Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8037 - 8040 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410809 An Improved Geometric Approximation for a Beta Binomial Distribution K. Teerapabolarn Department of Mathematics, Faculty of Science Burapha University, Chonburi 20131, Thailand c 2014 K. Teerapabolarn. This is an open access article distributed under Copyright the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The aim of this paper is to give an approximation of a beta binomial distribution with parameters n and β by an improved geometric distriβ . The improved geometric approximation is bution with parameter β+n more accurate than the geometric approximation when β is large. Mathematics Subject Classification: 62E17, 60F05 Keywords: Beta binomial distribution, Geometric distribution, Improved geometric distribution, Probability function 1 Introduction The beta binomial distribution with parameters n ∈ N and β > 0 (α = 1 is fixed) is the binomial distribution with parameter n and a random variable p that has a beta distribution with shape parameters α = 1 and β > 0. Let X be this beta binomial random variable with the probability function as follows: bbn,β (x) = n!Γ(β + n − x)β , x = 0, 1, ..., n. (n − x)!Γ(β + n + 1) (1.1) nβ(n+β+1) n The mean and variance of X are µ = β+1 and σ 2 = (β+1) 2 (β+2) , respectively. n It is observed that β → ∞ while q = 1 − p = β+n remains a constant, then bbn,β (x) → gp (x) = q x p for every x ∈ {0, ..., n}. In this paper, we are 8038 K. Teerapabolarn bp (x), to interest to determine an improved geometric probability function, g approximate the beta binomial probability function in (1.1). The accuracy bp (x)| for x ∈ of the approximation is measured in the form of |bbn,β (x) − g {0, 1, ..., n}, which is in Section 2. In Section 3, some numerical examples have been given to illustrate the improved approximation and the conclusion of this study is presented in the last section. 2 Result Using the same idea from in [1], the following lemma can be also obtained. Lemma 2.1. For β ∈ R+ , x, n ∈ N and 0 < q < 1, then x−1 Y qx i , = q− x(x−1) β + n 1 + 2(β+n)q + O β12 i=0 1 x(x + 1) 1 =1+ +O . Qx i 2(β + n) β2 1 − i=1 β+n Theorem 2.1. For x ∈ {0, 1, ..., n} and p = (2.1) (2.2) β , β+n we have 1 bp (x) + O bbn,β (x) = g , β2 bp (x) bbn,β (x) ≈ g (2.3) (2.4) x(x+1) bp (x) = for large β, where g q x p{1+ 2(β+n) } 1+ x(x−1) 2n . Proof. Applying Lemma 2.1, it follows that n!β (n − x)!(β + n) · · · (β + n − x) Qx−1 i q − p i=0 β+n = Q x i i=1 1 − β+n n o x(x+1) q x p 1 + 2(β+n) 1 = +O x(x−1) β2 1 + 2n 1 bp (x) + O =g . β2 bbn,β (x) = If β is large, then O 1 β2 bp (x). ≈ 0. Hence bbn,β (x) ≈ g An improved geometric approximation for a beta binomial distribution 3 8039 Numerical examples The following examples are given to illustrate how well an improved geometric distribution approximates a beta binomial distribution. 3.1. Let n = 20 and β = 130, then p = as follows: x 0 1 2 3 4 5 6 7 8 9 bbn,β (x) 0.86666667 0.11633110 0.01493440 0.00182870 0.00021293 0.00002350 0.00000245 0.00000024 0.00000002 0.00000000 bp (x) g 0.86666667 0.11632593 0.01496720 0.00185782 0.00022475 0.00002678 0.00000317 0.00000038 0.00000004 0.00000001 gp (x) 0.86666667 0.11555556 0.01540741 0.00205432 0.00027391 0.00003652 0.00000487 0.00000065 0.00000009 0.00000001 bbn,β (x) 0.78571429 0.16957862 0.03563609 0.00728329 0.00144595 0.00027848 0.00005195 0.00000938 0.00000163 0.00000027 0.00000004 0.00000001 0.00000000 bp (x) g 0.78571429 0.16956997 0.03566306 0.00732954 0.00147917 0.00029478 0.00005832 0.00001151 0.00000227 0.00000045 0.00000009 0.00000002 0.00000000 gp (x) 0.78571429 0.16836735 0.03607872 0.00773115 0.00165668 0.00035500 0.00007607 0.00001630 0.00000349 0.00000075 0.00000016 0.00000003 0.00000001 and the numerical results are bbn,β (x) − g bp (x) 0.00000000 0.00000517 0.00003280 0.00002912 0.00001182 0.00000329 0.00000072 0.00000014 0.00000002 0.00000000 3.2. Let n = 30 and β = 110, then p = as follows: x 0 1 2 3 4 5 6 7 8 9 10 11 12 130 150 110 140 bbn,β (x) − gp (x) 0.00000000 0.00077554 0.00047301 0.00022562 0.00006098 0.00001303 0.00000242 0.00000041 0.00000006 0.00000001 and the numerical results are bbn,β (x) − g bp (x) 0.00000000 0.00000865 0.00002698 0.00004625 0.00003323 0.00001630 0.00000637 0.00000213 0.00000064 0.00000018 0.00000005 0.00000001 0.00000000 bbn,β (x) − gp (x) 0.00000000 0.00121128 0.00044263 0.00044787 0.00021073 0.00007652 0.00002412 0.00000693 0.00000186 0.00000047 0.00000012 0.00000003 0.00000001 From the examples 3.1 and 3.2, it can be seen that the improved geometric approximation is more accurate than the geometric approximation. 4 Conclusion This study gave an approximation of a beta binomial distribution with parameters n and β (α = 1) by an improved geometric distribution with parameter β . By numerical comparison, the improved geometric approximation is more β+n accurate than the geometric approximation when β is sufficiently large, that is, the beta binomial distribution with parameters n and β can be well approxβ imated by an improved geometric distribution with parameter β+n when β is sufficiently large. 8040 K. Teerapabolarn References [1] D.P. Hu, Y.Q. Cui, A.H. Yin , An improved negative binomial approximation for negative hypergeometric distribution, Applied Mechanics and Materials, 427-429 (2013), 2549–2553. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2549 Received: October 15, 2014; Published: November 19, 2014
© Copyright 2025 ExpyDoc