Optical Beat Interference • Was ist OBI • Wie entsteht OBI • Wie vermeide ich OBI • Wie sieht ein RfoG Netz aus 1 Confidential Das ist nicht OBI 2 Confidential Optical Beat Interference: Cause and Effect • OBI entsteht wenn 2 optische Sender auf der gleichen Wellenlänge gleichzeitig zum gleichen optischen Empfänger senden. • Passiert wenn 2 oder mehr Upstreams gleichzeitig verwendet werden: mehrere MAC domains, DOCSIS 2.0 und 3.0 modems, getrennte VoIP und data links oder andere Upstream Signale. • Es ist eine statistische Wahscheinnlichkeit , diese steigt mit der Anzahl von verbundenen Kunden und das Volumen vom Datenverkehr 3 Confidential OBI – Was sind die Folgen? • Bei OBI wird eine flaches breitbandiges Rauschen über das gesamte Upstream Spektrum erzeugt; Die Amplitude des Rauschens ist eine Funktion von der Entfernung der optischen Wellenlängen • Überträgt sich auf alle CMTS Ports die an dem Empfänger angeschlossen sind • Der Effekt ist von kurzer Dauer, hält nur solange wie der zweite Laser sendet • Verursacht auch Code Word Errors; Für ein effizienter Betrieb sollte diese : <1% sein • Ein defekter RFoG ONU der immer ‘On’ ist kann auch OBI verursachen • Viel Ingress kann genug elektrische Energie erzeugen um den Laser von RfoG CPE zu aktivieren und somit auch OBI verursachen 4 Confidential FP vs. DFB Lasers OBI induced by beating between main and side modes with FP lasers Aurora incorporates temperature stable DFB lasers without side modes to reduce probability of OBI 5 Confidential OBI OBI-induced with 2 optical transmitters Performance not affected at >10 GHz separation between wavelengths Loss of synchronization at separations <1 GHz Aurora incorporates temperature-stable DFB lasers without side modes to reduce probability of OBI 6 Confidential OBI – Wie sieht es aus? 5-42 MHz Span Noise spectrum High level of ingress noise No OBI Peak Hold • • • • • • Noise spectrum High level of ingress noise With OBI Peak Hold Full spectrum distribution (One ONU on full time due to noise) 10dB / div 7 • • • • Confidential Wahrscheinlichkeit von OBI steigt bei MDU Applikationen In MDU (multiple dwelling units) or fiber to the building (FTTB) applications a single device supports multiple customers • To maintain network segmentation size a reduced number of ONU devices deployed, each supporting multiple customers • Each optical receiver in the Headend has lower number of ONUs connected • Upstream transmitters now active for extended periods to support multiple customers • When OBI occurs, its duration is longer and hence its impact upon data transfer is greater 8 Confidential OBI-free For true OBI-free operation the upstream, optical frequencies must be managed to eliminate the chance of two transmitters operating at the same wavelength 9 Confidential Neben OBI gibt es RFI • RF Intereference entsteht durch slechte kontrollierte „Burst Mode“ Sender im RfoG CPE • Verursacht änhliche Probleme im Upstream wie OBI ( 10 Confidential Microprocessor-controlled CPE Tightly controlled burst mode circuit and laser on/off parameters, including environmental variations, by microprocessor 11 Confidential RF Noise Caused by Laser Turn On/off Aurora’s CPE 3rd Party CPE RF noise at Receiver output as result of poorly controlled Laser turn on/off 12 Confidential Side Band Spikes during Transmission Aurora’s CPE (Tightly controlled) 3rd Party CPE (Poorly controlled) RF noise at Receiver output as result of power intensity variation in QAM carrier when the burst mode is not properly controlled 13 Confidential Wie sieht ein RfoG Netz aus VHub repeater application; long reach and fiber conservation Typical <20 km All passive RFoG application 14 Confidential Complete RFoG Solution – All Passive AT355x 20 dBm SBS, optimized for 20 km FA3533 16 x 21 dBm outputs Reduces Cost Preserves Space CPE Family Incl SDU, MDU & OBI-free CPEs OR3144H Integrates filtering, 4 analog receiver modules and RF combining Saves space Saves cost Reduces complexity Improves performance11 15 Confidential Complete RFoG Solution – Repeater FA4527S 8 x 18 dBm outputs Reduces cost Preserves space OR4148 Integrates filtering, 8 analog receiver modules&RF combining Reduces cost Preserves space OR4168 OR4148 module plus integrated PON overlay filtering Reduces cost Preserves space CPE Family Incl SDU, MDU & OBI-free CPEs DT4250N Digital transceiver filtering Reduces cost Preserves space 16 Confidential OBI-free: The Aurora Way • • • • • 17 Full compliance with SCTE specification, including wavelength specifications Compliant with ITU wavelength filter standards Offered as either 1310 nm or 1610 nm managed returns With 1610 nm returns GPON or EPON can be deployed without compromising operation Full support or DOCSIS 3.0 Confidential OBI-free: First Generation • MDU-version • High level RF output 96dBµV • Up to sixteen ONUs per receiver • High output Version 108dBµV • Slope and level control • Laser continuous on 18 Confidential OBI-free: Next Generation • • • • SDU and MDU Fully automated OBI-free operation Up to 32 ONUs per receiver Additional functionality: Managed ONU remote turn off, activation for service management, ingress switching • Q3 2015 19 Confidential Evolution of FTTH Technologies 20 Private & Confidential Evolution of FTTH Technologies 2007 GPON 1996 APON 2001 BPON 2014 10 Gigabit xPON Tech. 2005 EPON 10Gb/s 155Mb/s 622Mb/s 1.25Gb/s 2.5Gb/s PON Standards Overview > 10 Gbps 10 Gbps 1 – 2.5 Gbps < 1Gbps FSAN and ITU-T 22 IEEE APON / BPON: ITU-T G.983 • Uses ATM as the bearer channel • 622 Mbps downstream, 155 Mbps upstream G.PON: ITU-T G.984 • Based on Generic Framing Procedure (G.7041) • 2.5 Gbps downstream, 1.24 Gbps upstream • Per Spec: Can carry native TDM, ATM or Ethernet Frames Ethernet in the First Mile (EFM): IEEE 802.3ah • Includes P2P and P2MP (PON) MAC layers • Symmetrical 1.25 Gbps bit rates • Utilizes 8B/10B coding for a realized rate of 1Gbps 2.5G E-PON • Double clocks downstream bandwidth • Developed by Teknovus (now Broadcom) • Deployed globally with significant deployment at KDDI XG-PON 1: ITU-T G.987 (Standardized 2012) • Extension of G.PON • 10Gbps downstream, 2.5 Gbps upstream XG-PON2: ITU-T G.9xx • Goal: provide symmetrical 10Gbps • Currently underdevelopment by ITU-T SG15/Q2 • Subsumed into NG-PON2 10G E-PON: IEEE 802.3av (Standardized 2009) • Extension of E-PON • Includes: • 10G/1G E-PON • 10G/10G E-PON • Support for 1x128 splitting NG-PON2: Next Generation PON Technology NG-EPON: Next Generation E-PON Technology • 4 or 8 Wavelengths in each direction for 40Gbps or 80Gbps • Consensus-building group formed under IEEE 802.3 operation • CFI is expected in Q4/2014 or Q1/2015 • Currently under the direction of FSAN Private & Confidential RFoG Overlay with PON Today and Tomorrow 10G E-PON & 2.5G XG-PON1 Upstream @ 1270 nm ± 10nm 1G E-PON & 2.5G G.PON Downstream @ 1490 nm ± 10nm 10G GE-PON & G.PON Downstream @ 1577 nm ± 2.5nm 1G E-PON Upstream @ 1310 nm ± 50nm RFoG DOWNSTREAM @ 1550 nm Analog TV 85 MHz Digital TV 550 MHz G.PON Upstream @ 1310 nm ± 20nm GE-PON Best Practices 23 Private & Confidential RFoG Upstream @ 1610 nm HSD/VoD 1 GHz HSD/VoD 5 65 MHz Internet Usage Trends Streaming Video Radically Changes Network Usage Patterns Traditional Traffic Patterns 24 “New” Traffic Patterns Private & Confidential Further Considerations Social Media Consumes Bandwidth at HYPER Rates!!!! • 2010: Millennial’ s outnumbered Baby Boomers • 97%: % of Millennial’ s have joined a Social Network • Years to reach Million Users: 38 50 Years 25 • Radio: • TV: • Internet: • iPod: • Facebook: 13 Years 4 Years 3 Years 4 Months!! Private & Confidential Further Considerations • Facebook: • People spend 700 Million Minutes EVERY DAY! • LinkedIn: • 95% of Companies use LinkedIn as a tool for their hiring practices • YouTube: • Went from 0 to 1,000,000,000 pages views per day between 2005 and 2009 • Based on current calculations, it would take 600 Years to view all of YouTube’s content. • Netflix • Today it is reported in the United States Netflix occupies approximately 33% of peak period downstream usage 26 Private & Confidential Further Considerations - Final • Bandwidth Usage Patterns will continue to grow! • TV / Video Services will continue to grow in content putting greater pressure on both HFC and PON Networks • Operators today are moving towards various forms of IPTV • The Netflix effect is real and operators today MUST be prepared • Netflix + YouTube together impact 50% of downstream peak bandwidth usage • Service Models for Tomorrow are not know Today! • However, you can prepare for Tomorrow’s Network Demands Today! • Ensure you have a plan to provide to migrate towards Higher Capacity Networks • Distributed Architecture: The means to grow bandwidth and add capacity where capacity is needed! • Co-existance is KEY! 27 Private & Confidential DPoE – Seamless DOCSIS OSS Provisioning DOCSIS – Dominant technology for providing Internet/IP services over HFC DOCSIS OSS is ubiquitous – Provisions millions of Cable Modems and CMTS world wide Cable Operators now deploying E-PON Technology for FTTH Deployments DPoE EPON + DOCSIS OSS • EPON ONU Cable Modem • EPON OLT CMTS Preserve existing Cable Operator investments in back-office software DPoE System Architecture 29 Private & Confidential Node OLT OAM DOCSIS OSS (CMCF) 30 OLT (DPoE, vCM) Private & Confidential ONT DPoE Based Services Provisioning Architecture OSS / BSS / NMS Platforms Service Provisioning Software Layer PACE DOCSIS Backend TR-069 ACS Systems Device Provisioning Software Layer SNMP Interfaces for OLT services provisioning and management DPoE Qualified OLT Platform DPoE Interfaces (DHCP, TFTP, ToD) for Data provisioning TR-069 Interface for VoIP/RG provisioning VoIP and RG Services may also be provisioned via SNMP and / or configuration file 31 DPoE ONU Herzlichen Dank für Ihre Aufmerksamkeit Fragen ? 32 Confidential
© Copyright 2024 ExpyDoc