BIBLIOGRAPHY BIBLIOORAPHY (1] Alber,Ya.r. and Notik, A. I : Geometric properties of Banach spaces and approximate method for solving nonlinear operator equations, Soviet Math. Dokl. 29 (1984), 611-615. (2] Amann,H. Fixed point Problems in ordered equations and non-linear eigen-value Banach space, SIAM Review, 18 (1976), 620-709. [3] Anqelov,V. G. : A coincidence theorem in uniform spaces and applications, Mathematics Balkanica 5 (1991), 47-65. [4] Assad, N.A., and Kirk, W. A. : Fixed point theorems for set valued mappings of contractive type, Pac. J. Math.43 (1972). 553-562. [5] Averamescu ,C. Theorem de point fix power les applications contractants at anticontractantes,Manuscripts Math.6 (1972). 405-411. [6] Banach,S.: Sur less operations dans les, ensembles abstraits et leur application aux equations, integrals, Fund. Math. 3 (1922), 133-181. [7] Berge, C. : Topological spaces, The Mac Millan Company, New York (1963). [8] Bethke, H. : kontraktive strongly Approximation operatoren von Fixpunkten (Approximation pseudo-contractive of streng pseudofixed points of operators),Hath. Naturwiss Fa. 27, No. 2 (1989), 263-270. [9] Bianchini .R. M. T. : Su un problema di S. Reich riquardonte la teoria dei punti fissi.Boll.Un.Hat.Jtal.5(1972), 103-108. [10] Bharuch-Reid, A. T. : Fixed point theorems in 137 probabilistic oii<'ly·,>·•. llu1l.i'\af'r. Math. I 11 l [ 13] ~41 87(1976), ~~7. J;lra'k•r ,,n,ll. and Sut>r ah•anva•. P. V. : Couon I i.ed point in metr i< [17] Soc. •11y conv~x ~~acu.J.Hath.Phva.Scl.ll Bocoan Q. nret.r ic ~par.~~. Boqin. J. : : On •.ome lix@d point strict ~~.~. S7o. theore•& In probabilistic Math. Balkanica 4 (1974), On (1?84), 67-70. puudocontraction& and a I! xed point theorem, Technion Preprint Seri@s Ho. HT-21?, haifa, Israel, 1 '17~. [14] Bose,S.C.:Weak convergence to the fixed point of an asymptotically nonexpansive map, Proc. Amer. Hath. Soc. 68 (1978), 305-308. [15] Bose,S.C. and Laskar,S. K.: Fixed point theore•s for certain class of mappings, J. Hath. Phy. Sci. 19 (1985), 503-509. [16] Bose, R. K. and Mukherjee, R. N.:Common fixed points of some multi-valued mappings, Tamkang Hath. J. 8 (1977), 245-249. [17] Boyd, D. W. and Wonq, J. S. W. : On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. [18] Brosowski, B. : Fixpunctsatze in der approximations theorie, Mathematica (Cluj) 11 (1969), 195-220. [19] Brouwer,L.E. J.:over een-eenduidige, continue transformation van oppervlakken in zick self, Amsteralam Akad .Versl. 17 (1910). 741-752. [20] : Uber abbildunqen vom mannigfaltiqkeiten, Math. Ann. 71 (1912), 97-115. [21] Browder,F. E.: Existence of periodic solutions for nonlinear equations of evolution,Proc.Nat.Acad.Sci. U.S.A., 53 (1965), 1100-1103. 138 [22) : Nonexpansive nonlinear operators in a Banach space, Proc.Nat.Sci. U.S.A. 54 (1965). 1041-1044. [23) : Fixed point theorems for nonlinear semicontractive mappings in Banach spaces,Arch.Rat.Mech.Nal.21(1966),259-269. [24] :Nonlinear mappings of nonexpansive and accretive type in Banach spaces,Bull.Amer.Math.Soc.(N.$.)73(1967), 875-882. [25] :Nonlinear monotone and accretive operators in Banach ~paces, [26] Proc.Nat.Acad.Sci.U.S.A. 61, (1968), 388-393. · .. : On the convergence of successive approximation for nonlinear functional equations, Indag.Math.30 (1968), 27-35. (27] -- : Nonlinear operators and nonlinear equations of evolution in Banach spaces,Proc.Symp.Pure Math.,Vol.18, Part 2, Amer. Math. Soc., Providence, RI, 1976. [28] Browder, F.E. and De Figueiredo,D. G. : J-monotone nonlinear operators in Banach spaces,Kankl. Nedevl. Akad. Wetersch, 69 (1966), 412-420. [29] Browder,F.E. and Petryshyn,W.V.:The solution by iteration of nonlinear functional equations in Banach spaces,Bull. Amer. Math.Soc. 72 (1966), 571-575. [30] : Construction of fixed points of nonlinear mappings in [31) Hilbert Bruck space, J. Math. Anal. Appl. 20 (1967), 197-228. R. E. : The iterative solution of the equation y Ex + Tx for a monotone operator T in Hilbert space, Bull. Amer. Math. Soc. 79 (1974). 1258-1262. [32] Bynum,W.L.,Weak parallelogram laws for Banach spaces, Canad. Math. Bull. 19 (3) (1976), 269-275. [33] Bynum , W. L. and Drew, J. H : A parallelogram law for lp. 139 Amer. Hath. Monthly 79 (1972), 1012-1014. [ 34 ) Cain,Jr.,G.L. and Kasriel, R. H Fixed and periodic point~ of local contraction mappings on probabilistic metric spaces, Math. Systems Theory 9 (1976), 289-297. [35) Carbone,A, and Harino,G:Fixed points and almost fixed points of nonexpansive maps in Banach spaces, Riv. Mat. Univ. Parma (4) 13 (1987). 385-393. [36) Ciric, Lj. B.: Fixed points for generalized multi-valued contractions, Mat. Vesnik. 