BIBLIOGRAPHY

BIBLIOGRAPHY
BIBLIOORAPHY
(1]
Alber,Ya.r. and Notik, A. I : Geometric properties of Banach
spaces and approximate method for solving nonlinear operator
equations, Soviet Math. Dokl. 29 (1984), 611-615.
(2]
Amann,H.
Fixed point
Problems in
ordered
equations and non-linear eigen-value
Banach
space, SIAM Review, 18 (1976),
620-709.
[3]
Anqelov,V.
G.
: A
coincidence theorem
in uniform spaces and
applications, Mathematics Balkanica 5 (1991), 47-65.
[4]
Assad, N.A., and
Kirk, W. A. : Fixed point theorems for set
valued mappings of contractive type, Pac. J. Math.43 (1972).
553-562.
[5]
Averamescu ,C.
Theorem
de point fix power les applications
contractants at anticontractantes,Manuscripts Math.6 (1972).
405-411.
[6]
Banach,S.: Sur less operations dans les, ensembles abstraits
et leur
application aux equations, integrals, Fund. Math. 3
(1922), 133-181.
[7]
Berge, C. : Topological spaces, The Mac Millan
Company, New
York (1963).
[8]
Bethke, H. :
kontraktive
strongly
Approximation
operatoren
von
Fixpunkten
(Approximation
pseudo-contractive
of
streng pseudofixed points of
operators),Hath. Naturwiss Fa.
27, No. 2 (1989), 263-270.
[9]
Bianchini .R. M. T. : Su un problema di S. Reich
riquardonte
la teoria dei punti fissi.Boll.Un.Hat.Jtal.5(1972), 103-108.
[10]
Bharuch-Reid, A. T. : Fixed point theorems in
137
probabilistic
oii<'ly·,>·•. llu1l.i'\af'r. Math.
I 11 l
[ 13]
~41
87(1976),
~~7.
J;lra'k•r ,,n,ll. and Sut>r ah•anva•. P. V. : Couon I i.ed point in
metr i<
[17]
Soc.
•11y conv~x ~~acu.J.Hath.Phva.Scl.ll
Bocoan
Q.
nret.r ic
~par.~~.
Boqin.
J.
:
:
On •.ome
lix@d
point
strict
~~.~.
S7o.
theore•& In probabilistic
Math. Balkanica 4 (1974),
On
(1?84),
67-70.
puudocontraction& and a I! xed point
theorem, Technion Preprint Seri@s Ho. HT-21?, haifa, Israel,
1 '17~.
[14]
Bose,S.C.:Weak convergence to the fixed point of an asymptotically
nonexpansive map, Proc. Amer. Hath. Soc. 68 (1978),
305-308.
[15]
Bose,S.C. and Laskar,S. K.: Fixed point theore•s for certain
class of mappings, J. Hath. Phy. Sci. 19 (1985), 503-509.
[16]
Bose, R. K. and Mukherjee, R. N.:Common fixed points of some
multi-valued mappings, Tamkang Hath. J. 8 (1977), 245-249.
[17]
Boyd, D. W. and
Wonq, J. S. W. : On nonlinear contractions,
Proc. Amer. Math. Soc. 20 (1969), 458-464.
[18]
Brosowski, B. : Fixpunctsatze in der approximations theorie,
Mathematica (Cluj) 11 (1969), 195-220.
[19]
Brouwer,L.E. J.:over een-eenduidige, continue transformation
van
oppervlakken
in
zick self, Amsteralam Akad .Versl. 17
(1910). 741-752.
[20]
: Uber abbildunqen vom mannigfaltiqkeiten, Math. Ann.
71 (1912), 97-115.
[21]
Browder,F. E.: Existence of periodic solutions for nonlinear
equations of evolution,Proc.Nat.Acad.Sci. U.S.A., 53 (1965),
1100-1103.
138
[22)
: Nonexpansive nonlinear operators in a Banach space,
Proc.Nat.Sci. U.S.A. 54 (1965). 1041-1044.
[23)
: Fixed point theorems for nonlinear
semicontractive
mappings in Banach spaces,Arch.Rat.Mech.Nal.21(1966),259-269.
[24]
:Nonlinear mappings of nonexpansive and accretive type
in Banach spaces,Bull.Amer.Math.Soc.(N.$.)73(1967), 875-882.
[25]
:Nonlinear monotone and accretive operators in Banach
~paces,
[26]
Proc.Nat.Acad.Sci.U.S.A. 61, (1968), 388-393.
· .. : On the convergence of successive approximation
for
nonlinear functional equations, Indag.Math.30 (1968), 27-35.
(27]
-- : Nonlinear
operators
and
nonlinear
equations
of
evolution in Banach spaces,Proc.Symp.Pure Math.,Vol.18, Part
2, Amer. Math. Soc., Providence, RI, 1976.
[28]
Browder, F.E. and De Figueiredo,D. G. : J-monotone nonlinear
operators in Banach spaces,Kankl. Nedevl. Akad. Wetersch, 69
(1966), 412-420.
[29]
Browder,F.E. and Petryshyn,W.V.:The solution by iteration of
nonlinear
functional equations in Banach spaces,Bull. Amer.
Math.Soc. 72 (1966), 571-575.
[30]
: Construction of fixed points of nonlinear mappings
in
[31)
Hilbert
Bruck
space, J. Math. Anal. Appl. 20 (1967), 197-228.
R. E. : The
iterative
solution
of
the
equation
y Ex + Tx for a monotone operator T in Hilbert space, Bull.
Amer. Math. Soc. 79 (1974). 1258-1262.
[32]
Bynum,W.L.,Weak parallelogram laws for Banach spaces, Canad.
Math. Bull. 19 (3) (1976), 269-275.
[33]
Bynum , W. L.
and
Drew, J. H : A parallelogram law for lp.
139
Amer. Hath. Monthly 79 (1972), 1012-1014.
[ 34 )
Cain,Jr.,G.L. and Kasriel, R. H Fixed and periodic point~ of
local
contraction
mappings on probabilistic metric spaces,
Math. Systems Theory 9 (1976), 289-297.
[35)
Carbone,A, and Harino,G:Fixed points and almost fixed points
of nonexpansive maps in Banach spaces, Riv. Mat. Univ. Parma
(4) 13 (1987). 385-393.
