Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 3991 - 3995 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.45360 A New Improvement of Negative Binomial Approximation for the Negative Hypergeometric Distribution K. Jaioun and K. Teerapabolarn* Department of Mathematics, Faculty of Science Burapha University, Chonburi, 20131, Thailand *Corresponding author Copyright © 2014 K. Jaioun and K. Teerapabolarn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give a new improved negative binomial distribution with to approximate the negative hypergeometric parameters r and p = M N distribution with parameters N , M and r , by improving the improved negative binomial distribution in [1]. Some numerical examples are presented to illustrate the result obtained. Keywords: negative binomial approximation, negative binomial probability function, negative hypergeometric probability function. 1 Introduction Let a box contains N items of which M are defective and N − M are non-defective. Items are inspected at random without replacement, one at a time. Let X be the number of trials needed to get the first r defective items, Then X has a negative hypergeometric distribution and its probability function, nh ( x; r , N , M ) , can be expressed as 3992 K. Jaioun and K. Teerapabolarn ⎛ x − 1⎞ ⎛ N − x ⎞ ⎜ ⎟⎜ ⎟ r −1⎠ ⎝ M − r ⎠ ⎝ nb ( x; r , N , M ) = , x = r , r + 1,..., N − M + r , ⎛N⎞ ⎜ ⎟ ⎝M ⎠ where N , M ∈ ` and r ∈ {1, 2,..., M } . The mean and variance of μ= (1.1) X are r ( N + 1) r ( N + 1)( N − M )( M + 1 − r ) and σ 2 = , respectively. From [2], it 2 M +1 ( M + 1) ( M + 2) follows that if N → ∞ and p = M remains a constant, then nh ( x ; r , N , M ) N ⎛ x − 1⎞ r x − r → nb( x ; r , p ) = ⎜ ⎟ p q , q = 1 − p, for every x ∈ {r , r + 1,..., N − M + r} . ⎝ r −1⎠ Therefore, the negative binomial distribution with parameters r and p can be used as an estimate of the negative hypergeometric distribution with parameters N, M and r when N is large. In this case, Dongping Hu et al. [1] gave an improved negative binomial approximation for the negative hypergeometric probability function as follows: m ( x ; r, p ) nh ( x ; r , N , M ) ≈ nb ⎧ x( x − 1) ⎫ 1 = nb ( x ; r , p ) ⎨1 + − ⎡⎣( x − r )( x − r − 1) p + r ( r − 1) q ⎤⎦ ⎬ (1.2) 2N 2 Npq ⎩ ⎭ where x ∈ {r , r + 1,..., N − M + r} . Although the improved approximation in (1.2) gives a good approximation for the negative hypergeometric distribution, but it does not satisfy the important m ( x ; r , p ) is not always non-negative property of probability function, i.e., nb number for every x ∈ {r , r + 