9 (24) (1972), 265-272. [37) : A Generalization of Banach's contraction principle, Proc. Amer. Math. Soc. Vol.45, No.2, (1974). [38] ,, · --· : On a family of constructive maps and fixed points, Publ. Inst. Math. 17 (31), (1974) 45-51 [39] :On fixed points of generalized contraction on probabilistic metric spaces,Publ. Inst. Math. (Beograd) (N.S.) 18 (32) (1975), 71-78. [40) Chang , c. C.: On a fixed point theorem of contractive type, Comment. Math. Univ.St. Paul 32 (1983), 15-19 [41] Chang, s. S.: A common fixed paint theorem for commuting mappinqs. Proc. Amer. Math. Soc. 83 (1981), 645-652. (42] · · -- · : Fixed point theorems of mappings metric spaces with application, Scientia on probabilistic Sinica 26 (1983), 1144-1155- [43) Chatterjee, s. K. : Fixed point theorems, C.R. Acad, Bulgare Sci. 25 (1972), 727-730. [44] chidume, c. E. : On the Ishikawa fixed point iterations for quasi-contractive mappings,J_Nigerian Math.Soc.4(1985),1-11. 140 ( 4 5] : The iterative solution of the equation f E ~ + Tx for a monotone operator Tin Lp spaces, J. Hath. Anal. Appl. 116, (1986), 531-537. [46] : An approximation method for monotone Lipchitzian operators in Hilbert space,J.Austral. Hath. Soc. (series A), 41 (1986). 59-63. (47] ··:Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288. [48] : Fixed point iterations for certain classes of nonlinear mappings, Applicable Analysis 27 (1988), 31-45. (49] ·······:on the Ishikawa and mann iteration methods for quasi- contractive mappings, J. Nigeria Math. Soc. 7 (1988), 1-9. (50] . Iterative solution of nonlinear equations of the monotone and dissipative types,Appl. Anal. 33 (1989), 79-86. Iterative [51] solution of nonlinear equations of the monotone type in Banach spaces, Bull. Austral. Math.Soc.,Vol 42(1990), 21-31. Approximation of fixed points of quasi-contractive [52] mappings in Lp spaces, Indian J.Pure Appl.Math.22(4),(1991), 273-286. [53] -·-----:convergence theorems for certain classes of nonlinear mappings, ICTP, Trieste, Preprint IC/92/21 (1992). [54] Steepest descent approximations for accretive operator equations,ICTP, Trieste, Preprint IC/93/43, (1993). [55) Approximation of fixed points of strongly pseudo- contractive mappings,Proc.Amer.Math.Soc.120 (1994), 545-557. 141 [56] Cho, Y. J.:Fixed points for compatible mapping$ of type (A), Math. Japan. 38 (1993), 497-508. [57] Cho,Y.J.,Murthy,P.P. and stojakovic, H.: Compatible mappings of type (A) and common fixed points in Menger spaces, Comm. Korean Hath. Soc. 7, No. 2 (1992), (58] 325-339. Chu,s.c. and Diaz,J.B.: Remark on a generalization of Banach principle of contraction mappings, J. Hath. Anal. Appl. 11 (1965), 440-446. [59] Ciorenescu,I.: Geometry of Banach spaces duality mappinqs and nonlinear problems, Kluwer Academic Publishers (1990). (60] Collatz , L.: Functional analysis and numerical analysis, Academic Press, New York, 1966. [61] Constantin, Gh.: On some classes of contraction ~appings in Menger spaces, Sem.Teoria Prob.Appl.,Timisoara No. 76, 1985. [62] Cauchy , A. L.: integral, Vol. 1 and 2, Paris, 1984. [63] Das,G. and Dabata,J. P.: A note on fixed points of commuting mappinqs of contractive type, Indian J.Math.27 (1985), 49-51 [64] Das, K. H. and Naik, K. V.: Common fixed point theorems commuting maps for on metric spaces, Proc. Amer. Hath. Soc. 77 (1979), 369-373. [65] Dauer, J. P. : A controllability technique for nonlinear systems, J. Math. Anal. Appl. 37 (1972) 442-451. [66] Dedeic.R. and Sarapa, N.: On common fixed point theorems for commuting mappings on Menger spaces, Radovi, Hat. 4 (1988), 269-278. [67] ------- · A common fixed point theorem for three mappinqs on Menger spaces, Hath. Japan. 34 (6) (1989), 919-923. 142 [68] Zeros of accretive operators, Hanuscripta Hath. Deimlin~,K.: 13 (1974)' 365-374. [69] Delbosco , D.: Un'estensione di S. Reich, Rend. Sem. di un teorema sul punta fisso Hath. Univers. Pol. Torino 35 (1976-1977), 233-238. [70) A unified approach of for all contrative mappings, Jnanabha 16 (1986), 1-11. [71] Deng , L.: On Chidume's Open Questions. J. Hath. Anal. Appl. 174 (1993), 441- 449. [72] Diestel,J.:Geometry of Banach spaces, selected topics, Lect. Notes in Hath., Vol.485, Sprin~er Varlag.Berlin, Heidelber~ and New York, 1975. [73] Ding , X. P.: Some common fixed point theorems for commuting mappings, Maths. Sem. Notes 11 (1983), 301-305. ..... [74a] Dotson Jr, W.G.: On the mann iteration process, Trans. Amer. Soc.149(1970),65-73. [74] ··--·--:Fixed points of quasi-nonexpansive mappings,J.Austral. Hath. Soc. 13 (1972), 167-170. : Fixed point for nonexpansive mappings on starshaped [75) subset of Banach spaces, J. London Hath. Soc. (2) 4(1972), 408-410. [76] -------- - An iterative process for nonlinear monotonic non- expansive operators in Hilbert space, Hath. Comp. 