[36)
Ciric, Lj. B.: Fixed
points
for
generalized
multi-valued
contractions, Mat. Vesnik. 9 (24) (1972), 265-272.
[37)
: A Generalization of Banach's contraction principle,
Proc. Amer. Math. Soc. Vol.45, No.2, (1974).
[38]
,, · --· : On a family of constructive
maps and fixed points,
Publ. Inst. Math. 17 (31), (1974) 45-51
[39]
:On fixed points of generalized contraction on probabilistic metric spaces,Publ. Inst. Math. (Beograd) (N.S.) 18
(32) (1975), 71-78.
[40)
Chang , c. C.: On a fixed point theorem of contractive type,
Comment. Math. Univ.St. Paul 32 (1983), 15-19
[41]
Chang, s. S.: A common
fixed
paint theorem for commuting
mappinqs. Proc. Amer. Math. Soc. 83 (1981), 645-652.
(42]
· · -- · : Fixed
point theorems of mappings
metric spaces with application,
Scientia
on probabilistic
Sinica 26 (1983),
1144-1155-
[43)
Chatterjee, s. K. : Fixed point theorems, C.R. Acad, Bulgare
Sci. 25 (1972), 727-730.
[44]
chidume, c. E. : On the Ishikawa
fixed point iterations for
quasi-contractive mappings,J_Nigerian Math.Soc.4(1985),1-11.
140
( 4 5]
: The iterative solution of
the
equation f
E
~ + Tx
for a monotone operator Tin Lp spaces, J. Hath. Anal. Appl.
116, (1986), 531-537.
[46]
: An approximation
method
for
monotone Lipchitzian
operators in Hilbert space,J.Austral. Hath. Soc. (series A),
41 (1986). 59-63.
(47]
··:Iterative approximation of fixed points of Lipschitzian strictly
pseudo-contractive mappings, Proc. Amer. Math.
Soc. 99 (1987), 283-288.
[48]
: Fixed
point
iterations
for
certain
classes
of
nonlinear mappings, Applicable Analysis 27 (1988), 31-45.
(49]
·······:on the Ishikawa and mann iteration methods for quasi-
contractive mappings, J. Nigeria Math. Soc. 7 (1988), 1-9.
(50]
. Iterative
solution of nonlinear
equations of
the
monotone and dissipative types,Appl. Anal. 33 (1989), 79-86.
Iterative
[51]
solution of
nonlinear equations of
the
monotone type in Banach spaces, Bull. Austral. Math.Soc.,Vol
42(1990), 21-31.
Approximation of fixed points of quasi-contractive
[52]
mappings in Lp spaces, Indian J.Pure Appl.Math.22(4),(1991),
273-286.
[53]
-·-----:convergence theorems for certain classes of nonlinear
mappings, ICTP, Trieste, Preprint IC/92/21 (1992).
[54]
Steepest
descent
approximations
for
accretive
operator equations,ICTP, Trieste, Preprint IC/93/43, (1993).
[55)
Approximation
of fixed points of strongly
pseudo-
contractive mappings,Proc.Amer.Math.Soc.120 (1994), 545-557.
141
[56]
Cho, Y. J.:Fixed points for compatible mapping$ of type (A),
Math. Japan. 38 (1993), 497-508.
[57]
Cho,Y.J.,Murthy,P.P. and stojakovic, H.: Compatible mappings
of
type (A) and common fixed points in Menger spaces, Comm.
Korean Hath. Soc. 7, No. 2 (1992),
(58]
325-339.
Chu,s.c. and Diaz,J.B.: Remark on a generalization of Banach
principle
of
contraction mappings, J. Hath. Anal. Appl. 11
(1965), 440-446.
[59]
Ciorenescu,I.: Geometry
of
Banach spaces duality
mappinqs
and nonlinear problems, Kluwer Academic Publishers (1990).
(60]
Collatz , L.:
Functional
analysis
and numerical analysis,
Academic Press, New York, 1966.
[61]
Constantin, Gh.:
On some classes of contraction
~appings
in
Menger spaces, Sem.Teoria Prob.Appl.,Timisoara No. 76, 1985.
[62]
Cauchy , A. L.: integral, Vol. 1 and 2, Paris, 1984.
[63]
Das,G. and Dabata,J. P.: A note on fixed points of commuting
mappinqs of contractive type, Indian J.Math.27 (1985), 49-51
[64]
Das, K. H. and Naik, K. V.: Common fixed point theorems
commuting
maps
for
on metric spaces, Proc. Amer. Hath. Soc. 77
(1979), 369-373.
[65]
Dauer, J. P. :
A controllability
technique
for
nonlinear
systems, J. Math. Anal. Appl. 37 (1972) 442-451.
[66]
Dedeic.R. and Sarapa, N.: On common fixed point theorems for
commuting mappings
on Menger spaces, Radovi, Hat. 4 (1988),
269-278.
[67]
------- · A common fixed point theorem for
three mappinqs on
Menger spaces, Hath. Japan. 34 (6) (1989), 919-923.
142
[68]
Zeros of accretive operators, Hanuscripta Hath.
Deimlin~,K.:
13 (1974)' 365-374.
[69]
Delbosco , D.: Un'estensione
di S.
Reich,
Rend.
Sem.
di
un teorema sul punta fisso
Hath.
Univers. Pol. Torino 35
(1976-1977), 233-238.
[70)
A unified approach
of for all contrative mappings,
Jnanabha 16 (1986), 1-11.
[71]
Deng , L.: On Chidume's Open Questions. J. Hath. Anal. Appl.
174 (1993), 441- 449.
[72]
Diestel,J.:Geometry of Banach spaces, selected topics, Lect.
Notes in Hath., Vol.485,
Sprin~er
Varlag.Berlin,
Heidelber~
and New York, 1975.
[73]
Ding , X. P.: Some common fixed point theorems for commuting
mappings, Maths. Sem. Notes 11 (1983), 301-305.
.....
[74a] Dotson Jr, W.G.: On the mann iteration process, Trans. Amer.
Soc.149(1970),65-73.
[74]
··--·--:Fixed points of quasi-nonexpansive mappings,J.Austral.
Hath. Soc. 13 (1972), 167-170.
