ECE 3317 Prof. David R. Jackson Spring 2013 Notes 20 Rectangular Waveguides 1 Rectangular Waveguide Rectangular Waveguide y b ε, µ x a Cross section We assume that the boundary is a perfect electric conductor (PEC). We analyze the problem to solve for Ez or Hz (all other fields come from these). TMz: Ez only TEz: Hz only 2 TMz Modes Hz TMz = 0, E z ≠ 0 ∇2E z + k 2E z = 0 (Helmholtz equation) E z = 0 on boundary Guided-wave assumption: (PEC walls) E z ( x, y, z ) = E z 0 ( x, y ) e − jkz z ∂2E z ∂2E z ∂2E z + 2 2 + 2 ∂y ∂z ∂x 2 0 + k Ez = ∂2E z ∂2E z 2 2 − kz E z + k E z = 0 2 + 2 ∂y ∂x 3 TMz Modes (cont.) ∂2E z ∂2E z 2 2 + + k − k 0 ( z ) Ez = 2 2 ∂x ∂y Define: We then have: 2 2 2 k= k − k c z ∂2E z ∂2E z 2 Note that kc is an E 0 k + + = c z unknown at this point. ∂x 2 ∂y 2 Dividing by the exp(-j kz z) term, we have: ∂2E z0 ∂2E z0 2 + + k 0 c Ez0 = 2 2 ∂x ∂y We solve the above equation by using the method of separation of variables. We assume: E z 0 ( x, y ) = X ( x ) Y ( y ) 4 TMz Modes (cont.) ∂2E z0 ∂2E z0 2 + + k 0 c Ez0 = 2 2 ∂x ∂y where E z 0 ( x, y ) = X ( x ) Y ( y ) Hence, X ′′Y + XY ′′ = −kc2 XY Divide by XY : X ′′ Y ′′ + = −kc2 X Y Hence This has the form X ′′ Y ′′ 2 = − kc − X Y F ( x) = G ( y) Both sides of the equation must be a constant! 5 TMz Modes (cont.) X ′′ Y ′′ 2 = − kc − = constant X Y Denote X ′′ = −k x2 = constant X General solution: = X ( x) Boundary conditions: (1) (2) A sin(k x x) + B cos(k x x) X (0) = 0 (1) X ( a ) = 0 (2) B= 0 ⇒ X ( x) = A sin(k x x) sin(k x a ) = 0 6 TMz Modes (cont.) The second boundary condition results in sin(k x a ) = 0 This gives us the following result: k x a m= π , m 1, 2 = kx = Hence mπ a mπ x X ( x) = A sin a Now we turn our attention to the Y (y) function. 7 TMz Modes (cont.) We have X ′′ Y ′′ 2 = − kc − = −k x2 X Y Hence Denote Y ′′ = k x2 − kc2 Y 2 2 2 k= k − k y c x Then we have Y ′′ = −k y2 Y General solution: = Y ( y) C sin(k y y ) + D cos(k y y ) 8 TMz Modes (cont.) = Y ( y ) C sin(k y y ) + D cos(k y y ) Boundary conditions: (3) (4) Y (0) = 0 (3) Y (b) = 0 (4) D= 0 ⇒ Y ( y) = C sin(k y y ) sin(k y b) = 0 Equation (4) gives us the following result: k y b n= = π , n 1, 2 ky = nπ b 9 TMz Modes (cont.) Hence nπ y Y ( y ) = C sin b Therefore, we have mπ x nπ y E z 0 ( x, y ) X= = ( x ) Y ( y ) AC sin sin a b New notation: mπ x nπ y E z 0 ( x, y ) = Amn sin sin a b The TMz field inside the waveguide thus has the following form: mπ x nπ y − jkz( m ,n) z E z ( x, y, z ) = Amn sin sin e a b 10 TMz Modes (cont.) Recall that Hence 2 2 2 k= k − k y c x 2 2 2 k= k + k c x y Therefore the solution for kc is given by mπ nπ kc2 = + a b 2 Next, recall that Hence 2 2 2 2 k= k − k c z 2 2 2 k= k − k z c 11 TMz Modes (cont.) Summary of TMz Solution for (m,n) Mode (Hz = 0) mπ x nπ y − jkz( m ,n) z E z ( x, y, z ) = Amn sin sin e a b k ( m,n ) z mπ nπ =k 2 − − a b 2 2 m = 1, 2, n = 1, 2, Note: If either m or n is zero, the entire field is zero. 12 TMz Modes (cont.) Cutoff frequency We start with m,n ) k z( = where = kc( ) m,n Set k z( m ,n ) = 0 ( k 2 − kc( m ,n ) ) mπ nπ + a b 2 Note: The number kc is the value of k for which the wavenumber kz is zero. 2 2 k = kc( m ,n ) ω µε = kc( m,n ) 2π f µε = kc( m ,n ) 13 TMz Modes (cont.) Hence 2π f µε = kc( m ,n ) mπ nπ + a b 2 2π= f µε which gives us 2 The cutoff frequency fc of the TMm,n mode is then f c m ,n = TM mπ nπ + a b 2 1 2π µε 2 This may be written as cd f = 2π TM m ,n c mπ nπ + a b 2 2 cd = 1 µε 14 TEz Modes Ez TEz= 0, H z ≠ 0 We now start with ∂2H z ∂2H z 2 2 k k 0 + + − ( z ) Hz = 2 2 ∂x ∂y Using the separation of variables method again, we have H z 0 ( x, y ) = X ( x ) Y ( y ) where = X ( x) A sin(k x x) + B cos(k x x) = Y ( y ) C sin(k y y ) + D cos(k y y ) and 2 2 2 k= k + k c x y 2 2 2 k= k − k z c 15 TEz Modes (cont.) y Boundary conditions: E x ( x, 0) = 0 E y (0, y ) = 0 E x ( x, b ) = 0 E y ( a, y ) = 0 b ε, µ x a The result is cross section mπ x nπ y H z 0 ( x, y ) = Amn cos cos a b This can be shown by using the following equations: − jωµ ∂H z jk z ∂Ez = − 2 Ex 2 2 2 − ∂ − k k y k k z z ∂x ∂H z 0,= = y 0, b ∂y jωµ ∂H z jk z ∂Ez = − 2 Ey 2 2 2 − ∂ k k x k − k z ∂y z ∂H z 0,= = x 0, a ∂x 16 TEz Modes (cont.) Summary of TEz Solution for (m,n) Mode (Ez = 0) mπ x nπ y − jk z( m ,n) z H z ( x, y, z ) = Amn cos cos e a b k z( m ,n ) mπ nπ 2 =k − − a b 2 m = 0,1, 2 n = 0,1, 2 2 Same formula for cutoff frequency as the TEz case! ( m, n ) ≠ ( 0, 0 ) Note: The (0,0) TEz mode is not valid, since it violates the magnetic Gauss law: H ( x, y, z ) = zˆ A00 e − jkz ∇ ⋅ H ( x, y , z ) ≠ 0 17 Summary TMz mπ x nπ y − jkz( m ,n) z E z ( x, y, z ) = Amn sin sin e a b TEz mπ x nπ y − jk z( m ,n) z H z ( x, y, z ) = Amn cos cos e a b k z( m ,n ) mπ nπ =k 2 − − a b cd f = 2π ( m,n ) c TMz 2 mπ nπ + a b m = 1, 2, n = 1, 2, 2 TEz 2 Same formula for both cases 2 Same formula for both cases m = 0,1, 2, n = 0,1, 2, ( m, n ) ≠ ( 0, 0 ) 18 Wavenumber General formula for the wavenumber mπ nπ + a b 2 TMz or TEz mode: = kz k 2 − kc2 with kc = 2 Note: The (m,n) notation is suppressed here. Above cutoff: k z k 1 − ( kc / k ) = 2 = k 1 − ( ωc / ω ) = k 1 − ( fc / f ) Hence Recall: k = ω µε 2 kc = ωc µε 2 = kz k 1 − ( fc / f ) cd fc = 2π 2 mπ nπ + a b 2 2 19 Wavenumber (cont.) Below cutoff: k z =k 2 − kc2 = − j kc2 − k 2 Hence kz = − j kc2 − k 2 = − jkc 1 − ( k / kc ) 2 = − jkc 1 − (ω / ωc ) = − jkc 1 − ( f / f c ) Hence kz = − jkc 1 − ( f / ) 2 2 cd f = fc c 2π 2 mπ nπ + a b 2 2 20 Wavenumber (cont.) Recal that k z= β − jα Hence we have β= k 1 − ( fc / f ) , f > fc α= kc 1 − ( f / f c ) , f < fc 2 2 cd fc = 2π mπ nπ + a b 2 2 21 Wavenumber Plot General behavior of the wavenumber β kc α “Light line” β =k f fc β= k 1 − ( fc / f ) , 2 α= kc 1 − ( f / f c ) , 2 f > fc f < fc cd fc = 2π mπ nπ + a b 2 2 22 Dominant Mode The "dominant" mode is the one with the lowest cutoff frequency. Assume b < a y cd fc = 2π mπ nπ + a b 2 2 b ε, µ x a Cross section Lowest TMz mode: TM11 Lowest TEz mode: TE10 TEz TMz The dominant mode is the TE10 mode. m = 1, 2, n = 1, 2, m = 0,1, 2, n = 0,1, 2, ( m, n ) ≠ ( 0, 0 ) 23 Dominant Mode (cont.) Formulas for the dominant TE10 mode π x − jkz z H z ( x, y, z ) = A10 cos e a = kz π 2 k2 − a fc = At the cutoff frequency: f = fc cd 2a β= k 1 − ( fc / f ) , 2 α= kc 1 − ( f / f c ) , 2 = λ c= cd / f c d / f f > fc λ = 2a f < fc 24 Dominant Mode (cont.) What is the mode with the next highest cutoff frequency? fc = cd 2π mπ nπ + a b 2 cd 2π cd 2 = = fc 2π a 2 a 2 ( 2,0 ) 2 y cd π cd 1 = = fc 2π b 2 b 2 ( 0,1) Assume b < a / 2 The next highest is the TE20 mode. (1,0 ) ( 2,0 ) fc ε, µ b x = 2 fc a Cross section useful operating region TE10 TE20 TE01 fc 25 Dominant Mode (cont.) Fields of the dominant TE10 mode π x − jkz z H z ( x, y, z ) = A10 cos e a Find the other fields from these equations: − jωµ ∂H z jk z ∂E z = − 2 Ex 2 2 2 k − k z ∂y k − k z ∂x jωµ ∂H z jk z ∂E z = Ey 2 − 2 2 2 k − k ∂ x k − k z z ∂y jωε ∂E z jk z ∂H z = − 2 Hx 2 2 2 − ∂ − k k y k k z z ∂x − jωε ∂E z jk z ∂H z = − 2 Hy 2 2 2 − ∂ − k k x k k z z ∂y 26 Dominant Mode (cont.) From these, we find the other fields to be: π x − jkz z E ( x, y, z ) = yˆ E10 sin e a kz π x − jkz z H ( x, y, z ) = − xˆ e E10 sin a ωµ jωµ π = − A10 E10 2 where 2 k − kz a y E H b a x 27 Dominant Mode (cont.) Wave impedance: ωµ = − Hx k z ωµ = − k 1− f / f 2 ( c ) Ey η = − 1− f / f 2 ( c ) η= Define the wave impedance: Z TE E y ωµ 1 ≡ − = = η 1− f / f 2 H x kz ( c ) η0 εr Note: This is the same formula as for a TEz plane wave! 28 Example Standard X-band* waveguide (air-filled): a = 0.900 inches (2.286 cm) b = 0.400 inches (1.016 cm) Note: b < a / 2. Find the single-mode operating frequency region. Use (1,0 ) fc c = 2a Hence, we have f c(1,0) = 6.56 [GHz] f c( 2,0) = 13.11 [GHz] * X-band: from 8.0 to 12 GHz. 29 Example (cont.) Standard X-band* waveguide (air-filled): a = 0.900 inches (2.286 cm) b = 0.400 inches (1.016 cm) Find the phase constant of the TE10 mode at 9.00 GHz. Find the attenuation in dB/m at 5.00 GHz Recall: β= k 1 − ( fc / f ) , 2 α= kc 1 − ( f / f c ) , 2 f c(1,0) = 6.56 [GHz] f > fc f < fc = k ω= µ0ε 0 2= π f / c 2π / λ0 At 9.00 [GHz]: k =188.62 [rad/m] = kc π= / a 137.43 [rad/m] At 9.00 GHz: β = 129.13 [rad/m] At 5.00 GHz: α = 88.91 [nepers/m] 30 Example (cont.) At 5.00 [GHz]: α = 88.91 [nepers/m] π x −α z E y ( x, y, z ) = A10 sin e a Therefore, dB/m = −20 log10 e −α (1) dB/m = 772 A very rapid attenuation! Note: We could have also used = dB/m 8.68589 = [nepers/m] 8.68589 α 31 Guide Wavelength The guide wavelength λg is the distance z that it takes for the wave to repeat itself. λg = 2π β (This assumes that we are above the cutoff frequency.) From this we have 2π 2π = λg = 2 2 2π k 1 − ( fc / f ) − f f 1 / ( c ) λ Hence we have the result λg = λ 1 − ( fc / f ) 2 λ0 λ= εr 32 Phase and Group Velocity Recall that the phase velocity is given by ω vp = β Hence vp ω ω = = 2 2 ω µε 1 − ( f c / f ) k 1 − ( fc / f ) We then have vp = µε 1 − ( f c / f ) 2 cd 1 − ( fc / f ) For a hollow waveguide (cd = c): Hence: 1 vp = vp > c ! 2 c 1 − ( fc / f ) 2 (This does not violate relativity.) 33 Phase and Group Velocity (cont.) The group velocity is the velocity at which a pulse travels on a structure. The group velocity is given by 1 dω vg = = dβ dβ dω Vi ( t ) (The derivation of this is omitted.) A pulse consists of a "group" of frequencies (according to the Fourier transform). t vg Vi (t) +- waveguiding system 34 Phase and Group Velocity (cont.) If the phase velocity is a function of frequency, the pulse will be distorting as it travels down the system. vg Vi (t) +- waveguiding system A pulse will get distorted in a rectangular waveguide! vp ( f ) = cd 1 − ( fc / f ) 2 35 Phase and Group Velocity (cont.) To calculate the group velocity for a waveguide, we use β= k 2 − kc2 = ω 2 µε − kc2 Hence we have µε dβ 1 2 ωµε ωµε 2 −1/2 2 = ω µε − k ωµε = = = ( ) ( c ) 2 dω 2 ω 2 µε − kc2 ω µε 1 − ( kc / k ) 2 1 − ( kc / k ) We then have the following final result: For a hollow waveguide: = vg cd 1 − ( f c / f ) 2 vg < c 36 Phase and Group Velocity (cont.) For a lossless transmission line or a lossless plane wave (TEMz waves): γ =α + j β = ( R + jω L )( G + jωC ) β= k= ω µε = jω LC = jω µε = jk We then have ω ω v= = = p β ω µε = vg 1 = dβ dω 1 = cd µε (a constant) 1 = cd µε Hence we have v= v= cd p g For a lossless transmission line or a lossless plane wave line there is no distortion, since the phase velocity is constant with frequency. 