32 (1978), 223-225. [77] Do~ning, D. J. and Ray, W. 0. : Some remarks on set valued mappings, Non. Anal. THA 5 (12) (1981), 1367-1377. [78] Dube, L.S.: A theorem on common fixed points of multi-valued 143 mappings, Ann.Soc.Sci.Bruxelles Sir.!. 89 (1975), 463-468. [79] Oube, L. S. and Singh S. P. : On multi-valued contraction mappings, Bull. Hath. Soc. Sci. Hath. R.S. Roumanie (N.S.), 14 (1970), 307-310. [80] Dunn , J. C.: Iterative construction of fixed points for multi-valued operators of the monotone type, J. Funct. Anal. 27 (1978), 38-50. [81a] Edelsttein, H.The construction of an asymptotic centre with a fixed point property, Bull.Amer.Math.Soc.78(1972),206-208. [81] Ekeland I.: Sul les problems variationncelles, C.R. Paris, Ser. A.B. 257 (1972), 1057-1059. [82] Fan,K.A.:Fixed points and min-max theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., U.S.A. 38 (19.52), 121-126. [83] -------- :A generalization of Tychonoff 's fixed point theorem, Math. Ann. 142 (1960-61), 305-310. [84] Fisher, B.: Common fixed points of four mappings, Bull.Inst. Math. Acad. Sinica 11(1983),103-113. [85] Fisher, B. and Sessa,S.: Common fixed points of two pairs of weakly commuting mappings. Univ. Novisad Mat. Ser. 18(1986), 45-59. [86] Franklin , J.: Methods of Mathematical economics, Springer Verlag, New York, 1980. [87] Ghosh, M. K. and Oebnath, L.: Approximation of fixed of quasi-nonexpansive mappings points in uniformly convex Banach space, AppL Math. Lett. 5(3) (1992), 47-50. [88] Goebel, K. : A coincidence theorem, Bulletin de l' 144 Academic Rolinaise des Dciences des Dciences Math. Astr et Phys. XV L 9 (1969), 733-735. (89] : On a fixed point theorem for multi-valued nonexpansive mappinqs, Ann. Univ. Maria Curie Sklodowska. (90] Goebel,K. and Kirk,W.A.: A fixed point theorem for asy~ptot- ically nonexpansive mappings, Proc.Amer. Math. Soc. 35 No.1 (1972). 171-174. (91a] -· :Topics in metric fixed point theory, Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990. [91] ··- · --· · A fixed iterates have point uniform theorem for transformations whose Lipschitz constant, Studia Math. 47 (1973). 137-140. [92] Goebel. K.• Kirk. W.A. and Shimi,T.N : A fixed point theorem in uniformly convex space, Bull.Un.Mat.Italy 7(1973). 67-75. [93) Goebel, K. and Kuczumow, T.: A contribution to the theory of nonexpansive mappings, Bull.Cal.Math.Soc.70(1978), 355-357. [94] Gohde,D. :Zum Prinzip der kontraktiven Abbidung,Math. Nachr. 30 (1965). 251-258. [95] Gornicki • J.: Weak convergence theorems for nonexpansive mappings in uniformly asymptotically convex Baanch spaces. Comment. Math. Univ. Carolin. 30 (2). (1989). 249-252. [96] Gossez.J. P. and oozo.E.L.:Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972). 565-573. (97] Gotica • J. A. and Kirk , W. A.: Lipschitzian pseudo-contractive Sci. 36 (1972), 111-115. 145 Fixed point theorems for mappings, Proc. Amer. Math. [98] Gwinner, J.: On the convergence some iteration of processes in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 81 (1978). 29-35. [99] Hadzic • 0 .: Fixed points for mappings on probabilistic locally convex spaces, Bull. Hath. Soc. Sci. Hath. Rep. Soc. Roum. T22 (70), No.3 (1978), 287-292. [100] ·-····--: On the (£,).)-topology of LPC-spaces, Glasnik Matematika 13 (33) (1978). 293-297. [101] ---·-·-·· -· : Fixed point theorems for multi-valued mappings in probabilistic metric spaces, Hat. Vesnik 3 (16) (31) (1979), k125-133. [102] : A fixed paint theorem in Menger spaces, Pub!. Inst. Math. [103] (Beo(lrad) (N.S.) 20(40) (1979), 107-112. : On common fixed points in metric metric spaces Faculty of with and probabilistic convex structures, Review of Research, Science,Math.Series,Univ. of Novi Sad, 14 (1980), 13-24. [104] . . ------- Some theorems on the fixed points in probabilistic metric and random normed spaces,Boll. Un. Hat. Ita!. B(S) 18 (1981). 1-11. : Some [105] metric theorems on the fixed points in probabilistic and random normed spaces,Boll. Un. Mat. Ital. B(6), 1-8(1982), 381-391. [106] -- ---- : Fixed point theorems for mul tivalued mappings in uniform spaces and its applications to PH-spaces, An. Univ. Timisoara.seria st.Hatematice,Vo. XXI,fasc.1-2,(1983),45-57. [ 107] : common fixed point theorems for family of mappinqs 146 in complete metric spaces. Math. Japan. 29 (1984), 127-134. [108] Hanner. 0. Math. 3 [109] Hardy : (19) On the uniform convexity of Lp and lp. Archiv. (1956). 