: Fixed point for nonexpansive mappings on starshaped
[75)
subset
of
Banach spaces, J. London Hath. Soc. (2) 4(1972),
408-410.
[76]
-------- - An iterative
process
for nonlinear monotonic non-
expansive operators in Hilbert space, Hath. Comp. 32 (1978),
223-225.
[77]
Do~ning,
D. J.
and
Ray, W. 0. : Some remarks on set valued
mappings, Non. Anal. THA 5 (12) (1981), 1367-1377.
[78]
Dube, L.S.: A theorem on common fixed points of multi-valued
143
mappings, Ann.Soc.Sci.Bruxelles Sir.!. 89 (1975), 463-468.
[79]
Oube, L. S. and
Singh S. P. :
On multi-valued
contraction
mappings, Bull.
Hath. Soc. Sci. Hath. R.S. Roumanie (N.S.),
14 (1970), 307-310.
[80]
Dunn , J. C.:
Iterative construction
of
fixed
points for
multi-valued operators of the monotone type, J. Funct. Anal.
27 (1978), 38-50.
[81a] Edelsttein, H.The construction of an asymptotic centre with
a fixed point property, Bull.Amer.Math.Soc.78(1972),206-208.
[81]
Ekeland
I.: Sul les problems variationncelles, C.R. Paris,
Ser. A.B. 257 (1972), 1057-1059.
[82]
Fan,K.A.:Fixed points and min-max theorems in locally convex
topological linear spaces,
Proc. Nat. Acad. Sci., U.S.A. 38
(19.52), 121-126.
[83]
-------- :A generalization of Tychonoff 's fixed point theorem,
Math. Ann. 142 (1960-61), 305-310.
[84]
Fisher, B.: Common fixed points of four mappings, Bull.Inst.
Math. Acad. Sinica 11(1983),103-113.
[85]
Fisher, B. and Sessa,S.: Common fixed points of two pairs of
weakly commuting mappings. Univ. Novisad Mat. Ser. 18(1986),
45-59.
[86]
Franklin , J.:
Methods of Mathematical economics,
Springer
Verlag, New York, 1980.
[87]
Ghosh, M. K. and Oebnath, L.: Approximation of fixed
of
quasi-nonexpansive
mappings
points
in uniformly convex Banach
space, AppL Math. Lett. 5(3) (1992), 47-50.
[88]
Goebel, K. : A coincidence theorem, Bulletin de l'
144
Academic
Rolinaise
des Dciences des
Dciences
Math.
Astr
et Phys.
XV L 9 (1969), 733-735.
(89]
: On a fixed point theorem for multi-valued nonexpansive mappinqs, Ann. Univ. Maria Curie Sklodowska.
(90]
Goebel,K. and Kirk,W.A.: A fixed point theorem for
asy~ptot-
ically nonexpansive mappings, Proc.Amer. Math. Soc. 35
No.1
(1972). 171-174.
(91a]
-· :Topics in metric fixed point theory, Cambridge Stud.
Adv. Math. 28, Cambridge University Press, London, 1990.
[91]
··- · --· · A fixed
iterates have
point
uniform
theorem
for transformations whose
Lipschitz
constant, Studia Math. 47
(1973). 137-140.
[92]
Goebel. K.• Kirk. W.A. and Shimi,T.N : A fixed point theorem
in uniformly convex space, Bull.Un.Mat.Italy 7(1973). 67-75.
[93)
Goebel, K. and Kuczumow, T.: A contribution to the theory of
nonexpansive mappings, Bull.Cal.Math.Soc.70(1978), 355-357.
[94]
Gohde,D. :Zum Prinzip der kontraktiven Abbidung,Math. Nachr.
30 (1965). 251-258.
[95]
Gornicki • J.: Weak convergence theorems for
nonexpansive
mappings
in
uniformly
asymptotically
convex Baanch spaces.
Comment. Math. Univ. Carolin. 30 (2). (1989). 249-252.
[96]
Gossez.J. P. and oozo.E.L.:Some geometric properties related
to the fixed point theory for nonexpansive mappings, Pacific
J. Math. 40 (1972). 565-573.
(97]
Gotica • J. A. and Kirk , W. A.:
Lipschitzian pseudo-contractive
Sci. 36 (1972), 111-115.
145
Fixed
point
theorems for
mappings, Proc. Amer. Math.
[98]
Gwinner, J.: On the convergence
some iteration
of
processes
in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 81
(1978). 29-35.
[99]
Hadzic • 0 .: Fixed
points
for
mappings on probabilistic
locally convex spaces, Bull. Hath. Soc. Sci. Hath. Rep. Soc.
Roum. T22 (70), No.3 (1978), 287-292.
[100] ·-····--: On
the
(£,).)-topology
of
LPC-spaces,
Glasnik
Matematika 13 (33) (1978). 293-297.
[101] ---·-·-·· -· : Fixed
point
theorems for multi-valued mappings in
probabilistic metric spaces, Hat. Vesnik 3 (16) (31) (1979),
k125-133.
[102]
: A fixed paint theorem in Menger spaces, Pub!. Inst.
Math.
[103]
(Beo(lrad)
(N.S.) 20(40) (1979), 107-112.
: On common fixed points in metric
metric
spaces
Faculty
of
with
and probabilistic
convex structures, Review of Research,
Science,Math.Series,Univ. of Novi Sad, 14 (1980),
13-24.
[104] . . -------
Some theorems on the fixed points in probabilistic
metric and random normed spaces,Boll. Un. Hat. Ita!. B(S) 18
(1981). 1-11.
: Some
[105]
metric
theorems on the fixed points in probabilistic
and random
normed spaces,Boll. Un. Mat. Ital. B(6),
1-8(1982), 381-391.
[106] -- ---- : Fixed
point
theorems
for mul tivalued mappings in
uniform spaces and its applications to PH-spaces, An.
Univ.
Timisoara.seria st.Hatematice,Vo. XXI,fasc.1-2,(1983),45-57.
[ 107]
: common fixed point theorems for family of mappinqs
146
in complete metric spaces. Math. Japan. 29 (1984), 127-134.
[108] Hanner. 0.
Math. 3
[109] Hardy
:
(19)
On the uniform convexity of Lp and lp.
Archiv.
(1956). 239-244.
G. E. and Rogers
. T.
