Optical Beat Interference - Cable Tech

Optical Beat Interference
• Was ist OBI
• Wie entsteht OBI
• Wie vermeide ich OBI
• Wie sieht ein RfoG Netz aus
1
Confidential
Das ist nicht OBI
2
Confidential
Optical Beat Interference: Cause and Effect
• OBI entsteht wenn 2 optische Sender auf der gleichen Wellenlänge gleichzeitig zum
gleichen optischen Empfänger senden.
• Passiert wenn 2 oder mehr Upstreams gleichzeitig verwendet werden: mehrere MAC
domains, DOCSIS 2.0 und 3.0 modems, getrennte VoIP und data links oder andere
Upstream Signale.
• Es ist eine statistische Wahscheinnlichkeit , diese steigt mit der Anzahl von
verbundenen Kunden und das Volumen vom Datenverkehr
3
Confidential
OBI – Was sind die Folgen?
• Bei OBI wird eine flaches breitbandiges Rauschen über das gesamte Upstream
Spektrum erzeugt; Die Amplitude des Rauschens ist eine Funktion von der Entfernung
der optischen Wellenlängen
• Überträgt sich auf alle CMTS Ports die an dem Empfänger angeschlossen sind
• Der Effekt ist von kurzer Dauer, hält nur solange wie der zweite Laser sendet
• Verursacht auch Code Word Errors; Für ein effizienter Betrieb sollte diese : <1% sein
• Ein defekter RFoG ONU der immer ‘On’ ist kann auch OBI verursachen
• Viel Ingress kann genug elektrische Energie erzeugen um den Laser von RfoG CPE zu aktivieren
und somit auch OBI verursachen
4
Confidential
FP vs. DFB Lasers
OBI induced by beating between main and side modes with FP lasers
Aurora incorporates temperature stable DFB lasers without side modes to reduce
probability of OBI
5
Confidential
OBI
OBI-induced with 2 optical transmitters
Performance not affected at >10
GHz separation between
wavelengths
Loss of synchronization at
separations <1 GHz
Aurora incorporates temperature-stable DFB lasers without side modes to reduce
probability of OBI
6
Confidential
OBI – Wie sieht es aus?
5-42 MHz Span
Noise spectrum
High level of ingress noise
No OBI
Peak Hold
•
•
•
•
•
•
Noise spectrum
High level of ingress noise
With OBI
Peak Hold
Full spectrum distribution
(One ONU on full time due to noise)
10dB / div
7
•
•
•
•
Confidential
Wahrscheinlichkeit von OBI steigt bei MDU Applikationen
In MDU (multiple dwelling units) or fiber to the building (FTTB) applications a single
device supports multiple customers
• To maintain network segmentation size a reduced number of ONU devices deployed,
each supporting multiple customers
• Each optical receiver in the Headend has lower number of ONUs connected
• Upstream transmitters now active for extended periods to support multiple customers
• When OBI occurs, its duration is longer and hence its impact upon data transfer is
greater
8
Confidential
OBI-free
For true OBI-free operation the upstream,
optical frequencies must be managed to
eliminate the chance of two transmitters
operating at the same wavelength
9
Confidential
Neben OBI gibt es RFI
• RF Intereference entsteht durch slechte kontrollierte „Burst Mode“ Sender im RfoG CPE
• Verursacht änhliche Probleme im Upstream wie OBI (
10
Confidential
Microprocessor-controlled CPE
Tightly controlled burst mode circuit and laser on/off parameters,
including environmental variations, by microprocessor
11
Confidential
RF Noise Caused by Laser Turn On/off
Aurora’s CPE
3rd Party CPE
RF noise at Receiver output as result of poorly controlled Laser turn on/off
12
Confidential
Side Band Spikes during Transmission
Aurora’s CPE
(Tightly controlled)
3rd Party CPE
(Poorly controlled)
RF noise at Receiver output as result of power intensity variation in QAM carrier when the burst mode is not
properly controlled
13
Confidential
Wie sieht ein RfoG Netz aus
VHub repeater application; long reach and fiber conservation
Typical <20 km
All passive RFoG application