37 Plane Wave Interpretation of Dominant Mode Consider the electric field of the dominant TE10 mode: π x − jkz z E ( x, y, z ) = yˆ E10 sin e a e + jk x x − e − jk x x − jkz z = yˆ E10 e 2j where kx = π / a Separating the terms, we have: #1 #2 E10 + jkx x − jkz z − E10 − jk x x − jk z z = + yˆ e e E ( x, y, z ) yˆ e e 2j 2j This form is the sum of two plane waves. = k1 zˆ k z − xˆ k x = k2 zˆ k z + xˆ k x 38 Plane Wave Interpretation (cont.) x Picture (top view): k2 a θ TE10 mode k1 z θ tan= kx = kz π /a fc k 1− f 2 = k1 zˆ k z − xˆ k x = k2 zˆ k z + xˆ k x At the cutoff frequency, the angle θ is 90o. At high frequencies (well above cutoff) the angle θ approaches zero. 39 Plane Wave Interpretation (cont.) Picture of two plane waves λ cd Crests of waves x k1 λg a z vp k2 Waves cancel out cd The two plane waves add to give an electric field that is zero on the side walls of the waveguide (x = 0 and x = a). 40 Waveguide Modes in Transmission Lines A transmission line normally operates in the TEMz mode, where the two conductors have equal and opposite currents. At high frequencies, waveguide modes can also propagate on transmission lines. This is undesirable, and limits the high-frequency range of operation for the transmission line. 41 Waveguide Modes in Transmission Lines (cont.) Consider an ideal parallel-plate transmission line (neglect fringing) (This is an approximate model of a microstrip line.) y H PEC Assume w > h E PMC h x w Rectangular “slice of plane wave” (the region inside the waveguide) A “perfect magnetic conductor” (PMC) is assumed on the side walls. 42 Waveguide Modes in Transmission Lines (cont.) Some comments about PMC A PMC is dual to a PEC: PEC PMC Et = 0 Ht = 0 E = nˆ E n H = nˆ H n E PEC H PMC 43 Waveguide Modes in Transmission Lines (cont.) From a separation of variables solution, we have the following results for the TMz and TEz waveguide modes: y Assume w > h PEC PMC h x w TMz mπ x nπ y − jk z( m ,n) z E z ( x, y, z ) = Amn cos sin e w h TEz mπ x nπ y − jk z( m ,n) z H z ( x, y, z ) = Amn sin cos e w h ( m,n ) kz mπ nπ =k − − w h 2 2 2 44 Waveguide Modes in Transmission Lines (cont.) The dominant mode is TE10 π x − jkz(1,0) z H z ( x, y, z ) = A10 sin e w (1,0 ) k z= π k2 − w 2 y PEC PMC h w x The cutoff frequency of the TE10 mode is cd π cd = fc = 2π w 2w 2 45 Waveguide Modes in Transmission Lines (cont.) y Example w h x Microstrip line Assume: fc = ε r = 2.2 (Rogers 5880 Duroid) cd 2w = w 2= h 3.15[mm] 3 ×108 / 2.2 fc ≈ 2 ( 3.15 ×10−3 ) = Z 0 65.4 [Ω] f c ≈ 3.2 ×1010 [Hz] h = 1.575 [mm] (62 [mils]) fc ≈ 32 [GHz] 46 Waveguide Modes in Transmission Lines (cont.) Dominant waveguide mode in coax (derivation omitted) TE11 mode: 1 1 fc ≈ a εr π 1 + b / a c Example: RG 142 coax = a 0.035 inches = 8.89 × 10−4 [m] = b 0.116 inches = 29.46 × 10−4 [m] ε r = 2.2 b / a = 3.31 ⇒ Z 0 = 48.4[Ω] f c ≈ 16.8 [GHz] εr a b 47
© Copyright 2024 ExpyDoc