239-244. G. E. and Rogers . T. A generalization of fixed D. : point theorem of Reich.Canad.Math. Bull. 1.6 (1973), 201-206. [110] Hicks T. L. : Fixed theory in probabilistic metric point spaces, ibid 13 (1983), 63-72. (111] ·· ·· ·-: Fixed point theorems for d-complete topological space I,Internat.J.Math. and Math.Sci.15(3) (1992), 435-440. (112] Hicks, T.L. and Kubicek,J. R.: On the Mann iteration process in Hilbert space. J. Hath. Anal. Appl. 59 (1977), 498-504. (113] Hicks, T. L. and Rhoades, B. E.: d-complete topological spaces Fixed II, point theorems for Hath. Japon, 37 (1992), 847-653. [114] Hirano, N. and Takahashi. W.: Nonlinear ergodic thoerems for nonexpansive mappings in Hilbert spaces, Kodai Hath. J. 2 (1979)' 11-25. (115] Hou , L.Q.: On Naimpally and Singh's open question, J. Hath. AnaL Appl., 124 (1987), 157 - 164. [116] Hu, T.:Fixed point theorems for multi-valued mappings, Canad. Math. Bull., 23 (1980), 193-197. [116a]Husain, S.A. and Sehgal. V.M. : On common fixed point for a family of mappings, Bull.Austr.Math.Soc. 63 (1975), 261-264. [117] Imdad, M.• Khan, M. S. and Sessa, S.: On some weak conditions of commutativity in common fixed point theorems, Internat.J. Math. Math. Sci. 11 (1988). 289-396. [118] Iseki,K.: On fixed point mappings, Proc. Japon. 147 Acad. 50 (1974), 468-469. [119] ·· -- · : An approach to fixed point theorems, Hath. Notes, Kobe [120] Seminar Univ., 39 (1975), 193-202. :Multi-valued contraction mappings in complete metric spaces, Rend. Sem. Hath. Univ. Padova. 53 (1975),15-19. [121] : Application of Zamfirescu's fixed point theorem, Math. Sem. Notes Kobe Univ. 4(1976), 215-216. [122] Ishikawa, S.: Fixed points by a new iteration method, Proc. Amer. Hath. Soc. 149 (1974), 147-150. [123] : Fixed points and iteration of nonexpansive mappings in a Banach space, Proc. Amer. Math. Soc. 73 (1976), 65-71. [124] lstratescu, V. I.: Fixed point theory, Mathematics and its application. 7, Reidel, 1979. [125] Istratescu, V.I. and Sacuiu, I.: contraction mappinqs on Fixed point theorems for probabilistic metric spaces, Rev. Roumaine Math. Pures Appl. 118 (1973), 1375-1380. [126] Itoh,S.:Multivalued generalized contractions and fixed point theorems,Comment.Math.Univ.Carolina, 18(2) (1977),247-258. [127] Itoh,S. and Takahashi,W.:Single-valued mappings,multi-valued mappings and fixed point theorems, J. Math. Anal. Appl. 59 (1977), 514-521. [128] Jeong, K. S.: Extensions of fixed point theorems of Boyd and Wong, M.S. Thesis. Seoul Natl. Univ. 1978. [129) Johnson, G.G.:Fixed point by mean value iteration,Proc.Amer. Math. Soc .• 34 (1972), 193 - 194. [130] Jungck, G.: Commuting mappings and fixed pints, Amer. Math. Monthly. 83 (1976), 261-263. 148 [131] A common fixed point theorem for commuting maps on L-space, Math. Japan, 25 (1980), 81-85. Compatible [132] mappings and common fixed points, rnternat. J. Math. and Math.Sci. 9(4) (1986), 771-779. : Compatible mappings and [133] common fixed points (2), lnternat. J. Math. and Math. Sci. 11 (1988), 285-288. :Common fixed points of commuting and compatible maps [134] on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983. : Common fixed points for compatible maps on the unit [135] interval, Proc. Amer. Math. Soc. 115 (1992), 495-499. --· : Coincidence and [136] relatively nonexpansive fixed points for compatible and maps, Internat.J.math.Math.Sci. 116 (1993), 95-100. [137) Jungck,G.,Murthy, P. P. and Cho, Y. J.: Compatible mappings of type (A) and common fixed points, Math. Japon. 38 (1993), 381-390. (138] Jungck, G. and Rhoades, B.E.: Some fixed point theorem for compatible maps,Internat. J. Math. Math. Sci. 16 (3) (1993), 417-428. [139] Kachurovsky,R.I.:On monotone operators and convex functional Uspekhi Mat. 15 (1960), 213-215. [140] Kalinde, A.K. and Mishra, S. N.:Common fixed point for pairs of commuting nonexpansive mappings in convex metric spaces, Math. Japonica 33 (5) (1988), 725-735. [141] Kaneko, H.: Single-valued Boll. and multi-valued f-contractions, Un. Mat. !tal. (6). 4-A (1985), 29-33. [142] Kaneko, H. and Sessa, S.:Fixed point theorems for compatible 149 multi-valued and sinqle-valued mappin~s, Internat J. Hath. Math. & Sci. 12 (1989), 257-262. [143) Kang , Z. B. : Iterative approximation of the solution of a locally Lipschitzian equation, Appl.Hath.Hech. (English Ed.) 12 (1991),No.4,409-414; translated from Appl. Hath. Hech 12, (1991),No.4,385-389, (Chinese),HR.92h:47090. [144] Kanq, S. M., Cho,Y. J. and Jungck, G.: Common fixed point of compatible mappings,lnternat.J.Hath. and Math.Sci.13 (1990), 61-66. [145] Kang,S.H. and Rhoades,B. E.: Fixed points for four mappings, Math. Japon, 37 (6) (1992), 1053-1059. [146] Kang, S.M. and Ryu, J. W.: A common fixed point theorem for compatible mappings, Hath. Japonica 35 (1990), 153-157. [147] Kannan, R.: Some results on fixed points, Bull. CaL Math. Soc. 60 (1968), 71-76. [148] : Some results on fixed points II,Amer. Hath. Monthly 76 (1971), 169-171. [149] Karamardian, S.: Fixed points algorithms and applications, Academic Press, New York, 1977. [150] Kasahara, S.: On some generalizations of Banach contraction theorem, Math. Seminar Notes, Kobe Univ., 3 (1975), 161-169. [151] Some fixed point and coincidence theorems in L-Spaces, Hath. Seminar Notes, Kobe Univ., 3(1975), 181-187. [152] Kato,T.:Nonlinear semiqroups and evolution equations,J.Hath. Soc. Japon. 