1,..., N − M + r} . For example, when N = 100, m ( x ; r , p ) < 0 for every M = 70, r = 3 and p = M / N = 0.7 , we have that nb m ( x ; r , p ) in (1.2) is inappropriate to x ≥ 16 . Hence, for some N, M and r, nb approximate the negative hypergeometric distribution. In this paper, we are interest to give a new improved negative binomial approximation for the negative hypergeometric probability function. The accuracy m ( x ; r, p ) of the approximation is measured in terms of nh ( x ; r , N , M ) − nb for x ∈ {r , r + 1,..., N − M + r} . The result of this study is in Section 2. In Section 3, some numerical examples have been given to illustrate this improved approximation, and the conclusion of this study is presented in the last section. A new improvement of negative binomial approximation 3993 2 Result The following lemma directly follows from [1]. Lemma 2.1. For 0 < p = 1 − q < 1 , then x −1 ⎛ i ⎞ ∏ ⎜⎝ p − N ⎟⎠ = p x − i =0 1 x −1 i ⎞ ⎛ ∏ ⎜⎝1 − N ⎟⎠ i =0 x −1 ⎛ = 1+ x ( x − 1) x −1 ⎛ 1 ⎞ p + O⎜ 2 ⎟, 2N ⎝N ⎠ (2.1) x( x − 1) ⎛ 1 ⎞ + O⎜ 2 ⎟, 2N ⎝N ⎠ (2.2) i ⎞ 1 . ⎠ 1 + x( x − 1) + O ⎛ 1 ⎞ ⎜ 2⎟ 2 Nq ⎝N ⎠ ∏ ⎜1 − Nq ⎟ = i =0 ⎝ (2.3) The following theorem shows the result of improved negative binomial approximation to the negative hypergeometric distribution. Theorem 2.1. p= For x ∈ {r , r + 1,..., N − M + r} , if r≤ 2MN N −M and M , then we have the following: N m ( x ; r, p ) + O ⎛ 1 ⎞ nh ( x ; r , N , M ) = nb ⎜ 2⎟ ⎝N ⎠ (2.4) and for the large N, m ( x ; r, p ) , nh ( x ; r , N , M ) ≈ nb (2.5) m ( x ; r , p ) = nb ( x ; r , p ) ⎧1 + x( x − 1) − r ( r − 1) ⎫ ⎧1 + ( x − r )( x − r + 1) ⎫ . where nb ⎨ ⎬ ⎨ ⎬ 2N 2M ⎭ ⎩ 2( N − M ) ⎭ ⎩ Proof. It follows from (1.1) that ⎛ x − 1⎞ [ M ...( M − r + 1) ] ⎡⎣( N − M )... ( N − x − M + r + 1) ⎤⎦ nh ( x; r , N , M ) = ⎜ ⎟ N ( N − 1)( N − 2)...( N − x + 1) ⎝ r −1⎠ ⎡ M ⎛ M r − 1 ⎞ ⎤ ⎡⎛ M ⎞ ⎛ M x − r − 1 ⎞ ⎤ ... ⎜ − ⎟ ⎜1 − ⎟ ... ⎜ 1 − − ⎟ ⎛ x − 1⎞ ⎢⎣ N ⎝ N N ⎠ ⎥⎦ ⎢⎣⎝ N⎠ ⎝ N N ⎠ ⎥⎦ =⎜ ⎟ 1 ⎞⎛ 2 ⎞ ⎛ x −1 ⎞ ⎛ ⎝ r −1⎠ ⎜ 1 − ⎟⎜ 1 − ⎟ ... ⎜ 1 − ⎟ N ⎠ ⎝ N ⎠⎝ N ⎠ ⎝ 3994 K. Jaioun and K. Teerapabolarn r −1 i ⎞ x − r −1 ⎛ i ⎞ ⎛ ∏ ⎜ p− ⎟ ∏ ⎜q− ⎟ N ⎠ i =0 ⎝ N⎠ ⎛ x − 1 ⎞ i =0 ⎝ =⎜ ⎟ x − 1 i ⎞ ⎛ ⎝ r −1⎠ ∏ ⎜⎝1 − N ⎟⎠ i =0 Using Lemma 2.1, we obtain ⎛ ⎞ ⎜ ⎟ − x 1 − r r 1 ⎛ ⎞ ⎛ ⎞ r x−r ( ) +O⎛ 1 ⎞ ⎜ 1 ⎟ nh ( x; r , N , M ) = ⎜ p q 1 − ⎜ ⎟ ⎜ 2 ⎟⎟ 2 Np ⎝ N ⎠ ⎠ ⎜ 1 + ( x − r )( x − r − 1) + O ⎛ 1 ⎞ ⎟ ⎝ r −1⎠ ⎝ ⎜ 2 ⎟⎟ ⎜ 2 Nq ⎝ N ⎠⎠ ⎝ ⎛ x( x − 1) ⎛ 1 ⎞⎞ × ⎜1 + +O⎜ 2 ⎟ ⎟ 2 N ⎝N ⎠⎠ ⎝ = ⎧ x( x − 1) r ( r − 1) ⎫ nb ( x; r , p ) ⎛ 1 ⎞ − + O⎜ 2 ⎟ 1+ ⎨ ⎬ ( x − r )( x − r + 1) ⎩ 2N 2M ⎭ ⎝N ⎠ 1+ 2( N − M ) m ( x; r , p ) + O ⎛ 1 ⎞ = nb ⎜ 2⎟ ