zeiten immer schwieriger werdenden Sponsorings, sind wir froh, auch dieses Jahr wieder viele Industrievertreter begrüßen zu dürfen. Wir freuen uns sehr auf das gemeinsame Treffen – wir heißen altbekannte und neue Gesichter willkommen in Düsseldorf! Herzliche Grüße aus dem Rheinland VERANSTALTUNGSORT: Van der Valk Airporthotel Düsseldorf Am Hülserhof 57 40472 Düsseldorf Tel. 0211 200630 Foto: www.fischer-peter.de 286 J Reproduktionsmed Endokrinol 2014; 11 (5–6) www.agrbm.de Mitteilungen der Gesellschaften – AGRBM AGRBM Arbeitsgemeinschaft Reproduktionsbiologie des Menschen e.V. Gesellschaftsmitteilungen Mitgliedsgesellschaft von DVR | VBIO | NFM | www.agrbm.de 6. Praxisseminar der AGRBM 17. – 19. April 2015 in Düsseldorf Programm Freitag, 17. April 2015 13.30 – 15.00 Uhr 1. Seminarteil ab 15.00 Uhr Anmeldung Andrologie: Strategien der Spermienaufarbeitung oder – Vernachlässigen wir die Männer? Hans-Christian Schuppe (Gießen), Verena Nordhoff 17.00 – 19.00 Uhr Hauptversammlung der AGRBM 19.30 Uhr Come-together mit Live-Cooking Forum Junge Biologen: Was ich noch nie gefragt habe, aber immer schon wissen wollte! Dunja Baston-Büst, Ralf Böhm Ohne Kommunikation ist alles nichts? Dagmar Nitsch-Musikant (Marl) Samstag, 18. April 2015 15.00 – 15.30 Uhr Kaffeepause /Ausstellungsbesuch ab 8.00 Uhr Anmeldung 15.30 – 17.00 Uhr 2. Seminarteil 8.45 Uhr Begrüßung Andrologie: Strategien der Spermienaufarbeitung oder – Vernachlässigen wir die Männer? Hans-Christian Schuppe (Gießen), Verena Nordhoff Vorträge 9.00 Uhr Immunologie der Implantation Sabine Seegerer (Hamburg) 9.30 Uhr Eileiter-Physiologie und EU Andrew Horne (Edinburgh) 10.00 – 10.30 Uhr Kaffeepause /Ausstellungsbesuch 10.30 Uhr TCM und IVF: Möglichkeiten und Grenzen Tanja Emde (Düsseldorf) 11.00 Uhr Psychosomatische Aspekte der Kinderwunschbehandlung Andrea Schäfer (Düsseldorf), Silke Gervers (Neuss) 11.45 Uhr Hypnose und IVF: alles nur Zauberei? Kirsten Voigt (Köln) 12.15 – 13.30 Uhr Mittagspause /Ausstellungsbesuch PKD und PID: Anwenderforum Werner Hoppenstedt, Jens Hirchenhain, NN Ohne Kommunikation ist alles nichts? Dagmar Nitsch-Musikant (Marl) 18.45 Uhr Abfahrt der Busse 19.00 Uhr Festabend: „Eine Schifffahrt, die ist lustig…“ Sonntag, 19. April 2015 9.00 – 10.30 Uhr Firmenpräsentationen zum Thema „Labormonitoring“ 10.30 – 11.00 Uhr Zusammenfassung der Seminare von Samstag 11.00 – 12.30 Uhr Offene Diskussionsrunde 12.30 Uhr Veranstaltungsende J Reproduktionsmed Endokrinol 2014; 11 (5–6) 287 Mitteilungen der Gesellschaften – AGRBM www.agrbm.de Gesellschaftsmitteilungen AGRBM Arbeitsgemeinschaft Reproduktionsbiologie des Menschen e.V. Mitgliedsgesellschaft von DVR | VBIO | NFM | www.agrbm.de 6. Praxisseminar der AGRBM 17. – 19. April 2015 in Düsseldorf TEILNAHMEGEBÜHR bis 13.3.2015 nach 13.3.2015 Gesellschaftsabend AGRBM / EFA 170 EUR 190 EUR 30 EUR Nichtmitglieder 100 EUR 120 EUR 50 EUR Mitglieder Die Teilnahmegebühren sind zu entrichten auf das Konto der AGRBM IBAN DE 76 5085 0150 0040 0057 49 BIC HELADEF1DAS Sparkasse Darmstadt Stichwort: Düsseldorf 2015 ORGANISATION: Lisa Schanze, Doro aus dem Siepen, Ralf Böhm, Interdisziplinäres Kinderwunschzentrum Düsseldorf Manuela Bienemann, Suna