19 (1967), 508-520. [153] Kaulqud, N. N. and Pai, D. V.: Fixed point theorems for setvalued mappinqs, Nieuw Arch. Wisk, (3), 23 (1975), 49-66. 150 [154] Kay , D. C.: A prallelogram law for certain Lp spaces, Amer. Math. Monthly 74 (1967), 140-147. [155) KelleY.J.L.:General Topology,D.Van Nostrand, New York, 1955. [156] Khan, M. S.: A theorem on fixed points, Math. Seminar Notes, Kobe [157) Univ., 4 (1976), 227-228. :Common fixed point theorem for multi-valued mappinqs, Pacif. J. Hath. 94 (1981), 1-11. [158) Khan, M.S., Cho, Y.J., Park,W.T. and Mumtaz, T.: Coincidence and common fixed points of hybrid contractions, J. Austral. Hath. Soc. 55 (Serle A) (1993), 369-385. [159) Khan, M. S. and Fisher, B. : Some fixed point theorems for commuting mappings, Hath. Nachr. 106 (1982), 333-336. [160) Kubiak, T.:Common fixed point theorems of pairwise commuting maps, Hath. Nachr. 118 (1984), 123-127. [161] : Fixed point theorems for contractive type multi- valued mappings, Math. Japan. 30 (1985), 89-101. [162] Kuratowski, K.: Topology Volume 1, Academic Press, New York (1966)[163) Kirk, W. A.: A fixed point theorem for mappings which do not increase distance, Amer. Hath. Monthly 72 (1965), 1004-1006. [164) ··· · ---- - Remarks on pseudo-contract! ve mappings, Proc. Amer. Math. Soc. 25 (1970), 820-823. [164a) ·:on successive approximation for nonexpansive mappinqs in Banach spaces, Glas. Hath. J. 12 (1971), 6-9. [165] ---- ·-- A fixed point theorem for local pseudo-contraction 1n uniformly convex spaces,Manuscripta Math.30(1979),89-102. [166) Kirk. w. A. and Morales , C.: On the approximation of 151 fixed Points of locally nonexpansive ~appings, Canad. Math. Bull. 24, No.4, (1981), 441-445. [167] Kirk, W. A. and Ray, W. 0.: Fixed point theorem for mappinqs defined on unbounded sets in Banach spaces, Stuidio Math. 64 (1979), 127-138. [167a]Krasnoselski, M.A. : Two remarks about the method of successive aaprxations, Uspehi Mat. Nauk 10(1955), 123-127. [168] Kuhfitting,P.K.:Fixed points of locally contractive and nonexpansive set-valued mappings, Pacific J. Math. 65(1976), 399-403. [169] Lami Dozo,E.: Multi-valued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286-292. [170] Lipschitz , R. : Lehrbuch der Analyse. Bann. (1877). [171] Lions • J. L. and Stampacchia, G. :Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519. [172] Mati , M. and Ghosh, M. K. : Approximating fixed points by Ishikawa iterates,Bull.Austral.Math.Soc. 40 (1989), 113-117. [173] Mati, M. and expansive and Saha, B. : Approximating fixed points of non- generalized nonexpansive mappings, Internat . .J. Math. Math. 16 (1)(1993), 81-86. [174] Mann, W.R. : Mean value methods in iteration,Proc.Amer.Math. Soc. 4 (1953), 506-510. [175] Harkin, J.T. :Continuous dependence of fixed point set,Proc. Amer. Math. Soc. 38 (1973), 545-547. [176] ------:A fixed point stability theorem for nonexpansive setvalued mappings, J. Hath. Anal. Appl. S4 (1978), 441-443. (177] Hartin,Jr , R. H. :A qlobal existence theorem for autonomous 152 differential equations in Banach spaces,Proc.Amer.Hath. Soc. 26 (1970), 307-314. [178] Banach spaces, [179] operators and differential : Nonlinear equations in John Wiley and Sons, New York, London, 1976. :Differential equations on closed subsets of a Banach space, Trans. Hath. Soc. 81(1981), 71-74. [180] Massa , S. : Generalized contractions in metric space, Bull. Un. Hat. Ita]. 10 (1974), 689-694. [180a]Henger, K.:Statistical metrics, Proc.Nat. Acad.,Sci.U.S.A., 28(1942), 535-537. [181] Mercier , B. : Topics in finite element solution of elliptic problems, Lecture Notes Tata Institute of Fundamental Research, Bombay, 1979. [182] and : Mechanics variational Notes, Orsay Centre of Paris inequalities, Lecture University, 1980. [183] Hinty,G.J.:Monotone (nonlinear) operators in Hilbert spaces, Duke Math. J. 29 (1962), 541-546. [184] Morales, C. H.:Pseudo contractive Schauder boundary mappings condition comment, and the Leray Hath. Univ. Carolinae 20 (1979), 745-756. [185] ------- :Surjectivity theorems for multivalued mappings of accretive type,comment.Math.Univ.Carolin 26, (1985),397-413. [186] Mukherjee, R. N. : Common fixed mappings, [187] -------: On mappings, [188] points of some nonlinear Indian J. Pure Appl.Math. 12 (1981), 930-933. fixed points of single-valued and set- valued J. Indian Acad. Hath. 4 (1982), 101-103. : Construction of fixed points 153 of strictly pseudo- contractive related mappinqs in generalized Hilbert applications, Indian J. Pure spaces Appl. and Hath. 15 (1986),276-284. [189] Mukherjee,R.N. and Verma,V.: A note one fixed point theorem of Grequs, lnternat.J. Hath. Math. Sci. 9 (1986), 23-28. [190] Murthy, P.P.,Chanq,S.S.,Cho,Y.J. and Sharma,B.K.: Compatible mappings type (A) of and common fixed point theorems, Kyungpook Math. J 32 (1992), 203-216. [191] Hurthy,P.P.,Sharma,B.K. and Cho,Y.J.: Coincidence points and common fixed points for compatible maps of type (A) on Saks spaces, J.Hath.Res Expo.Vol.15,No.3, (1995), 353-361. [192] Nadler, S. B.: Hultivalued contraction mappings, Pacific J. Hath. 30 (1969), 475-488. [193] Naidu, S.V,R. and Prasad ,J.R.: Fixed point theorems in 2- metric spaces,lndian J.Pure and Appl. Hath.17(1986),974-993. [194] Naimpally, S. A. and Singh, K. L.: Extension of some fixed theorems of Rhoades,J.Hath.Anal. Appl.,96 (1983), 437- 446. [195] Naimpally,S.A.,Singh,S.L. and Whitfield,J. H. H.:Coincidence for theorems hybrid contractions, Hath. Nachr. 127(1986), 177-180. [196] Nevanlinna,G. and Reich,S.:Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach sapces, Israel J. Hath. 32 (1979), 44-58. [197] Opial , z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings,Bull.Amer.Hath.Soc. 73 ( 196 7) ' 591-597. [198] Osilike , H. 0. :Ishikawa and Hann iteratin methods for 154 nonlinear strongly accretive mappings, Bull. Austral.Hath. Soc.Vol.46, (1992), 411-422. [198a]Outlaw, C.L.:Hean value iteration of nonexpansive mappinqs in a Banach space, Pacif. J.Hath. 30(1969), 747-750. [199] Pant, R. D.: Common fixed points of two pairs of commutinq mappings, Indian J. Pure Appl. Math. 17(1986), 187-192. [200] Park,S.:A coincidence theorem, Bull. De L'Academie Polonaise Oes Sciences 29 (1981), 487-489. [201] Park,S. and Bae, J.S.: Extensions of a fixed point theorem of Heir and Keeler, Ark. Math. 19 (1981), 223-228. [202) Passty, G. B. : Construction of fixed points for asymptoti- cally nonexpansive mappings,Proc.Amer. Hath. Soc. 84 (1982), 212-292. [203a)Peano, G.:Demostration de 1' intigrabilite des equations differentilles, ordinaties, Hath.Ann.37(1890), 182-228. [203) Peitgen, H. 0. and Walther, H. : Functional differential equations and approximation of fixed points,Springer Verlag, Berlin, 1979. [204] Petryshyn, W.V.: On the extension and solution of nonlinear operator equations, Illinois J. Math. 10 (1966), 255-274. [205] -----·:Projection methods in nonlinear numerical functional analysis, J. Math. Mech., 17 (1967), 353-372. [206] Petryshyn, W. V. sufficient and condition Williamson, T. E. : A necessary for the and convergence of iterates for quasi-nonexpansive mappings, Bull.Amer.Math. Soc. 78 (1972), 1027-1031. [207] ··- --: Strong and weak convergence 155 of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497. [208] Picard, E.: Memoire sur la theorie des equations aux derives partielles et la Methode, des approximation successives, J. de Math. 6 (1890), 145-210. [209] Papa, Y.: Common Renue fixed D'analyse points of commuting Numerique Theory ~appings, Approximation Math. 29 (52) (1987), 67-71. [210] : A common mappings, Publ. fixed point theorem of weakly commuting De L'institue Math. Nouvelle serie tome 47 (61), (1990), 132-136. [211] Prus,B. and Smarzewski, R.: Strongly unique best approxiamaon and centres in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. [212] Qihou,Liu on Naimpally and Singh's open questions,J. Math. Anal. Appl. 124 (1987), 157-164. [213] A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings,J. Math. Anal. Appl. 146 (1990), 301-305. [214] Radu, V.:On some contraction type mappings in Menger spaces, An Univ. Temisoara. Stiinte Math. 23 (1985), 61-65. [215] Rakotch, E.: A note on contraction mappings,Proc.Amer. Hath. Soc. 13 (1962), 459-465. [216] Ray, B. K.: A note on multi-valued mappings,Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis.Mat.Natur. (8) 56 (1976), 500-503. [217] Some fixed point theorems,Fund.Math.92(1976),79-90. [218] Remarks on a fixed point 1~ theorem of Gerald Jungck. J. Univ. Kuwait Sci. 12 (1985). 169-171. [219] ·:on common fixed point$ in metric space,Indian J.Pure. Appl. Math. 19 (10) (1988), 960-962. [220] Ray,W, 0 : Zeros of accretive operators defined on unbounded sets, Houston J. Math. 5 (1979), 133-139. [221] Reich,S.:Some remarks concerning contraction mappings,Canad. Math. Bull 14 (1971), 121-124. : Kannan's fixed point theorem, [2221 Boll. Un. Mat. Ita., 4 (1971)., 1-11. [223] -·---· --: Fixed points of contractive functions,Bull.Un. Mat. ItaL, 5(1972), 26-42. : An (224] iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Analysis 2(1978), 85-92. : Fixed point theorem for setvalued mappings,J. Math. (225] Anal. Appl. 69 (1979), 353-358. [226] ----.. -·-: Constructing zeros of accretive operators II, Appl. Anal. 9(1979), 159-163. -··--- : Constructive techniques for accretive [227] and monotone operators,in Applied Nonlinear Analysis, (V. Lakshmikantham, Ed.). 