14
Confidential
Complete RFoG Solution – All Passive
AT355x
20 dBm SBS,
optimized for
20 km
FA3533
16 x 21 dBm
outputs
Reduces Cost
Preserves Space
CPE Family
Incl
SDU, MDU &
OBI-free CPEs
OR3144H
Integrates filtering, 4
analog receiver modules
and RF combining
Saves space
Saves cost
Reduces complexity
Improves performance11
15
Confidential
Complete RFoG Solution – Repeater
FA4527S
8 x 18 dBm outputs
Reduces cost
Preserves space
OR4148
Integrates filtering, 8 analog
receiver modules&RF combining
Reduces cost
Preserves space
OR4168
OR4148 module plus
integrated PON overlay filtering
Reduces cost
Preserves space
CPE Family
Incl
SDU, MDU & OBI-free CPEs
DT4250N
Digital transceiver filtering
Reduces cost
Preserves space
16
Confidential
OBI-free: The Aurora Way
•
•
•
•
•
17
Full compliance with SCTE specification, including wavelength specifications
Compliant with ITU wavelength filter standards
Offered as either 1310 nm or 1610 nm managed returns
With 1610 nm returns GPON or EPON can be deployed without compromising operation
Full support or DOCSIS 3.0
Confidential
OBI-free: First Generation
• MDU-version
• High level RF output 96dBµV
• Up to sixteen ONUs per receiver
• High output Version 108dBµV
• Slope and level control
• Laser continuous on
18
Confidential
OBI-free: Next Generation
•
•
•
•
SDU and MDU
Fully automated OBI-free operation
Up to 32 ONUs per receiver
Additional functionality: Managed ONU remote turn off, activation for service
management, ingress switching
• Q3 2015
19
Confidential
Evolution of FTTH Technologies
20
Private & Confidential
Evolution of FTTH Technologies
2007
GPON
1996
APON
2001
BPON
2014
10 Gigabit
xPON Tech.
2005
EPON
10Gb/s
155Mb/s
622Mb/s
1.25Gb/s
2.5Gb/s
PON Standards Overview
> 10 Gbps
10 Gbps
1 – 2.5 Gbps
< 1Gbps
FSAN and ITU-T
22
IEEE
APON / BPON: ITU-T G.983
•
Uses ATM as the bearer channel
•
622 Mbps downstream, 155 Mbps upstream
G.PON: ITU-T G.984
•
Based on Generic Framing Procedure (G.7041)
•
2.5 Gbps downstream, 1.24 Gbps upstream
•
Per Spec: Can carry native TDM, ATM or Ethernet Frames
Ethernet in the First Mile (EFM): IEEE 802.3ah
•
Includes P2P and P2MP (PON) MAC layers
•
Symmetrical 1.25 Gbps bit rates
•
Utilizes 8B/10B coding for a realized rate of 1Gbps
2.5G E-PON
•
Double clocks downstream bandwidth
•
Developed by Teknovus (now Broadcom)
•
Deployed globally with significant deployment at KDDI
XG-PON 1: ITU-T G.987 (Standardized 2012)
•
Extension of G.PON
•
10Gbps downstream, 2.5 Gbps upstream
XG-PON2: ITU-T G.9xx
•
Goal: provide symmetrical 10Gbps
•
Currently underdevelopment by ITU-T SG15/Q2
•
Subsumed into NG-PON2
10G E-PON: IEEE 802.3av (Standardized 2009)
•
Extension of E-PON
•
Includes:
•
10G/1G E-PON
•
10G/10G E-PON
•
Support for 1x128 splitting
NG-PON2: Next Generation PON Technology
NG-EPON: Next Generation E-PON Technology
•
4 or 8 Wavelengths in each direction for 40Gbps or 80Gbps
•
Consensus-building group formed under IEEE 802.3
operation
•
CFI is expected in Q4/2014 or Q1/2015
•
Currently under the direction of FSAN
Private & Confidential
RFoG Overlay with PON Today and Tomorrow
10G E-PON &
2.5G XG-PON1 Upstream
@ 1270 nm ± 10nm
1G E-PON &
2.5G G.PON Downstream
@ 1490 nm ± 10nm
10G GE-PON &
G.PON Downstream
@ 1577 nm ± 2.5nm
1G E-PON Upstream
@ 1310 nm ± 50nm
RFoG DOWNSTREAM @ 1550 nm
Analog TV
85 MHz
Digital TV
550 MHz
G.PON Upstream
@ 1310 nm ± 20nm
GE-PON Best Practices
23
Private & Confidential
RFoG Upstream
@ 1610 nm
HSD/VoD
1 GHz
HSD/VoD
5
65 MHz
Internet Usage Trends
Streaming Video Radically Changes Network Usage Patterns
Traditional Traffic Patterns
24
“New” Traffic Patterns
Private & Confidential
Further Considerations
Social Media Consumes Bandwidth at HYPER Rates!!!!