A generalization of fixed
D. :
point theorem of Reich.Canad.Math. Bull. 1.6 (1973), 201-206.
[110] Hicks
T. L. : Fixed
theory in probabilistic metric
point
spaces, ibid 13 (1983), 63-72.
(111] ·· ·· ·-: Fixed point
theorems
for
d-complete topological
space I,Internat.J.Math. and Math.Sci.15(3) (1992), 435-440.
(112] Hicks, T.L. and Kubicek,J. R.: On the Mann iteration process
in Hilbert space. J. Hath. Anal. Appl. 59 (1977), 498-504.
(113] Hicks, T. L. and Rhoades, B. E.:
d-complete
topological
spaces
Fixed
II,
point
theorems for
Hath. Japon, 37 (1992),
847-653.
[114] Hirano, N. and Takahashi. W.: Nonlinear ergodic thoerems for
nonexpansive
mappings
in
Hilbert spaces, Kodai Hath. J. 2
(1979)' 11-25.
(115] Hou , L.Q.: On Naimpally and Singh's open question, J. Hath.
AnaL Appl., 124 (1987), 157 - 164.
[116] Hu, T.:Fixed
point theorems for
multi-valued
mappings,
Canad. Math. Bull., 23 (1980), 193-197.
[116a]Husain, S.A. and Sehgal. V.M. : On common fixed point for a
family of mappings, Bull.Austr.Math.Soc. 63 (1975), 261-264.
[117] Imdad, M.• Khan, M. S. and Sessa, S.: On some weak conditions
of commutativity in common fixed point theorems, Internat.J.
Math. Math. Sci. 11 (1988). 289-396.
[118] Iseki,K.: On
fixed
point
mappings, Proc. Japon.
147
Acad. 50
(1974), 468-469.
[119] ·· -- · : An approach to fixed point theorems, Hath.
Notes, Kobe
[120]
Seminar
Univ., 39 (1975), 193-202.
:Multi-valued contraction mappings in complete metric
spaces, Rend. Sem. Hath. Univ. Padova. 53 (1975),15-19.
[121]
: Application
of
Zamfirescu's fixed
point theorem,
Math. Sem. Notes Kobe Univ. 4(1976), 215-216.
[122] Ishikawa, S.:
Fixed points by a new iteration method, Proc.
Amer. Hath. Soc. 149 (1974), 147-150.
[123]
: Fixed points and iteration of nonexpansive mappings
in a Banach space, Proc. Amer. Math. Soc. 73 (1976), 65-71.
[124] lstratescu, V. I.: Fixed point theory,
Mathematics
and its
application. 7, Reidel, 1979.
[125] Istratescu, V.I. and Sacuiu, I.:
contraction mappinqs
on
Fixed point theorems for
probabilistic
metric spaces, Rev.
Roumaine Math. Pures Appl. 118 (1973), 1375-1380.
[126] Itoh,S.:Multivalued generalized contractions and fixed point
theorems,Comment.Math.Univ.Carolina, 18(2) (1977),247-258.
[127] Itoh,S. and Takahashi,W.:Single-valued mappings,multi-valued
mappings and
fixed
point theorems, J. Math. Anal. Appl. 59
(1977), 514-521.
[128] Jeong, K. S.: Extensions of fixed point theorems of Boyd and
Wong, M.S. Thesis. Seoul Natl. Univ. 1978.
[129) Johnson, G.G.:Fixed point by mean value iteration,Proc.Amer.
Math. Soc .• 34 (1972), 193 - 194.
[130] Jungck, G.: Commuting
mappings and fixed pints, Amer. Math.
Monthly. 83 (1976), 261-263.
148
[131]
A common fixed point theorem for commuting maps on
L-space, Math. Japan, 25 (1980), 81-85.
Compatible
[132]
mappings
and
common
fixed
points,
rnternat. J. Math. and Math.Sci. 9(4) (1986), 771-779.
: Compatible mappings and
[133]
common
fixed points
(2),
lnternat. J. Math. and Math. Sci. 11 (1988), 285-288.
:Common fixed points of commuting and compatible maps
[134]
on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983.
: Common fixed points for compatible maps on the unit
[135]
interval, Proc. Amer. Math. Soc. 115 (1992), 495-499.
--· : Coincidence and
[136]
relatively nonexpansive
fixed points
for compatible
and
maps, Internat.J.math.Math.Sci. 116
(1993), 95-100.
[137) Jungck,G.,Murthy, P. P. and Cho, Y. J.: Compatible
mappings
of type (A) and common fixed points, Math. Japon. 38 (1993),
381-390.
(138] Jungck, G. and
Rhoades, B.E.: Some
fixed point theorem for
compatible maps,Internat. J. Math. Math. Sci. 16 (3) (1993),
417-428.
[139] Kachurovsky,R.I.:On monotone operators and convex functional
Uspekhi Mat. 15 (1960), 213-215.
[140] Kalinde, A.K. and Mishra, S. N.:Common fixed point for pairs
of commuting nonexpansive mappings in convex
metric spaces,
Math. Japonica 33 (5) (1988), 725-735.
[141] Kaneko, H.: Single-valued
Boll.
and
multi-valued f-contractions,
Un. Mat. !tal. (6). 4-A (1985), 29-33.
[142] Kaneko, H. and Sessa, S.:Fixed point theorems for compatible
149
multi-valued and sinqle-valued mappin~s, Internat J. Hath.
Math.
&
Sci. 12 (1989), 257-262.
[143) Kang , Z. B. :
Iterative approximation of the solution of a
locally Lipschitzian equation, Appl.Hath.Hech. (English Ed.)
12 (1991),No.4,409-414; translated from Appl. Hath. Hech 12,
(1991),No.4,385-389, (Chinese),HR.92h:47090.
[144] Kanq, S. M., Cho,Y. J. and Jungck, G.: Common fixed point of
compatible mappings,lnternat.J.Hath. and Math.Sci.13 (1990),
61-66.
[145] Kang,S.H. and Rhoades,B. E.: Fixed points for four mappings,
Math. Japon, 37 (6) (1992), 1053-1059.
[146] Kang, S.M. and Ryu, J. W.: A common fixed point theorem for
compatible mappings, Hath. Japonica 35 (1990), 153-157.
[147] Kannan, R.: Some
results
on fixed points, Bull. CaL Math.