335-345, (Academic Press, New York 1979). [228] - - - : Strong convergence theorems for resol vents of accretive operators in Banach spaces, J.Math. Anal. Appl. 85 (1980), 287-292. [229] Rhoades,B.E.:Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196 (1974), 161-176. [230] : Comments on two fixed point iteration methods, J. 157 Math. Anal. Appl. 56 (1976), 741-750. [231] : A comparison of various definitions of contractive mappings, Trans. Amer. Hath. Soc. 226 (1977). 257-290. s. and Moon, K. B. :On qeneralizations [232] Rhoades,B. E.; Park, of the Heir-Keeler type contraction maps,J.Math. Anal. Appl. 146 (1990), 482-494. [233] Rhoades,B. E. and Sessa,S. three Common fixed point theorems for mappings under a weak commutativity condition, Indian J. Pure Appl. Math. 17 (1986), 47-57. [234] Rhoades,B. E.,Sessa,S.,Khan M.S. and Khan, M.s.: Some fixed point theorems for Hardy-Rhogers type mappings, Internat J. Math. Hath. Sci. 7(1) (1984), 75-87. [235] Rhoades, B. E.,Singh, S. L. and Kulshrestha, C.: Coincidence theorems for some multi-valued mappings, Internat. J. Hath. Math. Sci. 7(1984), 429-434. [236] Robinson, S. M. : Analysis and computation of fixed points, Academic Press, 1980. [237] Rus, I. A. : Fixed point theorems for multi-valued mappings in complete metric spaces, Math. Japonica, 20 (1975), 21-24. [238] Sahab, S. A., Khan, M.S. and Sessa, S. : A result in best approximation theory, J. Approx. Theory 55 (1988), 349-351. (238a]Schauder, L. E. J., Der, fix punktsatz in functional raumen, Studia Math. 2(1930), 171-180. [239] Schu,J. :Iterative approximation of fixed point of nonexpansive mappings with starshaped domain, comment. Math. Univ. Carolinae 31, 2 (1990), 277-282. [240] -- -- :On a theorem of C.E.Chidume concerning the iterative 1~ approximation of fixed points,Hath.Nachr.l53(1991), 313-319. : Iterative (241] pseudo-contractive construction of fixed points of strictly mappings, Applicable Analysis Vol. 40 (1991), 67-72. [24la]··~Jterative construction of fixed points of assymptotically nonexpansive mappings,J.Math.Anl.Appl.153(1991),407-413. [242] Approximation of fixed point$ of asymptotically nonexpansive mappings,Proc.Amer.Math.Soc.112(1991), 143-151. [243] :Fixed points of mappinqs satisfying semicontractivity conditions,J. Austral. Hath. Soc. (Series A) 53(1992),25-38. [244] Schweizer,B. and Sklar,A.: Statistical metric spaces,Pacific J. Math. 10 (1960), 313-334. (245] Probabilistic metric spaces,North Holland series in Probability and Applied Mathematics 5(1983). [246] Schweizer, B., Sklar, A. and Thorp, E. : The metrization of statistical metric spaces, Pacific J.Math.10(1960), 673-675. [247] Sehgal, V. H. : A fixed iterate, point theorem for mappings with Proc. Amer. Math. Soc. 23 (1969), 631-634. [248] Sehgal,V.M. and Bharucha-Reid,A.: Fixed point of contraction mappinqs on probabilistic metric spaces, Math. Syst. Theory 6 (1972), 97-102. [249] Senter, H.F. and Dotson Jr.,W.G. :Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. [250) Sessa, S.: On a weak commutativity condition of mappings in fixed point consideration, Pub!. Inst. Hath. 32 (46) (1982), 149-153. 159 [251] Spssa, S. and Fisher, B. ; Common commutinq map~ings. fixed points of ~eakly Bull. Acad. Polon. Ser. Hath. 35 (1987), 341-349. [2521 Sessa,S.,Khan M.S. and Imdad M.:A common fixed point theorem with a weak commutativity condition, Glas. Mat. Ser. III 21 (1986), 225-235. (253] Sessa,S., Mukherjee, R. N. and Som,T. : A common fixed point theorem for weakly commuting mappings, Math. Japonica 31 (1986), 235-245. [254] Sessa, s. ; Rhoades, B. E and Khan , M. s. : On common fixed points of compatible mappings in metric and Banach spaces. Internat. J.Math. and Math. Sci. 11(2)(1988), 375-392. [255] Sherwood,H.:Complete probabilistic metric spaces,Z. Wasrsch. Verw. Gebiete 20 (1971), 117-128. [256] Singh, s. P. : An application of a fixed pint theorem to approximation theory, J. Approx. Theory 25 (1979), 89-90. [257] Singh, S. L. and metric spaces Kulshrestha, C. : Coincidence theorems mappings, in Indian J. Phy. Nat. Sci. 2 Sect. B (1982), 19-22. [258] Singh, S. L., Ha,K. S. and Cho, Y. J.: Coincidence and fixed points of nonlinear hybrid Math. [259] Singh, contractions, Internat. J. Hath. sci. 12 (1989), 247-256. s. L., Mishra, S. N. and Pant, B. D. : General fixed point theorems in probabilistic metric