Cukurcam, Kinderwunsch-Kö, Düsseldorf Dunja Baston-Büst, Jens Hirchenhain, UniKid Düsseldorf Ausführliche Informationen, Anfahrt und Anmeldung auf www.agrbm.de HOTELS Van der Valk Airporthotel Düsseldorf (Veranstaltungsort) B&B Hotel Düsseldorf-Airport Am Hülserhof 57 40472 Düsseldorf Tel 0211 200630 [email protected] www.airporthotelduesseldorf.de Theodorstraße 285 40472 Düsseldorf Tel 0211 171 440 [email protected] www.hotelbb.de DZ/EZ (Comfort Zimmer) für 119 EUR incl. Frühstück 5 min Fußweg zum Tagungshotel EZ für 52 EUR incl. Frühstück Abrufkontingent bis 17.2.2015 Abrufkontingent bis 18.2.2015 STICHWORT BEI ALLEN HOTELS: AGRBM Foto: www.fischer-peter.de 288 J Reproduktionsmed Endokrinol 2014; 11 (5–6) www.agrbm.de / www.repromedizin.de Mitteilungen der Gesellschaften – AGRBM und DGRM PROGRAMM Gesellschaftsmitteilungen 9.00 Uhr Begrüßung 9.15 – 10.45 Uhr Dr. Alberto Tejera, PhD Clinical application of time lapse embryoculture – the IVI experience + Dr. med. Ines Beyer Endometriose & Fertilität – Aktuelle Aspekte aus Klinik und Forschung 10.45 – 11.15 Uhr Kaffeepause Liebe Kolleginnen und Kollegen, wir möchten Sie sehr herzlich zur ersten gemeinsamen Fortbildungsveranstaltung von AGRBM und DGRM nach Düsseldorf einladen. Reproduktionsmedizin und Reproduktionsbiologie – zwei spannende Fachgebiete, die zusammen gehören! Das Konzept der Veranstaltung zielt ganz bewusst darauf ab, beide Gebiete zu verzahnen. Die Teilnehmer können dabei sowohl Bekanntes vertiefen als auch neue Einblicke gewinnen. Das Programm bietet hochklassige Experten aus Forschung, Labor, Klinik und Recht – ein weiter Bogen, der viele Aspekte unseres breit gefächerten Feldes beleuchtet. Wir freuen uns darauf, viele von Ihnen in Düsseldorf zu begrüßen! 11.15 – 12.45 Uhr Prof. Carlos Simon, MD, PhD Genetic matching of oocyte donor and recipient couple: what is possible, what is reasonable? + Prof. Dr. jur. Helmut Frister Embryonenschutzgesetz und PID – wo stehen wir aktuell in Deutschland? 12.45 – 13.30 Uhr Mittagspause Herzliche Grüße 13.30 – 15.45 Uhr Dr. Ana Cobo, PhD Slow-freezing or vitrification of human gametes and embryos in daily IVF-routine – one protocol for everything? + PD Dr. med. Ariane Germeyer Kryokonservierung und Retransplantation von Ovargewebe – Erfahrungen aus dem Netzwerk Fertiprotekt + PD Dr. med. Sören von Otte Social Freezing – eine „dauerhaft junge“ Versicherung? Jan-Steffen Krüssel + Jens Hirchenhain + Dunja Baston-Büst Verabschiedung ORGANISATION Prof. Dr. med. Jan-Steffen Krüssel Dr. rer. nat. Jens Hirchenhain Dr. rer. nat. Dunja Baston-Büst Universitätsfrauenklinik Düsseldorf Universitäres interdisziplinäres Kinderwunschzentrum Düsseldorf (UniKiD) Moorenstr. 5, 40225 Düsseldorf 17. JANUAR 2015 DÜSSELDORF VERANSTALTUNGSORT Haus der Universität Schadowplatz 14, 40212 Düsseldorf www.hdu.hhu.de WWW. AGRBM.DE WWW. DGRM.EU INFORMATION + ANMELDUNG DGRM Geschäftsstelle Amsterdamer Weg 78, 44269 Dortmund Telefon 0231-909 80 23, Mobil 0173-238 57 73 Fax 0231-906 24 51 [email protected] www.agrbm.de www.dgrm.eu J Reproduktionsmed Endokrinol 2014; 11 (5–6) 289 Mitteilungen der Gesellschaften – BRZ www.repromed.de Gesellschaftsmitteilungen BRZ-Mitteilungen Ankündigung Der BRZ freut sich außerordentlich darüber, dass die nachstehend genannte Studie nun endlich veröffentlicht werden kann. Als Mitglieder des Wissenschaftlichen Beirats haben Herr Professor H. Kentenich und Herr Dr. A. Jantke (BRZ) das „Werden“ der Studie inhaltlich begleitet. Untersuchung zur Situation von ungewollt und gewollt kinderlosen Frauen und Männer in Deutschland Im Auftrag des Bundesministeriums für Familie, Senioren, Frauen und Jugend wurde eine sozialwissenschaftliche Untersuchung zur Situation kinderloser Frauen und Männer in Deutschland vom DELTA-Institut für Sozial- und Ökologieforschung durchgeführt. Ziel war es, die Kinderlosigkeit von Menschen aus unterschiedlichen Milieus sowie deren Ursachen und Folgen unter den besonderen Aspekten Geschlecht, Alter, Lebensphase, Lebenslauf, Werteorientierung, Lebensstile, Partnerschaft, soziales Umfeld und Migrationshintergrund zu erforschen. Die jetzt vorliegenden milieuspezifischen Untersuchungsergebnisse liefern erstmals valide Daten und Befunde über die vielfältigen Gründe, Motive, Auswirkungen und auch Diskriminierungserfahrungen kinderloser Frauen, Männer und Paare. Die sich daraus ergebenden zielgruppendifferenzierten Erkenntnisse sollen als Grundlage für Maßnahmen zur früh- zeitigen Aufklärung über (In-) Fertilität, zur Stärkung der psychosozialen Kinderwunschberatung und zur Verbesserung der gesellschaftlichen Akzeptanz bei Inanspruchnahme reproduktionsmedizinischer Behandlungen dienen. Insgesamt wird dies dazu beitragen, das Thema Kinderlosigkeit zu enttabuisieren und die Stigmatisierung der betroffenen Paare zu vermindern. Die Veröffentlichung der wissenschaftlichen Untersuchung soll noch in diesem Jahr erfolgen. Weitere Informationen hierzu finden Sie unter http://www.informationsportal-kinderwunsch.de/node/283. Korrespondenzadresse: Bundesministerium für Familie, Senioren, Frauen und Jugend Fachreferat 414 Tel.: 030/20655-0 E-Mail: [email protected] Ordentliche Mitgliederversammlung des BRZ 2015 Freitag, 1. bis Sonntag, 3. Mai 2015 in Berlin – gleiche Stelle – gleiche Welle, im Abion Hotel Spreebogen. 290 J Reproduktionsmed Endokrinol 2014; 11 (5–6) er Str. erg er S tr. e GLS Zio nsk irc hS tr. Hotel Fe Kastanienhof Sc hrb hw elli Zio ed ne ter nsk r Str irc hS . Str tr. . in Rhe rg sbe Ber erb Str. K Od der swal Eber alle ien ast an Str . tr. er S nau r. r St tr. lline er S Wo ünd m ine Sw Circus er ori n Ch Danzi ger Str. Ko l itz er Str. Wör th . zkistr Sred Schönhauser Allee Sc h önh auser A e lle r Str. lw r. r St lline Wo edte Schw . Str W ein b e r gs we g P a pp ela llee Lyc he n er Str . Apartmenthaus Zarenhof Str. Ka sta n i en alle e tian k Str. k St r . Can Knaac Knaac n St Pa pp el a llee Lyc he ne rS tr. tia Can r. Apartmenthaus Zarenhof GLS kistr. er Str. Wör th St r . llw itz hö nha user Allee Ch o r in er Str . na l lee Ka sta n ie z Sred Sc W ein be r gs we g tr. Hotel Fe Kastanienhof Sc hrb hw elli Zio ed ne ter nsk r Str irc . hS Str tr. . Circus Schönhauser Allee alle e ani en Ka st rS tr. Str. ski rch S r ge Str. k Knaac Zio n erb e Danzi ger Str. mü tr. r. er S r St nde ine llin Wo Sw R g ber s n i he tr. er S Od r edte Schw r. r St e u na Be r Str. k Str. Knaac r. r St lline Wo er wald s r e Eb Ko www.dgandrologie.de Mitteilungen der Gesellschaften – DGA Gesellschaftsmitteilungen DGA-Mitteilungen ϭϰƚŚ ƚŽ ϭϲƚŚ ŽĨ &ĞďƌƵĂƌLJϮϬϭϱ &ĂĐƚŽƌLJ,ŽƚĞůͲ DƺŶƐƚĞƌͲ 'ĞƌŵĂŶLJ ys/ƚŚ /ŶƚĞƌŶĂƚŝŽŶĂůtŽƌŬƐŚŽƉŽŶƚŚĞ ĞǀĞůŽƉŵĞŶƚĂŶĚ &ƵŶĐƚŝŽŶ ŽĨ ƚŚĞ ZĞƉƌŽĚƵĐƚŝǀĞ KƌŐĂŶƐ 'ĞƌŵůŝŶĞ ^ƚĞŵĐĞůůƐĂŶĚWƌŽŐĞŶŝƚŽƌƐ͗dŚĞZĞŐĞŶĞƌĂƚŝǀĞWŽƚĞŶƚŝĂůŽĨƚŚĞ'ŽŶĂĚƐ ^ƉĞĂŬĞƌƐ ĂǀŝĚůďĞƌƚŝŶŝ͕h^ ƌĞnj ZĂnj͕'ĞƌŵĂŶLJ ůĂƵƐzĚŝŶŐ ŶĚĞƌƐĞŶ͕ĞŶŵĂƌŬ ZĞŶĞĞZĞŝũŽWĞƌĂ͕h^ ůĂŶĐŚĞĂƉĞů͕h^ ŶŶĞƚƚĞZŝĐŚƚĞƌͲhŶƌƵŚ͕'ĞƌŵĂŶLJ ƌŝĂŶ,ĞƌŵĂŶŶ͕h^ ZĂLJZŽĚŐĞƌƐ͕ƵƐƚƌĂůŝĂ KƵƚŝ ,ŽǀĂƚƚĂ͕^ǁĞĚĞŶ ^ƚĞĨĂŶ^ĐŚůĂƚƚ͕'ĞƌŵĂŶLJ ZŽůĨ:ĞƐƐďĞƌŐĞƌ͕'ĞƌŵĂŶLJ ǀĞůLJŶdĞůĨĞƌ͕hŶŝƚĞĚ<ŝŶŐĚŽŵ WĞƚĞƌ<ŽŽƉŵĂŶ͕ƵƐƚƌĂůŝĂ :ŽŶĂƚŚĂŶdŝůůLJ͕h^ ƌŽƌ DĞŝƌŽǁ͕/ƐƌĂĞů ŶƐ ǀĂŶWĞůƚ͕ EĞƚŚĞƌůĂŶĚƐ ^ƚĞǀĞŶZĂŵŵ͕'ĞƌŵĂŶLJ ŶƚŚŽŶLJĞůĞnjŶŝŬ͕h^ dŚĞŶƵŵďĞƌŽĨƉĂƌƚŝĐŝƉĂŶƚƐŝƐůŝŵŝƚĞĚ͘&ŽƌĨƵƌƚŚĞƌŝŶĨŽƌŵĂƚŝŽŶƐĞĞŚƚƚƉ͗ͬͬǁǁǁ͘ƌĞƉƌŽǁŽƌŬƐŚŽƉϮϬϭϱ͘ĚĞ WK͗DŝĐŚĞůĞŽŝĂŶŝ͕ǀĞůLJŶdĞůĨĞƌ͕^ƚĞĨĂŶ^ĐŚůĂƚƚ ĂŶĚ:ŽĂĐŚŝŵtŝƐƚƵďĂ >K͗:ŽĂĐŚŝŵƐƐĞůŵĂŶ͕,ĞůŽŝƐĂ >ĂǀŽƌĂƚŽ ĂŶĚhƌƐƵůĂZƺƐĐŚŚŽĨĨ J Reproduktionsmed Endokrinol 2014; 11 (5–6) 295 Gesellschaftsmitteilungen Mitteilungen der Gesellschaften – DGA www.dgandrologie.de Andrologie in der Praxis Programm Testosterongabe bei älteren ko-morbiden Patienten? Prof. Hermann Behre / Halle Praktisches Vorgehen bei Pubertätsstörungen Dr. med. Julia Rohayem / Münster Münster 27. und 28. Februar 2015 Der depressive andrologische Patient Prof. Michael Zitzmann / Münster Praktische genetische Beratung in der Andrologie PD Dr. Frank Tüttelmann / Münster Der andrologische Patient mit Varikozele – praktisches Vorgehen Dr. med. Karen Czeloth / Münster Fertilitätsprotektion bei Jungen - wo stehen wir? Prof. Stefan Schlatt / Münster Erektile Dysfunktion – neue Therapieoptionen Prof. Dr. med. Hermann van Ahlen / Osnabrück Testosteronersatztherapie bei prostatektomierten Patienten Prof. Dr. med. Herbert Sperling / Mönchengladbach Operative Spermiengewinnung Prof. Dr. med. Sabine Kliesch / Münster Wie kann der Androloge mit dem Gynäkologen zusammen arbeiten? PD Dr. med. Andreas Schüring / Münster Psychosomatische Störungen bei Männern Prof. Dr. med. Gudrun Schneider / Münster Tagungsort Hands on Workshops Factory Hotel An der Germania Brauerei 5 48159 Münster US Sessions US Schilddrüse / Gefäß-Doppler Spermiogrammkurs / KRYO Tagungsleitung Prof. Michael Zitzmann Prof. Sabine Kliesch Priv.-Doz. Dr. Frank Tüttelmann Prof. Stefan Schlatt 296 J Reproduktionsmed Endokrinol 2014; 11 (5–6) Anmeldung WICARA Kongressorganisation Gabriele Wickert & José Aranzabal Amsterdamer Weg 78 / 44269 Dortmund Telefon: 0231-909 80 23 / Fax: 0231-906 24 51 Mobil: 0173-238 57 73 [email protected] www.wicara.de Weitere Informationen www.dga-intensivkurs.de Medizintechnik InControl – unabhängige Kontrolle im Labor Qualität und Zertifizierung Labotect fertigt Qualitätsprodukte und ist bereits seit 2003 als einer der ersten Medizinprodukte-Hersteller in Deutschland gemäß der DIN EN ISO 13485 kontinuierlich für Entwicklung, Produktion, Vertrieb und Service für Geräte und Instrumente für die assistierte Reproduktion, Gynäkologie, Chirurgie und Gewebekultur zertifiziert. Bitte fragen Sie vor Ihrer Kaufentscheidung immer nach den Zertifikaten, deren Geltungsbereich und überprüfen Sie im Zweifelsfall auch die Benannte Stelle! Labotect Labor-Technik-Göttingen GmbH entwickelt, produziert und vertreibt eine große Auswahl an Produkten für den Einsatz im Bereich assistierte Reproduktion, in der Medizin und in naturwissenschaftlichen Laboren. Herausragende Qualität und enger Kundenkontakt bestimmen die Firmenphilosophie seit über 40 Jahren. Inkubationstechnik ist einer der Schwerpunkte von Labotect. Äußerst kurze Erholzeiten für alle regulierbaren Parameter bei einem sehr hohen Sicherheitsstandard sowie komfortablem Design sind grundlegende Eigenschaften aller Labotect-CO2-Inkubatoren. Das InControl 1050 wurde für die Kontrolle der Bedingungen in Inkubatoren entwickelt, um Ihnen die Prüfung und Auswertung von CO2, Temperatur und O2 präzise und benutzerfreundlich zu ermöglichen. Praktisch, zuverlässig und präzise: InControl 1050 von Labotect Das InControl 1050 erfasst präzise die Messwerte von CO2, Temperatur und optional auch O2. Die CO2-Messung erfolgt über einen Zweistrahl-Infrarot-Sensor, welcher unabhängig von Temperatur und Feuchte arbeitet. Die Dokumentation der Werte kann als Einzelmessung oder in Messreihen mit wählbaren Intervallen Abbildung 1: InControl 1050 erfolgen, wobei die gemessenen Werte mit Datum, Zeit und Inkubatornummer gespeichert werden. Um Ihnen die Logistik in Ihrem Labor zu erleichtern, besitzt das InControl die Möglichkeit, die Messwerte von bis zu 16 Inkubatoren zu dokumentieren. Eine benutzerfreundliche Menüführung und die Möglichkeit, die Daten direkt mittels USB herunterzuladen, runden das System ab. Der Betrieb ist mittels wieder aufladbaren LiIon-Batterien oder einem Steckernetzteil möglich. Vertiefende Informationen zum Thema Zertifizierung und zu unseren Produkten erhalten Sie gerne auf Anfrage. Erhalten Sie einen Einblick in unser Produktsortiment und unsere Unternehmenskultur und besuchen Sie unseren Internetauftritt unter www.labotect.com! Weitere Informationen und verantwortlich für den Inhalt: Labotect GmbH Postfach 200212 D-37087 Göttingen E-Mail: [email protected] www.labotect.com J Reproduktionsmed Endokrinol 2014; 11 (5–6) 297 Medizintechnik Neueste Studienergebnisse belegen die Vorteile des EmbryoScope™ für die klinische Praxis Das EmbryoScope™ Time-Lapse-System (Abb. 1) ist seit 2009 im klinischen Einsatz. Inzwischen wurden Embryonen von über 200.000 Patientinnen mit dem EmbryoScope™ behandelt. Gewonnene Erfahrungen haben Hinweise geliefert, dass das EmbryoScope™ Time-LapseSystem in der klinischen Anwendung entscheidende Vorteile bietet. Eine neue, multizentrische Studie aus Spanien belegt nun eindrucksvoll, dass das EmbryoScope™ herkömmlichen Kulturmethoden überlegen ist. Abbildung 1: EmbryoScope™ Time-Lapse-Inkubator Bereits vor zwei Jahren wurde anhand einer groß angelegten, retrospektiven Untersuchung gezeigt, dass die ungestörte Kultur im EmbryoScope™ TimeLapse-System, kombiniert mit einem morphokinetischen Auswerteverfahren, eine relative Erhöhung der klinischen Schwangerschaftsrate um 20 % gegenüber der Kultur im Standardinkubator bewirkt [1]. Diese Ergebnisse wurden nun im Rahmen einer prospektiven Nachfolgestudie auf den Prüfstand gestellt. In der aktuellen Untersuchung [2] wurden Embryonen