Prof. Reinhard Kienberger PD. Hristo Iglev [email protected] [email protected] Lehrstuhl für Laser und Röntgenphysik E11 Ultrakurzzeitphysik II SS 2014 Mittwoch, 10 Uhr c.t. PH II 127, Seminarraum E11 Die Intensitäts Autokorrelation nichtkollineare SHG durch Veränderung des zeitlichen Abstands beider Impulse ergibt sich das Intensitäts Autokorrelationssignal, A(2)(ττ). elektrisches Feld: E(t) E(t-τ) Intensitätssignal: I(t) I(t-τ) unbekannter Puls Strahlteiler variable Verzögerung, τ Intensitäts Autokorrelation: E(t–τ) ∞ (2) A (τ ) ≡ ∫ I (t )I ( t −τ ) dt −∞ SHG Kristall Detektor Esig(t,τ) E(t) A(2) (τ ) = A(2) (−τ ) das resultierende Signal ist immer symmetrisch keinen Schluß auf die Richtung der Zeitachse 2 Interferometrische Autokorrelation kollineare Geometrie + zusätzlicher Filter Michelson Interferometer Linse SHG kristall Entwickelt von J-C Diels Filter Detector E(t) Spiegel Strahlteiler E(t–τ) [ E (t ) − E (t − τ )] 2 E (t ) − E (t − τ ) Verzögerung (2) IA (τ ) ≡ Spiegel ∫ Diels und Rudolph, Ultrashort Laser Pulse Phenomena, Academic Press, 1996. ∞ [ E (t ) − E (t − τ )] 2 2 dt −∞ neue Terme Normaler Autokoterm (2) IA (τ ) ≡ ∫ ∞ E 2 (t ) + E 2 (t − τ ) − 2 E (t ) E (t − τ ) 2 dt −∞ Auch genannt “Fringe-Resolved Autocorrelation” Das gemessene Signal in Abhängigkeit von der Verzögerung: IA(2) (τ ) ≡ ∫ ∞ E 2 (t ) + E 2 (t − τ ) − 2 E (t ) E (t − τ ) E *2 (t ) + E *2 (t − τ ) − 2 E * (t ) E * (t − τ ) dt −∞ 3 Interferometrische AC: Beispiele 7-fs sech2 800-nm Puls Puls mit kubischer spektralen Phase Doppel-Puls 4 Vermessung ultrakurzer Pulse: FROG Spektrogramm: ∫ Σ E (ω ,τ ) ≡ g(t-τ) - Gate-Funktion; 2 ∞ E (t ) g (t − τ ) exp(−iω t ) dt τ - Verzögerungszeit. −∞ Das Spektrogramm gibt Auskunft über Frequenz und Intensität von E(t) zum Zeitpunkt τ. Beispiele: Frequenz ß<0 ß=0 Verzögerung Das Spektrogramm bestimmt eindeutig den Intensitätsverlauf I(t), und den Phaseverlauf φ(t). Das Gate soll nicht viel kürzer sein als E(t) ∫ 2 ∞ E ( t ) δ ( t − τ ) ex p ( − iω t ) d t E (τ ) ex p ( − iω τ ) = 2 −∞ Intensität (keine Phasen-Information!) = E (τ ) 2 Das Spektrogramm löst das Dilemma! Es benötigt kein kürzeres Ereignis! Es löst die langsamen Komponenten zeitlich und die schnellen Komponenten spektral auf. 5 Beispiele für FROG-Spuren SHG FROG sind symmetrisch und uneindeutig in Bezug auf die Zeitrichtung, man kann es aber Lösen FROG-Spuren für kompliziertere Pulse SHG FROG Mesung eines 4.5-fs Pulses! Baltuska, Pshenichnikov, und Weirsma,J. Quant. Electron., 35, 459 (1999). 6 Erzeugung Messung und Anwendung von Attosekunden-Pulsen + Exkursion MPQ ? • electronics, quantum information technology: how can electronic current be ever faster controlled & how do quantum states dephase in ever smaller nanostructures & molecular systems ⇒ coherent quantum devices? ultimate limits of electronics? • physical chemistry: how does electronic excitation – either localized (inner-shell) or delocalized (valence) – affect chemical/biochemical reaction pathways ⇒ ultimate reaction control by steering electrons on molecular orbitals? • structural biology, medicine: how can x-rays be trained to control electronic excitation for minimizing radiation damage to biological systems or maximizing its selectivity ⇒ optimized bioimaging and radiation therapies? attosecond physics: science of electrons in motion on atomic scales ee- 0.0 0.1 0.2 0.3 0.4 [nanometers] real-time observation direct control & of electronic motion in atoms, molecules and nanostructures the time & length scales of microscopic motion are connected by the laws of quantum mechanics ∆t ~ h ∆W W1 ∆W W0 1 ∆W ~ f ∆x ∆x structure and dynamics in the microcosm space (m) atoms in electrons in molecules & solids nanostructures 10-9 molecules ∆Welectron/hole ~ sub-eV atoms ∆Wvibr ~ milli-eV ∆Wvalence» 1eV nuclear distance 10-12 ∆Wcor» 10 eV nuclear structure & dynamics time (s) 10-18 10-15 10-12 10-15 attosecond physics femtosecond chemistry 1878: E. Muybridge, Stanford Tracing motion of animals by spark photography E. Muybridge, Animals in Motion, ed. by L. S. Brown (Dover Publ. Co., New York 1957) sharp blurred Limit: Exposure time Mikrosekunden-Photographie Projektil in Glasblock chronoscopy in the microworld: tracing the motion of atoms Ahmed Zewail, 1987 Nobel Prize in Chemistry 1999 evolution of ultrafast metrology 10-6 nanosecond time resolution (seconds) 10-9 electronics ultrafast optics: physical quantity with controlled temporal gradient provided by the amplitude of laser pulses picosecond 10-12 transistor optics laser femtosecond T0 ≈ 2.5 fs @ λ0 ≈ 750 nm 10-15 femtochemistry light wave cycle attoattophysics? second 10-18 1940 1950 1960 1970 year 1980 1990 2000 Attosecond pulses are short-wavelength pulses. The shortest possible pulse of a given wavelength is one cycle long. If you compress a single-cycle pulse of one wavelength, you change its wavelength! A single-cycle red pulse: A compressed single-cycle pulse, which is now violet: A single-cycle 800-nm pulse has a period of 2.7 fs. To achieve a period of 1 fs requires a wave-length of 300 nm. The VUV, XUV, and soft x-ray regions Vacuum-ultraviolet (VUV) 180 nm > λ > 50 nm •Soft x-rays •5 nm > λ > 0.5 nm Absorbed by <<1 mm of air Ionizing to many materials •Strongly interacts with core electrons in materials Extreme-ultraviolet (XUV) 50 nm > λ > 5 nm Ionizing radiation to all materials X-ray wavelengths between 2.2 and 4.5 nm have major biological applications. 1 Carbon 0.5 Water 10 9 8 7 6 5 4 3 Transmission Water window 2 Wavelength (nm) Carbon absorbs these wavelengths, but water doesn’t. This is the “water window.” Quellen für Attosekundenpulse • Freie Elektronenlaser (X!FEL) • Erzeugung Hoher Harmonischer (Frequenzkonversion) von hochintensiven phasenstabilisierten fewfew-cycle Pulsen hochintensive phasenstabilisierte few-cycle Pulse The Laser System SPM Hollow Fiber/ Chirped Mirror Pulse Compressor Experiment <3.5 fs pulse duration 400 µJ energy CPA CPA Amplifier 20 fs pulse duration 1.3 mJ energy 3 kHz repetition rate Kerr-Linsen Modenkopplung Ti:Sapphire Oscillator sub-10 fs pulse duration 4.6 nJ energy 82 MHz repetition rate key tools of attosecond technology: synthesized few-cycle wave & synchronized sub-fs xuv pulse hollow fiber neon gas intensity 104 spectrum 102 100 400 700 1000 λ [nm] normalized intensity 8 pulse energy > 0.4 mJ pulse duration < 3.5 fs 7 6 < 1.5 cycles 5 > 0.1 TW 4 3 2 1 A. L. Cavalieri et al, New J. Phys. 9, 242 (2007); E. Goulielmakis et al, Science 317, 769 (2007) 0 -20 -15 -10 -5 0 delay [fs] 5 10 15 20 Die Carrier-Envelope-Phase der Pulse und die Messung der CE-Phase FewLaser Pulses Few-Cycle Control of the Waveform E(t) = Ea(t)cos(ωLt + φ) Cosine waveform φ=0 Sine waveform φ = π/2 TT0 0/4=≈λ625 as (@ λ ≈ 0.75 µm) 0/c ≈ 2.5 fs 0 Requires measurement & control of φ Frequenz-Bereichs Regelung von ∆ϕ frequency doubling T. W. Hänsch et al., 1997 f c e o m k 2m Beating of the fundamental and SH for k=2m: →UV CE phase-stabilization (f-to-0) SPM T. Fuji et al., Opt. Lett. 30 (2005) phase-stabilization scheme Q-switched Pump Laser Multipass Ti:Sapphire Amplifier BS Hollow-FiberChirped-Mirror Pulse Compressor phaselocked pulses pump laser synchronization CW Pump Laser AOM PhasePhaselocking Electronics SPM DFG /26000 f-to-2f fr Dividers interferoSPM meter /4 f-to-0 interferoECDC meter Ti:Sapphire Oscillator fCEO Phase detector fast-jitter feedback A. Baltuška et al., Nature 421 (2003) J. Rauschenberger et al., Laser Phys. Lett. 3 (2006) 0.4mJ 3kHz Measurement and control of CE phase SHG CCD slow-drift feedback Detektion der absoluten Phase Trigger:PD Left-right ATI spectra slit Laser beam Phase change by glass wedges Previous results: average of 10000 shots Paulus et al. Nature, 414 182 (2001) CEP of consecutive phasephase-stabilized pulses consecutive time-of-flight ATI spectra of rescattered electrons (laser rep. rate = 3kHz) phase distribution of CEP-stabilized shots (4500 shots; 3kHz) Stdsingle shot = 278mrad shot-to-shot evolution of the CEP Parametric (Lissajous(Lissajous-like) representation single shot left-right TOF spectra CEP=π asymm 2 CEP=0 Non-phase-stabilized single shotsrandom distribution π 5π/6 7π/6 4π/3 Left-Right Left+Right phase scan- limited by fluctuations 2π/3 3π/2 asymm 1 asymm. 2 5π/3 mean std 11π/6 asymm. 1 π/2 2π High precision No phase ambiguity π/6 π/3 Wittmann et al. Nature Physics 4 (2009) NonNon-phasephase-stabilized laser shots as they’re they’re arriving… non-stabilized shots has random phase distribution first principle calibration: phase difference between shots is immediately given real CEP retrieved by TDSE Wittmann et al. Nature Physics 4 (2009) PhasePhase-scan with a stabilized laser Wittmann et al. Nature Physics 4 (2009) Pulsdauermessung mit StereoStereo-ATI Kurzer Puls…….. ……..stärkere Asymmetrien Wittmann et al. Nature Physics 4 (2009) key tools of attosecond technology: synthesized few-cycle wave & synchronized sub-fs xuv pulse energy [eV] 90 85 80 75 70 65 60 55 energy [eV] 90 85 80 75 70 65 60 M. Schultze et al (MPQ), J. Kim 55 & D. Kim (POSTECH, Pohang), 6 4 2 0 delay [fs] -2 -4 -6 New J. Phys. 9, 243 (2007) Die Erzeugung Hoher Harmonischer (High-Order Harmonic Gerneration HHG) Step 1 Step 3 Optical field ionization EL(t) XUV emission on recollision EL(t) - e e- Step 2 Spectral Intensity High-order Harmonic Generation - e Acceleration EL(t) - e P.B. Corkum, PRL 71 (1993) steering bound electrons with controlled light fields: the birth of an attosecond pulse xuv-filter intensity [a.u.] 1000 EL(t) EL(t) EL(t) EL(t) EL(t) 0 50 60 70 80 90 100 photon energy [eV] 110 EL(t) ħωx electron trajectories cosine wave A. Baltuska et al, Nature 421, 611 (2003) Recombination Emission from StronglyStrongly-Driven Atoms MultiMulti-cycle driver pulse : τp » To HighHigh-order odd harmonics of the driver laser Spectral intensity 25 nm 7.5 nm 12.5 nm 1 0.1 21 51 81 111 Harmonic order L’Huillier, Balcou, 1993, PRL 70,, 774 Macklin et al, 1993, PRL 70, 766 CutCut-off