Soc. 60 (1968), 71-76.
[148]
: Some results on fixed points II,Amer. Hath. Monthly
76 (1971), 169-171.
[149] Karamardian, S.: Fixed points
algorithms
and applications,
Academic Press, New York, 1977.
[150] Kasahara, S.:
On some generalizations of Banach contraction
theorem, Math. Seminar Notes, Kobe Univ., 3 (1975), 161-169.
[151]
Some
fixed
point
and
coincidence
theorems
in
L-Spaces, Hath. Seminar Notes, Kobe Univ., 3(1975), 181-187.
[152] Kato,T.:Nonlinear semiqroups and evolution equations,J.Hath.
Soc. Japon. 19 (1967), 508-520.
[153] Kaulqud, N. N. and Pai, D. V.: Fixed point theorems for setvalued mappinqs, Nieuw Arch. Wisk, (3), 23 (1975), 49-66.
150
[154] Kay , D. C.: A prallelogram law for certain Lp spaces, Amer.
Math. Monthly 74 (1967), 140-147.
[155) KelleY.J.L.:General Topology,D.Van Nostrand, New York, 1955.
[156] Khan, M. S.: A theorem on fixed points, Math. Seminar Notes,
Kobe
[157)
Univ., 4 (1976), 227-228.
:Common fixed point theorem for multi-valued mappinqs,
Pacif. J. Hath. 94 (1981), 1-11.
[158) Khan, M.S., Cho, Y.J., Park,W.T. and Mumtaz, T.: Coincidence
and common fixed points of hybrid contractions, J.
Austral.
Hath. Soc. 55 (Serle A) (1993), 369-385.
[159) Khan, M. S. and
Fisher, B. :
Some fixed point theorems for
commuting mappings, Hath. Nachr. 106 (1982), 333-336.
[160) Kubiak, T.:Common fixed point theorems of pairwise commuting
maps, Hath. Nachr. 118 (1984), 123-127.
[161]
: Fixed
point
theorems
for contractive type multi-
valued mappings, Math. Japan. 30 (1985), 89-101.
[162] Kuratowski, K.:
Topology Volume 1, Academic Press, New York
(1966)[163) Kirk, W. A.: A fixed point theorem for mappings which do not
increase distance, Amer. Hath. Monthly 72 (1965), 1004-1006.
[164) ··· · ---- - Remarks on pseudo-contract! ve mappings, Proc. Amer.
Math. Soc. 25 (1970), 820-823.
[164a)
·:on successive approximation for nonexpansive mappinqs
in Banach spaces, Glas. Hath. J. 12 (1971), 6-9.
[165]
---- ·--
A fixed point theorem for local pseudo-contraction
1n uniformly convex spaces,Manuscripta Math.30(1979),89-102.
[166) Kirk.
w.
A. and Morales , C.: On the approximation of
151
fixed
Points of locally nonexpansive
~appings,
Canad. Math. Bull.
24, No.4, (1981), 441-445.
[167] Kirk, W. A. and Ray, W. 0.: Fixed point theorem for mappinqs
defined on unbounded
sets in
Banach spaces,
Stuidio Math.
64 (1979), 127-138.
[167a]Krasnoselski, M.A. :
Two
remarks
about
the
method
of
successive aaprxations, Uspehi Mat. Nauk 10(1955), 123-127.
[168] Kuhfitting,P.K.:Fixed points of locally contractive and nonexpansive
set-valued
mappings,
Pacific J. Math. 65(1976),
399-403.
[169] Lami Dozo,E.: Multi-valued nonexpansive mappings and Opial's
condition, Proc. Amer. Math. Soc. 38 (1973), 286-292.
[170] Lipschitz , R. : Lehrbuch der Analyse.
Bann. (1877).
[171] Lions • J. L. and Stampacchia, G. :Variational inequalities,
Comm. Pure Appl. Math., 20 (1967), 493-519.
[172] Mati , M. and Ghosh, M. K. : Approximating
fixed
points by
Ishikawa iterates,Bull.Austral.Math.Soc. 40 (1989), 113-117.
[173] Mati, M. and
expansive
and
Saha, B. : Approximating
fixed points of non-
generalized nonexpansive mappings, Internat .
.J. Math. Math. 16 (1)(1993), 81-86.
[174] Mann, W.R. : Mean value methods in iteration,Proc.Amer.Math.
Soc. 4 (1953), 506-510.
[175] Harkin, J.T. :Continuous dependence of fixed point set,Proc.
Amer. Math. Soc. 38 (1973), 545-547.
[176] ------:A fixed point stability theorem for nonexpansive setvalued mappings, J. Hath. Anal. Appl. S4 (1978), 441-443.
(177] Hartin,Jr , R. H. :A qlobal existence theorem for autonomous
152
differential equations in Banach spaces,Proc.Amer.Hath. Soc.
26 (1970), 307-314.
[178]
Banach spaces,
[179]
operators and differential
: Nonlinear
equations in
John Wiley and Sons, New York, London, 1976.
:Differential equations on closed subsets of a Banach
space, Trans. Hath. Soc. 81(1981), 71-74.
[180] Massa , S. : Generalized contractions in metric space, Bull.
Un. Hat. Ita]. 10 (1974), 689-694.
[180a]Henger, K.:Statistical metrics, Proc.Nat. Acad.,Sci.U.S.A.,
28(1942), 535-537.
[181] Mercier , B. : Topics in finite element solution of elliptic
problems, Lecture
Notes
Tata
Institute
of
Fundamental
Research, Bombay, 1979.
[182]
and
: Mechanics
variational
Notes, Orsay Centre of Paris
inequalities,
Lecture
University, 1980.
[183] Hinty,G.J.:Monotone (nonlinear) operators in Hilbert spaces,
Duke Math. J. 29 (1962), 541-546.
[184] Morales, C. H.:Pseudo contractive
Schauder boundary
mappings
condition comment,
and
the Leray
Hath. Univ. Carolinae
20 (1979), 745-756.
[185]
------- :Surjectivity
theorems
for
multivalued mappings of
accretive type,comment.Math.Univ.Carolin 26, (1985),397-413.