von 843 Patientinnen randomisiert und teilweise im EmbryoScope™, teilweise im Standardinkubator kultiviert. Zur Beurteilung der Embryonen mit dem EmbryoScope™ Time-Lapse-System wurde eine speziell adaptierte, morphokinetische Methode verwendet. Beim herkömmlichen Inkubationsverfahren wurde die etablierte, morphologische Beurteilung eingesetzt. Die vorliegende Studie kommt zum Ergebnis, dass unter 298 J Reproduktionsmed Endokrinol 2014; 11 (5–6) a b c Abbildung 2: (a): Implantationsrate in % aller transferierten Embryonen; (b): Klinische Schwangerschaftsrate in % aller Behandlungen; (c): Frühabortrate. Erstellt nach Daten aus [2]. den gewählten Bedingungen im Vergleich zu Standardverfahren Kultur und Evaluierung der Embryonen im EmbryoScope™ eine relative Zunahme der Implantationsrate um 21 % (Abb. 2a) bewirken und zu einer relativen Erhöhung der klinischen Schwangerschaftsrate um 23,2 % (Abb. 2b) führen. Gleichzeitig wurde nach EmbryoScope™-Behandlung eine im Verhältnis um 35,7 % verminderte Wahrscheinlichkeit eines Frühaborts festgestellt (Abb. 2c). Die vorliegende Studie stellt unter Beweis, dass der technologische und wissenschaftliche Vorsprung das EmbryoScope™ zu dem gemacht hat, was es heute ist: Die Nummer 1 der Time-LapseSysteme mit unbestreitbarem Nutzen für Kliniken und ihre Patientinnen. Als Erfolgsgaranten beim Einsatz des EmbryoScope™ Time-Lapse-Systems wurden auch in der aktuellen Untersuchung eine Kombination aus stabilen Inkubationsbedingungen und der Möglichkeit zur benutzerdefinierten, morphokinetischen Embryobeurteilung identifiziert. Als Vorreiter der Time-LapseSysteme und im Unterschied zu einigen Marktneulingen ist das EmbryoScope™ beides zugleich: Inkubator und kamerabasiertes Auswertesystem. Hohe Temperaturkonstanz und stabile Zufuhr von gereinigtem, sterilem Gas gewährleisten die Embryokultur unter optimierten Bedingungen ohne Temperatur- oder pH-Schwankungen. Speziell entwickelte Auswertealgorithmen, basierend auf einer weltweit einzigartigen Sammlung von Implantationsdaten mit bekanntem Ergebnis, verfeinern kontinuierlich die morphokinetische Beurteilungsmethodik und ermöglichen gleichzeitig die ungestörte Kultur des Embryos bis zum Zeitpunkt des Transfers. Literatur: Haben Sie Fragen, oder wünschen Sie ein Angebot? Bitte kontaktieren Sie uns! 1. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome in comparison with a standard incubator; a retrospective cohort study. Fertil Steril 2012; 98: 1481–9. 2. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril 2014 [Epub ahead of print]. Weitere Informationen und verantwortlich für den Inhalt: MTG Medical Technology Vertriebs-GmbH Dr. Gerhard Weidner D-84079 Bruckberg Dr. Pauling-Straße 9 E-Mail: [email protected] www.mtg-de.com Medizintechnik Erfolgsquote mit IVF vergleichbar Die intrauterine Insemination (IUI) ist die am längsten und häufigsten praktizierte Behandlung der assistierten Reproduktion. Die Erfolgsrate der IUI liegt jedoch nur in seltenen Fällen über 10 % pro Zyklus. Umso erstaunlicher ist es, dass sich in all den Jahren niemand ernsthaft mit einer Verbesserung der Technik dieser weitverbreiteten Methode beschäftigt hat. Mit EVIE-Slow Release