harmonics: train of attosecond bursts Paul et al, Science 292, 1689 (2001) Tsakiris, Charalambidis et al, 2003 HHG: Electron trajectories Correlation between recollision time and energy - Linear chirp in the plateau range (has to be compensated) - No/little chirp near the cut-off Krausz & Ivanov, Rev.Mod.Phys. 81 (2009) 163. Mairesse et al., PRL 93 (2004) 163901. Dispersion control of XUV pulses Dispersion control with filter Spatial selection with iris ---DIVERGENCE!!! López-Martens et al., PRL 94, (2005) High Harmonic Generation in a gas X-ray spectrometer 800 nm detector < 1ps 1015W/cm2 grating Laser dump HHG in neon Photons/pulse 7 10 Harmonic 31 15 6 10 65 5 10 4 10 50 40 30 Wavelength (nm) 20 Symmetry issues prevent HHG from occurring at even harmonics. But it yields odd harmonics and lots of them! Close to 0-transition 17° from max Up = e2 E/4m ω2 The cut-off wavelength depends on the medium. 1000 o Cut-off harmonic order ∆ experimental results calculated results (ADK model) Ip = 24,4 eV Up ∝ I λ2 ∆ o quiver energy of e- He Ip = 21,6 eV 100 Ip = 15,8 eV ∆o Xe 10 10 ∆ o Kr ∆ o Ne h υcutoff = Ip + 3.2U p o∆ Ar ionization potential of atom Ip = 13,7 eV Ip = 11,7 eV 20 Ionization potential (eV) 30 HHG works best with the shortest pulses. 25 fs pulse (4x) Number of Photons Argon 50 fs pulse (2x) PRL 76,752 (1996) PRL 77,1743 (1996) PRL 78,1251 (1997) 100 fs pulse 23 27 31 35 39 43 47 51 55 59 Harmonic Order • Shorter pulses generate higher harmonics and do so more efficiently. what does the future bring? J. Seres et al., Nature 436, 234 (2005) 100 30 90 70 20 60 50 15 40 10 30 20 5 10 0 10 0 0.5 1 2 1.5 3 2.5 photon energy (keV) Up = e2 E/4m ω2 3.5 0 filter transmission (%) 80 kiloelectronvolt high harmonic emission from fewfew-cyclecycle-driven helium atoms ⇒ HH internsity (a.u.) 25 time-resolved spectroscopy with atomic (~ 24 as) resolution 4 Up = (9,33 x 10-14 eV) I (W/cm2) λ2 (µm2), bei λ = 1 µm und 1013 W/cm2 : Up = 1 eV IR-Quellen als Treiber für HHG Extending the cutoff Up = (9,33 x 10-14 eV) I (W/cm2) λ2 (µm2) using an IR driving field Comparison VIS / IR driver V. Tosa and V. Yakovlev 2.1 μm fewfew-cycle OPCPA system pump laser Disc regen 3 kHz / 1.5 12 ps mJ/ 27 mJ >0.9 2mJ… .??fs mJ, 15 New pump for OPCPA: disc regen T. Metzger et al., OL (2009) IR – driven HHG CutCut-off ~1.6 keV Quasi-Phasenanpassung für HHG HHG in a hollow fiber yields a longer interaction length and “phase-matching.” •By propagating the laser light in a hollow fiber, its phase velocity can be “phase-matched” to that of the generated x-rays, increasing the conversion efficiency. •The wave-guide refractive index depends on the pressure (as usual), but also the size of the wave-guide and the cladding material. femtosecond light pulse coherent EUV light hollow fiber filled with noble gas Science 280, 1412 (1998) Modulated fiber for even better phase matching drawback? Relative energy of 29th harmonic Pressure-tuned phase-matching of soft x-rays H Xe Kr 2 29th harmonic at 27nm 1 Created in a hollow fiber 0 0 • • • • Ar 20 40 60 Pressure (Torr) 80 100 Phase-matched length in fiber: 1-3 cm Output enhanced by 102-103 Can phase-match harmonic orders 19 - 60 (or 28 - 90 eV) Harmonic photon energy is limited by the presence of plasma Quasi-Phase-Matching (QPM) für HHG Gasdichte
© Copyright 2024 ExpyDoc