[186] Mukherjee, R. N. : Common fixed
mappings,
[187]
-------: On
mappings,
[188]
points
of
some
nonlinear
Indian J. Pure Appl.Math. 12 (1981), 930-933.
fixed
points
of single-valued and set- valued
J. Indian Acad. Hath. 4 (1982), 101-103.
: Construction of fixed points
153
of
strictly
pseudo-
contractive
related
mappinqs
in
generalized Hilbert
applications,
Indian
J. Pure
spaces
Appl.
and
Hath.
15
(1986),276-284.
[189] Mukherjee,R.N. and Verma,V.: A note one fixed point theorem
of Grequs,
lnternat.J. Hath. Math. Sci. 9 (1986), 23-28.
[190] Murthy, P.P.,Chanq,S.S.,Cho,Y.J. and Sharma,B.K.: Compatible
mappings
type (A)
of
and
common
fixed
point
theorems,
Kyungpook Math. J 32 (1992), 203-216.
[191] Hurthy,P.P.,Sharma,B.K. and Cho,Y.J.: Coincidence points and
common fixed points for compatible maps of type (A) on
Saks
spaces, J.Hath.Res Expo.Vol.15,No.3, (1995), 353-361.
[192] Nadler, S. B.: Hultivalued
contraction
mappings,
Pacific
J. Hath. 30 (1969), 475-488.
[193] Naidu, S.V,R. and Prasad ,J.R.: Fixed point theorems
in
2-
metric spaces,lndian J.Pure and Appl. Hath.17(1986),974-993.
[194] Naimpally, S. A.
and
Singh, K. L.: Extension of some fixed
theorems of Rhoades,J.Hath.Anal. Appl.,96 (1983), 437- 446.
[195] Naimpally,S.A.,Singh,S.L. and Whitfield,J. H. H.:Coincidence
for
theorems
hybrid
contractions, Hath. Nachr. 127(1986),
177-180.
[196] Nevanlinna,G. and Reich,S.:Strong convergence of contraction
semigroups
and of iterative methods for accretive operators
in Banach sapces, Israel J. Hath. 32 (1979), 44-58.
[197] Opial ,
z.:
Weak
convergence
of the sequence of successive
approximations for nonexpansive mappings,Bull.Amer.Hath.Soc.
73 ( 196 7) ' 591-597.
[198] Osilike , H. 0. :Ishikawa and Hann iteratin methods for
154
nonlinear strongly accretive mappings, Bull. Austral.Hath.
Soc.Vol.46, (1992), 411-422.
[198a]Outlaw, C.L.:Hean value
iteration
of nonexpansive mappinqs
in a Banach space, Pacif. J.Hath. 30(1969), 747-750.
[199] Pant, R. D.: Common
fixed
points of two pairs of commutinq
mappings, Indian J. Pure Appl. Math. 17(1986), 187-192.
[200]
Park,S.:A coincidence theorem, Bull. De L'Academie Polonaise
Oes Sciences 29 (1981), 487-489.
[201] Park,S. and Bae, J.S.: Extensions
of
a fixed point theorem
of Heir and Keeler, Ark. Math. 19 (1981), 223-228.
[202) Passty, G. B. : Construction of
fixed points for asymptoti-
cally nonexpansive mappings,Proc.Amer. Hath. Soc. 84 (1982),
212-292.
[203a)Peano, G.:Demostration
de 1' intigrabilite
des
equations
differentilles, ordinaties, Hath.Ann.37(1890), 182-228.
[203) Peitgen, H. 0.
and
Walther, H. :
Functional
differential
equations and approximation of fixed points,Springer Verlag,
Berlin, 1979.
[204] Petryshyn, W.V.: On the extension
and solution of nonlinear
operator equations, Illinois J. Math. 10 (1966), 255-274.
[205]
-----·:Projection methods in nonlinear numerical functional
analysis, J. Math. Mech., 17 (1967), 353-372.
[206] Petryshyn, W. V.
sufficient
and
condition
Williamson, T. E. : A necessary
for
the
and
convergence of iterates for
quasi-nonexpansive mappings, Bull.Amer.Math. Soc. 78 (1972),
1027-1031.
[207] ··- --: Strong
and
weak
convergence
155
of
the sequence of
successive
approximations
for quasi-nonexpansive mappings,
J. Math. Anal. Appl. 43 (1973), 459-497.
[208] Picard, E.: Memoire sur la theorie des equations aux derives
partielles et
la Methode, des approximation successives, J.
de Math. 6 (1890), 145-210.
[209] Papa, Y.: Common
Renue
fixed
D'analyse
points of commuting
Numerique
Theory
~appings,
Approximation
Math.
29 (52)
(1987), 67-71.
[210]
: A common
mappings, Publ.
fixed
point theorem of weakly commuting
De L'institue Math. Nouvelle serie tome
47
(61), (1990), 132-136.
[211] Prus,B. and Smarzewski, R.: Strongly unique best approxiamaon
and
centres
in uniformly convex spaces, J. Math. Anal.
Appl. 121 (1987), 10-21.
[212] Qihou,Liu
on Naimpally and Singh's open questions,J. Math.
Anal. Appl. 124 (1987), 157-164.
[213]
A convergence
theorem of the sequence of Ishikawa
iterates for quasi-contractive mappings,J. Math. Anal. Appl.
146 (1990), 301-305.
[214] Radu, V.:On some contraction type mappings in Menger spaces,
An Univ. Temisoara. Stiinte
Math. 23 (1985), 61-65.
[215] Rakotch, E.: A note on contraction mappings,Proc.Amer. Hath.
Soc. 13 (1962), 459-465.
[216] Ray, B. K.: A note on multi-valued mappings,Att. Accad. Naz.
Lincei Rend. Cl. Sci. Fis.Mat.Natur. (8) 56 (1976), 500-503.
[217]
Some fixed point theorems,Fund.Math.92(1976),79-90.
[218]
Remarks on a fixed point
1~
theorem of Gerald Jungck.
J. Univ. Kuwait Sci. 12 (1985). 169-171.
[219]
·:on common fixed point$ in metric space,Indian J.Pure.
Appl. Math. 19 (10) (1988), 960-962.
[220] Ray,W, 0 : Zeros of accretive operators defined on unbounded
sets, Houston J. Math. 5 (1979), 133-139.
[221] Reich,S.:Some remarks concerning contraction mappings,Canad.