Insemination System steht nun ein neues Verfahren zur Verfügung, das eine Verdopplung der Schwangerschaften bei Frauen unter 35 Jahren im Vergleich zur herkömmlichen IUI verspricht. EVIE – Pumpt Schwangerschaftsraten in neue Höhen EVIE ist eine kleine, mechanische Pumpe zur Einmalverwendung. EVIE gibt Sperma über einen Zeitraum von 4 Stunden langsam in die Gebärmutter ab, wodurch die Zeitspanne verlängert wird, in der Eizelle und Spermi- „Aufgrund vielversprechender Zwischenergebnisse kann die EVIEMethode in Zentren, die nicht an der Studie teilnehmen, bereits jetzt nach ausführlicher Aufklärung angeboten werden.“ Dr. Maximilian Franz Gynäkologe und Reproduktionsmediziner München, Investigator Universitätsfrauenklinik Wien, Abt. f. Gyn. Endokrinlogie und Reproduktionsmedizin en zusammentreffen können. Dadurch steigt die Befruchtungswahrscheinlichkeit signifikant. Die Endergebnisse einer großen internationalen, multizentrischen Studie werden im Herbst 2014 erwartet. Bisherige Zwischenergebnisse von 154 Zyklen sind vielversprechend und wurden im März beim FertiForum in Mainz präsentiert: Die Schwangerschaftsrate verbesserte sich um das 2,2-Fache bei Frauen unter 35 Jahren. Das beste Zentrum steigerte die Schwangerschaftsrate von 13 % auf 26,3 % über alle Altersgruppen. Diese Ergebnisse haben noch keine statistische Signifikanz erreicht, bestätigen jedoch Erfolgsraten aus zwei früheren Studien. Alle Informationen über EVIE inklusive Einführungsvideos finden Sie auf www.kairos-life.com Welchen therapeutischen Nutzen bietet EVIE? – Verdoppelung der Schwangerschaftsrate pro Zyklus gegenüber IUI bei Frauen unter 35 Jahren – Schwangerschaftsrate vergleichbar mit IVF/ICSI – Weniger invasive First-line-Therapie – Hohe Akzeptanz bei Frauen – Leichte Handhabung, keine Änderung der klinischen Routine notwendig Welche Kinderwunschpaare profitieren von EVIE? – – – – Jüngere Frauen unter 35 Jahren Männer mit leichter Subfertilität Paare mit idiopathischer Infertilität Frauen mit Endometriose (I–II) bei intakten Eileitern – Paare, die eine heterologe/donogene Insemination wünschen Weitere Informationen und verantwortlich für den Inhalt: KAIROS Life Sciences GmbH A-2344 Maria Enzersdorf, Hauptstraße 5 Tel.: +43/(0)2236/710 777-0 Fax: +43/(0)2236/710 777-70 E-Mail: [email protected] Für Deutschland: Gynemed GmbH & Co KG D-23738 Lensahn, Lübecker Straße 9 Tel.: +49/(0)4363/903 29-0 E-Mail: [email protected] J Reproduktionsmed Endokrinol 2014; 11 (5–6) 299 Entgeltliche Einschaltung IUI war gestern – EVIE ist heute: Slow Release Insemination (SRI) GONAL-f: ÜBER 1 MIO. BABYS WELTWEIT ® 1 Der GONAL-f ® 12,5er Merck Serono | Sie. Wir. Gemeinsam für ein neues Leben. 1 Merck Serono internal data #F[FJDIOVOH(0/"-Gn*&.JLSPHSBNN (0/"-Gn*&NM.JLSPHSBNNNM (0/"-Gn *&NM.JLSPHSBNNNM 1VMWFSV-¶TVOHTNJUUFM[VS)FSTUFMMVOHFJOFS*OKFLUJPOTM¶TVOH(0/"- Gn*&NM.JLSPHSBNNNM (0/"-Gn*&NM.JLSPHSBNNNM (0/"-Gn *&NM.JLSPHSBNNNM *OKFLUJPOTM¶TVOHJOFJOFN'FSUJHQFO8JSLTUPGG'PMMJUSPQJOBMGB1IBSNB[FVUJTDIFS 6OUFSOFINFS .FSDL 4FSPOP &VSPQF -JNJUFE .BSTI 8BMM -POEPO & 51 7FSFJOJHUFT ,¶OJHSFJDI 7FSUSJFC JO %FVUTDIMBOE .FSDL 4FSPOP (NC) "MTGFMEFS 4USBF %BSNTUBEU ;VTBNNFOTFU[VOH &JOF %VSDITUFDI