Download Presentation

Nanoparticles for an
efficient and biofriendly
drug encapsulation
Ruxandra GREF
Research director CNRS, University Paris Sud, Institut Galien
Châtenay Malabry, France
Highly porous metal organic frameworks (MOF)
nanoparticles as efficient drug carriers
Supertetrahedra
Trimesic acid
Iron Fe3+
trimers
NanoMOF
Porous
cages
Synthesis
optimisation
MIL-100
Institut Lavoisier
Horcajada P. et al. Nature Materials, 9, 172-178, 2010
Patents: FR0706873, FR0706875, FR1255065 (2007) Europe, Japan, Canada and USA
Nanoparticle one step hydrothermal synthesis
FeCl3 + 1,3,5 BTC + H2O
Nanoparticle
cristallization
Microwave
irradiation
Centrifugation
Iron trimesate
MIL-100
Purification
(ethanol)
size : 60 nm up to 200 nm
specific surface (BET) ~2000 m2/g
Chalati T. et al., J Mater Chem 21, 2220-7, 2011
Agostoni V. et al., Green Materials, 2013
Drug entrapment in nanoMOFs
Remarkable capacity to encapsulate a variety of active molecules:
Loadings in the 20 -70 wt% range
HYDROPHOBIC  docetaxel, doxorubicin, ibuprofen, topotecan, benzophenone
HYDROPHILIC  azidothimidin-TP, gemcitabin-MP, cidofovir, amoxicillin etc...
AMPHIPHILIC  busulfan, caffein
Incubation
in water
« nanosponges »
High affinity -> rapid adsorption (< 15 min) of the whole
amount of drug even from very diluted drug solutions
Horcajada et al. Nature Materials, 9, 172-178, 2010; Agostoni, Adv Healthcare Mater 2013
Interaction nanoMOF – antiviral drug AZT-TP
~ 9 Å
2 AZT-TP
2 H2O
AZT-TP
(~ 12 x 9 x 4 Å)
I. Adsorption in the pores
II. Coordination P-O-Fe
Monte Carlo simulations :
Strong interaction drug – Iron site
Agostoni et al., Adv Healthcare Mater, 2013
In vitro pharmacological activity in infected cells
Human mononuclear cells (donors) infected with HIV-1-LAI
30
AZT-TP
nanoMOF+AZT-TP
% AZT-TP
Inside the cells
25
ED50
(nM)
20
15
NP
>1000
10
NP AZT-TP
54  34
5
AZT-TP
599  401
0
0
0,5
2
4
6
24
Time (hours)
* AZT-TP cannot cross the cell membrane
* Using NPs : ~ 25 % AZT-TP penetrates in the cells
* drug-loaded NPs : > 10 times more effective than free AZT-TP
Biological applications of iron carboxylate
nanoparticles
(Bio)degradability
Lack of toxicity
in vitro & in vivo
T. Baati et al.
Chemical Science, 2013,
4, 1597-1607.
Horcajada et al.
Encapsulation &
controlled release
Nature Materials,
9, 172-178, 2010
Imaging
theranostics
Stable non covalent
McKinlay et al.,
surface modification
Angewandte Chemie,
2010, 49, 6260-6266
Chalati et al. Nanomedicine
2011, 6, 1683–1695
Agostoni et al.
J Materials Chemistry 2013
1, 4231-42.
Agostoni et al.
Green Chemistry 2013
A non-covalent approach to coat nanoMOFs
β-CDP
Incubation
in water
• Rapidity : ~ 75% of the coating is achieved in < 15 min
• Integrity of nanoMOFs is preserved
• no drug release during coating
• Stability in biological media
Technology patented by CNRS in 2012
NanoMOFs : a wide range of development opportunities
Three biofriendly, one-step, easy to scale-up and efficient procedures :
1. Hydrothermal synthesis
(no solvent)
2.
Drug loading
(soaking in water)
PEG
CD
3.
Surface coating
(soaking in water)
Business opportunity and contact
We offer:
- Strategic partnership for co-developing drug-loaded nanoMOFs
- Licensing
Contacts:
- Ruxandra Gref, Research Director
Institut Galien, CNRS
91198 Gif-sur-Yvette, France
[email protected]
- Stéphane Mottola
Director of International Development
FIST SA-France Innovation Scientifique et Transfert
83, boulevard Exelmans
75016 Paris, France
[email protected]