and uniform spaces, Indian J. Math. 29 (1987), 9-21. (260] Singh, S.l. and Pant,B.D.:Fixed point theorems for commutinq mappings in probabilistics metric spaces, Honan J. 5 (1983), 100 139-149. [261] :Coincidence and fixed point theorems for a family of mappings on Menger spaces and extension to uniform spaces, Math. Japonica 33, 6 (1988), 957-973. [262] Singh, S. L. and Singh, S. P. : A fixed point theorem,Indian Pure Appl. Math. 11 (1980), 1584-1586. [263] Smart, D. R. : Fixed point theorems, Cambridge University Press, Cambridge, 1974. [264] Smarzewski, R. : Strongly unique minimization of functional in Banach spaces with applications to theory of approxima- tion and fixed points,J.Math.Anal.Appl. 115 (1986), 155-172. [265] Smithson,R. E. :Fixed points for contractive multifunctions, Proc. Amer. Math. Soc. 27 (1971), 192-194. [266) Smul'van, V. L.:Sur les toplogies diffe'rentes dans l'espace de Banach, C.R.(Dokl.),Acad.Sci.URSS 23 (1939), 331-334. [267] ··· ··-: Sur la derivabilite de la norm dans l'espace de Banach, C.R.(Dokl.) Acad.Sci. RSS 27 (1940), 255-258. [268a]Stojakovic,M.:Common fixed point theorems in complete metric space and probabilistic metric spaces, Austr. math.Soc. 36 (1987). 73-78. (268] On some classes of contraction mappings, Math. Japonica 33 (1988), 311-318. [269] Swaminathan, S. : Fixed point theory and its applications (Proceeding seminar), Academic Press, 1976. [270] Tan,D.H.:On probabilistic densifying mappings, Rev. Roumaine Math. Pures Appl. 26 (1981), 1305-1317. [271] Tan, N. X. : Generalized probabilistic 161 metric spaces and fixed point theorems, Hath. Hachr. 129 (1986), 205-218. [272] Tani9uchi,T.: A common fixed point theorem for two sequences of self-mappings, Internat. J.Hath. and Hath.Sci. 14 (1991), 417-420. An approach ['273] to fixed point theorems on uniform spaces, Trans. Amer. Math. Soc. 91 (1974), 209-225. (274] Tartar, L. : Nonlinear analysis, Lecture notes,Orsay Centre, Paris University, 1978. [275] Trikomi, F. : formate delle Un teorema sulla convergeza delle successioni successive iterate di una funzione di una variable reale. Giorn. Mat. Battabline, 54 (1916), 1-9. (276] Trubniko, Yu. V.:Hanner inequality and convergence of iteration processes,Soviet Math.(lzvestiya) 31 (7) (1987),74-83. [277] Vainberg,M. M.: On the convergence of the method of steepest descent for nonlinear equations, Sibirsk, math. Z. 2 (1961), 201-220. [278] Variational method and method of monotone operators in the theory of nonlinear equations, John Wiley, Hew York, 1973. [279] Vijayaraju, P. : Fixed point theorems for asymptotically nonexpansive mappings,Bull.Cal.Math.Soc. 80 (1988), 133-136. [280] Waltman, P. : Deterministic threshold of epidemics, Lecture Notes in models in the theory biomathematics, Springer Verlag, Berlin, Heidelberg, Hew York, 1974. [281] Wang, S.Z. B. Y; Gao, Z. M. and Iseki, K. : Some fixed point theorems on expansion mappings,Math.Japon.29(1984), 631-636. [282] Weqrzyk, R. : Fixed point theorem for multi-valued functions 162 and their applications to functional equations,Dissert.Math. Rozprawy Math. 1982. (283] Weng, X. : Fixed point iteration for local strictly contractive mapping, Proc. Amer. Math. Soc. pseudo- Vol. 113, No.3 (1991), 727-731. [284] Williamson, T. E. A geometric approach nonself mapping T:D -4 to fixed points of X, Contemp. Math. 18 (1983), 243-253. [285] Xu, H. K. : Inequalities in Banach spaces with applications, Nonlinear Analysis Theory method and Applications, 16 (12) (1991), 1127-1138. [286) Xu, Z. B. and Roach, G. F. : Characteristic inequalities of uniformly convex and uniformly smooth Banach space, J. Math. Anal. Appl. 157 (1991). 189-210. [287] - :A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl. 167 (1992), 340-354. [288] Xu, Z.B., Zhang, B. and Roach, G.F.: On the steepest descent approximation to solutions of nonlinear strongly accretive operator equations ,J. Comput. [289] Yanagi, K. : Math. (1992), (to appear). A common fixed point theorem tor a sequence of multi-valued mappings,Publ.Res.Inst.Hath.Sci.15(1979),47-52. [290] Yeh, c. c. : Remark on common fixed points. Tamkang J. Math. 3 (1972). 75-76. [291] -- : On common fixed points of continuous maps, Math. Sem. Notes 6 (1978), 115-121. [292] Zarantonello, E. H. : Solving functional equations by contractive. averaging in Technical Report No. 160 (U.S.Army 163 Math. Res. Centre. madison, Wisconsin, 1960). (293] : The closure spectrum, of the numerical Bull.Amer.Hath.Soc.(~.s.), range contains the 70 (1964), 781 83. (294] Zeidler, E. : Nonlinear functional analysis and its applications I, Fixed point theorems, (Springer - Verlag, New York, Berlin, Heidelberg, Tokyo, 1986). 1M
© Copyright 2025 ExpyDoc