Math. Bull 14 (1971), 121-124.
: Kannan's fixed point theorem,
[2221
Boll. Un. Mat. Ita.,
4 (1971)., 1-11.
[223] -·---· --: Fixed points of contractive functions,Bull.Un. Mat.
ItaL, 5(1972), 26-42.
: An
(224]
iterative
procedure
for constructing zeros of
accretive sets in Banach spaces, Nonlinear Analysis 2(1978),
85-92.
: Fixed point theorem for setvalued mappings,J. Math.
(225]
Anal. Appl. 69 (1979), 353-358.
[226] ----.. -·-: Constructing zeros of accretive operators II, Appl.
Anal. 9(1979), 159-163.
-··--- : Constructive techniques for accretive
[227]
and monotone
operators,in Applied Nonlinear Analysis, (V. Lakshmikantham,
Ed.). 335-345, (Academic Press, New York 1979).
[228] -
- - : Strong
convergence
theorems
for
resol vents
of
accretive operators in Banach spaces, J.Math. Anal. Appl. 85
(1980), 287-292.
[229] Rhoades,B.E.:Fixed point iterations using infinite matrices,
Trans. Amer. Math. Soc. 196 (1974), 161-176.
[230]
: Comments on
two
fixed point iteration methods, J.
157
Math. Anal. Appl. 56 (1976), 741-750.
[231]
: A comparison of various definitions of
contractive
mappings, Trans. Amer. Hath. Soc. 226 (1977). 257-290.
s. and Moon, K. B. :On qeneralizations
[232] Rhoades,B. E.; Park,
of the Heir-Keeler type contraction maps,J.Math. Anal. Appl.
146 (1990), 482-494.
[233] Rhoades,B. E. and Sessa,S.
three
Common fixed point theorems for
mappings under a weak commutativity condition, Indian
J. Pure Appl. Math. 17 (1986), 47-57.
[234] Rhoades,B. E.,Sessa,S.,Khan M.S. and Khan, M.s.: Some fixed
point
theorems for Hardy-Rhogers type mappings, Internat J.
Math. Hath. Sci. 7(1) (1984), 75-87.
[235] Rhoades, B. E.,Singh, S. L. and Kulshrestha, C.: Coincidence
theorems for some
multi-valued mappings, Internat. J. Hath.
Math. Sci. 7(1984), 429-434.
[236] Robinson, S. M. : Analysis and computation of
fixed points,
Academic Press, 1980.
[237] Rus, I. A. : Fixed
point theorems for multi-valued mappings
in complete metric spaces, Math. Japonica, 20 (1975), 21-24.
[238] Sahab, S. A., Khan, M.S.
and
Sessa, S. : A result in best
approximation theory, J. Approx. Theory 55 (1988), 349-351.
(238a]Schauder, L. E. J., Der, fix punktsatz in functional raumen,
Studia Math. 2(1930), 171-180.
[239] Schu,J. :Iterative approximation of fixed point of nonexpansive mappings
with
starshaped domain, comment. Math. Univ.
Carolinae 31, 2 (1990), 277-282.
[240]
-- -- :On a theorem of C.E.Chidume concerning the iterative
1~
approximation of fixed points,Hath.Nachr.l53(1991), 313-319.
: Iterative
(241]
pseudo-contractive
construction of fixed points of strictly
mappings,
Applicable
Analysis
Vol. 40
(1991), 67-72.
[24la]··~Jterative
construction of fixed points of assymptotically
nonexpansive mappings,J.Math.Anl.Appl.153(1991),407-413.
[242]
Approximation
of
fixed
point$ of asymptotically
nonexpansive mappings,Proc.Amer.Math.Soc.112(1991), 143-151.
[243]
:Fixed points of mappinqs satisfying semicontractivity
conditions,J. Austral. Hath. Soc. (Series A) 53(1992),25-38.
[244] Schweizer,B. and Sklar,A.: Statistical metric spaces,Pacific
J. Math. 10 (1960), 313-334.
(245]
Probabilistic metric spaces,North Holland series in
Probability and Applied
Mathematics 5(1983).
[246] Schweizer, B., Sklar, A. and Thorp, E. :
The metrization of
statistical metric spaces, Pacific J.Math.10(1960), 673-675.
[247] Sehgal, V. H. : A fixed
iterate,
point
theorem
for
mappings
with
Proc. Amer. Math. Soc. 23 (1969), 631-634.
[248] Sehgal,V.M. and Bharucha-Reid,A.: Fixed point of contraction
mappinqs
on probabilistic metric spaces, Math. Syst. Theory
6 (1972), 97-102.
[249] Senter, H.F. and Dotson Jr.,W.G. :Approximating fixed points
of nonexpansive
mappings, Proc. Amer. Math. Soc. 44 (1974),
375-380.
[250) Sessa, S.: On a weak commutativity condition of mappings
in
fixed point consideration, Pub!. Inst. Hath. 32 (46) (1982),
149-153.
159
[251] Spssa, S. and Fisher, B. ; Common
commutinq
map~ings.
fixed
points
of
~eakly
Bull. Acad. Polon. Ser. Hath. 35 (1987),
341-349.
[2521 Sessa,S.,Khan M.S. and Imdad M.:A common fixed point theorem
with a weak commutativity condition,
Glas. Mat. Ser. III 21
(1986), 225-235.
(253] Sessa,S., Mukherjee, R. N. and Som,T. : A common fixed point
theorem
for weakly
commuting
mappings,
Math. Japonica 31
(1986), 235-245.
[254] Sessa,
s. ; Rhoades, B. E and Khan , M. s. : On common fixed
points of compatible mappings
in metric
and Banach spaces.
Internat. J.Math. and Math. Sci. 11(2)(1988), 375-392.
[255] Sherwood,H.:Complete probabilistic metric spaces,Z. Wasrsch.
Verw. Gebiete 20 (1971), 117-128.
[256] Singh,
s. P. : An application of a fixed pint theorem to
approximation theory, J. Approx. Theory 25 (1979), 89-90.
[257] Singh, S. L. and
metric spaces
Kulshrestha, C. : Coincidence theorems
mappings,
in
Indian J. Phy. Nat. Sci. 2 Sect. B
(1982), 19-22.