• 2010: Millennial’ s outnumbered Baby Boomers
• 97%:
% of Millennial’ s have joined a Social Network
• Years to reach
Million Users:
38 50
Years
25
• Radio:
• TV:
• Internet:
• iPod:
• Facebook:
13 Years
4 Years
3 Years
4 Months!!
Private & Confidential
Further Considerations
• Facebook:
• People spend 700 Million Minutes EVERY DAY!
• LinkedIn:
• 95% of Companies use LinkedIn as a tool for their hiring practices
• YouTube:
• Went from 0 to 1,000,000,000 pages views per day between 2005 and 2009
• Based on current calculations, it would take 600 Years to view all of YouTube’s
content.
• Netflix
• Today it is reported in the United States Netflix occupies approximately 33% of
peak period downstream usage
26
Private & Confidential
Further Considerations - Final
• Bandwidth Usage Patterns will continue to grow!
• TV / Video Services will continue to grow in content putting greater pressure on
both HFC and PON Networks
• Operators today are moving towards various forms of IPTV
• The Netflix effect is real and operators today MUST be prepared
• Netflix + YouTube together impact 50% of downstream peak bandwidth usage
• Service Models for Tomorrow are not know Today!
• However, you can prepare for Tomorrow’s Network Demands Today!
• Ensure you have a plan to provide to migrate towards Higher Capacity Networks
• Distributed Architecture: The means to grow bandwidth and add capacity where
capacity is needed!
• Co-existance is KEY!
27
Private & Confidential
DPoE – Seamless DOCSIS OSS Provisioning
DOCSIS – Dominant technology for
providing Internet/IP services over HFC
DOCSIS OSS is ubiquitous – Provisions
millions of Cable Modems and CMTS world
wide
Cable Operators now deploying E-PON
Technology for FTTH Deployments
DPoE  EPON + DOCSIS OSS
•
EPON ONU

Cable Modem
•
EPON OLT

CMTS
Preserve existing Cable Operator
investments in back-office software
DPoE System Architecture
29
Private & Confidential
Node OLT
OAM
DOCSIS OSS (CMCF)
30
OLT (DPoE, vCM)
Private & Confidential
ONT
DPoE Based Services Provisioning Architecture
OSS / BSS / NMS Platforms
Service Provisioning Software
Layer
PACE
DOCSIS Backend
TR-069 ACS
Systems
Device Provisioning Software
Layer
SNMP Interfaces for OLT services provisioning
and management
DPoE Qualified
OLT Platform
DPoE Interfaces (DHCP, TFTP, ToD) for
Data provisioning
TR-069 Interface for VoIP/RG provisioning
VoIP and RG Services may also be
provisioned via SNMP and / or configuration
file
31
DPoE ONU
Herzlichen Dank für Ihre Aufmerksamkeit
Fragen ?
32
Confidential