ꯏBTDIF(0/"-Gn*&FOUI.JLSPHSBNN'PMMJUSPQJOBMGBFOUTQS*& 4POTU#FTUBOEUFJMF4VDSPTF/BUSJVN EJIZESPHFOQIPTQIBU.POPIZESBU%JOBUSJVNIZESPHFOQIPTQIBU%JIZESBU.FUIJPOJO1PMZTPSCBULPO[1IPTQIPS T¤VSF/BUSJVNIZESPYJE-¶TVOHTNJUUFM8BTTFSG*OKFLUJPOT[XFDLF+FEF%VSDITUFDIꯏBTDIF(0/"-Gn*&NM FOUI.JLSPHSBNN'PMMJUSPQJOBMGBFOUTQS*& VN.JLSPHSBNNFOUTQS*& JONMCFSFJU[VTUFM MFOKFEF%VSDITUFDIꯏBTDIF(0/"-Gn*&NMFOUI.JLSPHSBNN'PMMJUSPQJOBMGBFOUTQS*& VN .JLSPHSBNNFOUTQS*& JONMCFSFJU[VTUFMMFO4POTU#FTUBOEUFJMF4VDSPTF/BUSJVNEJIZESPHFOQIPT QIBU.POPIZESBU %JOBUSJVNIZESPHFOQIPTQIBU%JIZESBU LPO[ 1IPTQIPST¤VSF /BUSJVNIZESPYJE -¶TVOHTNJUUFM 8BTTFSG*OKFLUJPOT[XFDLF#FO[ZMBMLPIPM&JO'FSUJHQFO[VS.FISGBDIEPTJFSVOH(0/"-Gn*&NMFOUI .JLSPHSBNN'PMMJUSPQJOBMGBJONM&JO'FSUJHQFO[VS.FISGBDIEPTJFSVOH(0/"-Gn*&NMFOUI.JLSP HSBNN'PMMJUSPQJOBMGBJONM&JO'FSUJHQFO[VS.FISGBDIEPTJFSVOH(0/"-Gn*&NMFOUI.JLSPHSBNN 'PMMJUSPQJOBMGBJONM4POTU#FTUBOEUFJMF1PMPYBNFS4VDSPTF.FUIJPOJO/BUSJVNEJIZESPHFOQIPTQIBU)0 /BUSJVNNPOPIZESPHFOQIPTQIBU%JIZESBU N$SFTPM LPO[ 1IPTQIPST¤VSF /BUSJVNIZESPYJE 8BTTFS G *OKFLUJPOT [XFDLF"OXFOEVOHTHFCJFUF"OPWVMBUJPOFJOTDIMQPMZ[ZTU0WBSJBMTZOESPN CFJ'SBVFOEJFBVGFJOF#FIBOEMVOH NJU $MPNJGFODJUSBU OJDIU BOHFTQSPDIFO IBCFO 4UJNVMBUJPO FJOFS NVMUJGPMMJLVM¤SFO &OUXJDLMVOH CFJ 'SBVFO EJF TJDI FJOFS4VQFSPWVMBUJPO[VS7PSCFSFJUVOHBVGFJOF5FDIOJLEFSBTTJTU3FQSPEVLUJPOXJF*OWJUSP'FSUJMJTBUJPO*OUSBUVCB SFN(BNFUFOUSBOTGFSPE*OUSBUVCBSFN;ZHPUFOUSBOTGFSVOUFS[JFIFO[VTNJU-)[VS4UJNVMBUJPOEFS'PMMJLFMSFJGVOHCFJ 'SBVFONJUFJOFNTDIXFSFO-)V'4).BOHFMJOLMJO4UVEJFOEFꯎOJFSUEVSDIFOEPH-)4FSVNTQJFHFM*&M [VTNJUI$([VS4UJNVMBUJPOEFS4QFSNBUPHFOFTFCFJ.¤OOFSONJUBOHFCPSFOFNPEFSXPSCFOFNIZQPHPOBEPUSPQFO )ZQPHPOBEJTNVT(FHFOBO[FJHFOCFSFNQꯎOEMJDILFJUHFHFO'PMMJUSPQJOBMGB'4)PEFJOFOETPOTU#FTUBOEUFJMF 5VNPSFOEFT)ZQPUIBMBNVTPEEFS)ZQPQIZTF7FSHS¶FSVOHEFS0WBSJFOPE0WBSJBM[ZTUFOEJFOJDIUBVGFJOFNQP MZ[ZTU0WBSJBMTZOESPNCFSVIFOHZO¤LPMPHJTDIF#MVUVOHFOVOCFL6STBDIF0WBSJBM6UFSVT.BNNBLBS[JOPNQSJN 0WBSJBMJOTVGꯎ[JFO[.JTTCJMEVOHFOEFS4FYVBMPSHBOFVꯎCS¶TF5VNPSFOE(FC¤SNVUUFSEJF4DIXBOHFSTDIBGUVON¶HM NBDIFOQSJNUFTUJLVM¤SF*OTVGꯎ[JFO[4DIXFSFT0)447FSTDIMFDIUFSVOHPEFSTUFT"VGUSFUFOFJOFS1PSQIZSJF4DIXBO HFSTDIBGU4UJMM[FJU/FCFOXJSLVOHFO#FJ'SBVFO4FISI¤VꯎH,PQGTDINFS[FO0WBSJBM[ZTUFO3FBLUJPOFOBOEFS*OKFL UJPOTTUFMMF[#4DINFS[FO3¶UVOH#MVUFSHVTT4DIXFMMVOH3FJ[VOH )¤VꯎH#BVDITDINFS[FOBVGHFCM¤IUFS#BVDI BCEPNJOBMF#FTDIXFSEFOCFMLFJU&SCSFDIFO%VSDIGBMMMFJDIUFTPENJUUFMTDIXFSFT0)44(FMFHFOUMJDI4DIXFSFT 0)444FMUFO,PNQMJLBUJPOFOJO;VTBNNFOIBOHNJUFJOFNTDIXFSFO0)444FISTFMUFO-FJDIUFCJTTDIXFSXJFHFOEF CFSFNQꯎOEMJDILFJUTSFBLUJPOFO FJOTDIMJFM BOBQIZMBLUJTDIFS 3FBLUJPOFO V 4DIPDL 5ISPNCPFNCPMJFO HFX¶IOMJDI JO;VTBNNFOIBOHNJUFJOFNTDIXFSFO0)44&YB[FSCBUJPOPE7FSTDIMFDIUFSVOHWPO"TUINB#FJ.¤OOFSO4FIS I¤VꯎH 3FBLUJPOFO BO EFS *OKFLUJPOTTUFMMF [# 4DINFS[FO 3¶UVOH #MVUFSHVTT 4DIXFMMVOH 3FJ[VOH )¤VꯎH "LOF (ZO¤LPNBTUJF 7BSJLP[FMF (FXJDIUT[VOBINF 4FIS TFMUFO -FJDIUF CJT TDIXFSXJFHFOEF CFSFNQꯎOEMJDILFJUT SFBLUJPOFO FJOTDIMJFM BOBQIZMBLUJTDIFS 3FBLUJPOFO V 4DIPDL &YB[FSCBUJPO PE 7FSTU¤SLVOH WPO "TUINB 8BSO IJOXFJTF 1VMWFS %JF 'FSUJHTQSJU[F NJU -¶TVOHTNJUUFM EBSG OVS [VS 3FLPOTUJUVUJPO WFSXFOEFU XFSEFO %JF SFLPOT UJUVJFSUF %VSDITUFDIꯏBTDIF TPMMUF OVS G¼S FJOFO FJO[JHFO 1BUJFOUFO WFSXFOEFU XFSEFO 7FSTDISFJCVOHTQꬸJDIUJH 4UBOE/PWFNCFS
© Copyright 2025 ExpyDoc