[258] Singh, S. L., Ha,K. S. and Cho, Y. J.: Coincidence and fixed
points of nonlinear hybrid
Math.
[259] Singh,
contractions, Internat. J. Hath.
sci. 12 (1989), 247-256.
s. L., Mishra, S. N. and Pant, B. D. : General fixed
point theorems in
probabilistic
metric and uniform spaces,
Indian J. Math. 29 (1987), 9-21.
(260] Singh, S.l. and Pant,B.D.:Fixed point theorems for commutinq
mappings in probabilistics metric spaces, Honan J. 5 (1983),
100
139-149.
[261]
:Coincidence and fixed point theorems for a family of
mappings
on
Menger spaces and extension to uniform spaces,
Math. Japonica 33, 6 (1988), 957-973.
[262] Singh, S. L. and Singh, S. P. : A fixed point theorem,Indian
Pure Appl. Math. 11 (1980), 1584-1586.
[263] Smart, D. R. : Fixed
point
theorems,
Cambridge University
Press, Cambridge, 1974.
[264] Smarzewski, R. : Strongly unique minimization of functional
in
Banach
spaces with applications to theory of approxima-
tion and fixed points,J.Math.Anal.Appl. 115 (1986), 155-172.
[265] Smithson,R. E. :Fixed points for contractive multifunctions,
Proc. Amer. Math. Soc. 27 (1971), 192-194.
[266) Smul'van, V. L.:Sur les toplogies diffe'rentes dans l'espace
de Banach, C.R.(Dokl.),Acad.Sci.URSS 23 (1939), 331-334.
[267]
··· ··-: Sur la
derivabilite
de la
norm
dans l'espace de
Banach, C.R.(Dokl.) Acad.Sci. RSS 27 (1940), 255-258.
[268a]Stojakovic,M.:Common fixed point theorems in complete metric
space and
probabilistic
metric spaces, Austr. math.Soc. 36
(1987). 73-78.
(268]
On some classes of contraction mappings, Math.
Japonica 33 (1988), 311-318.
[269] Swaminathan, S. : Fixed point theory
and
its
applications
(Proceeding seminar), Academic Press, 1976.
[270] Tan,D.H.:On probabilistic densifying mappings, Rev. Roumaine
Math. Pures Appl. 26 (1981), 1305-1317.
[271] Tan, N. X. :
Generalized
probabilistic
161
metric
spaces and
fixed point theorems, Hath. Hachr. 129 (1986), 205-218.
[272] Tani9uchi,T.: A common fixed point theorem for two sequences
of self-mappings, Internat. J.Hath. and Hath.Sci. 14 (1991),
417-420.
An approach
['273]
to
fixed
point
theorems
on uniform
spaces, Trans. Amer. Math. Soc. 91 (1974), 209-225.
(274] Tartar, L. : Nonlinear analysis, Lecture notes,Orsay Centre,
Paris University, 1978.
[275] Trikomi, F. :
formate delle
Un teorema sulla convergeza delle successioni
successive
iterate di
una
funzione
di una
variable reale. Giorn. Mat. Battabline, 54 (1916), 1-9.
(276] Trubniko, Yu. V.:Hanner inequality and convergence of iteration
processes,Soviet Math.(lzvestiya) 31 (7) (1987),74-83.
[277] Vainberg,M. M.: On the convergence of the method of steepest
descent for nonlinear equations, Sibirsk, math. Z. 2 (1961),
201-220.
[278]
Variational method and method of monotone operators
in the theory of nonlinear equations, John Wiley,
Hew York,
1973.
[279] Vijayaraju, P. : Fixed
point
theorems
for
asymptotically
nonexpansive mappings,Bull.Cal.Math.Soc. 80 (1988), 133-136.
[280] Waltman, P. : Deterministic threshold
of epidemics,
Lecture
Notes
in
models
in the theory
biomathematics,
Springer
Verlag, Berlin, Heidelberg, Hew York, 1974.
[281] Wang, S.Z. B. Y; Gao, Z. M. and Iseki, K. : Some fixed point
theorems on expansion mappings,Math.Japon.29(1984), 631-636.
[282] Weqrzyk, R. : Fixed point theorem for multi-valued functions
162
and their applications to functional equations,Dissert.Math.
Rozprawy Math. 1982.
(283] Weng, X. : Fixed point iteration for local strictly
contractive mapping,
Proc. Amer. Math. Soc.
pseudo-
Vol. 113, No.3
(1991), 727-731.
[284] Williamson, T. E.
A geometric approach
nonself mapping T:D
-4
to fixed points of
X, Contemp. Math. 18 (1983), 243-253.
[285] Xu, H. K. : Inequalities in Banach spaces with applications,
Nonlinear
Analysis Theory method and
Applications, 16 (12)
(1991), 1127-1138.
[286) Xu,
Z. B.
and Roach, G. F. : Characteristic inequalities
of
uniformly convex and uniformly smooth Banach space, J. Math.
Anal. Appl. 157 (1991). 189-210.
[287]
- :A necessary and sufficient condition for convergence
of
steepest
descent
approximation
to
accretive operator
equations, J. Math. Anal. Appl. 167 (1992), 340-354.
[288] Xu, Z.B., Zhang, B. and Roach, G.F.: On the steepest descent
approximation to
solutions of nonlinear strongly accretive
operator equations ,J. Comput.
[289] Yanagi, K. :
Math. (1992), (to appear).
A common fixed point theorem tor a sequence of
multi-valued mappings,Publ.Res.Inst.Hath.Sci.15(1979),47-52.
[290] Yeh, c. c. : Remark on common fixed points. Tamkang J. Math.
3 (1972). 75-76.
[291]
-- : On
common
fixed
points of continuous maps, Math.
Sem. Notes 6 (1978), 115-121.
[292] Zarantonello, E. H. :
Solving
functional
equations
by
contractive. averaging in Technical Report No. 160 (U.S.Army
163
Math. Res. Centre. madison, Wisconsin, 1960).
(293]
: The closure
spectrum,
of
the
numerical
Bull.Amer.Hath.Soc.(~.s.),
range contains the
70 (1964), 781 83.
(294] Zeidler, E. : Nonlinear functional analysis and its applications I, Fixed point theorems, (Springer - Verlag, New York,
Berlin,
Heidelberg, Tokyo, 1986).
1M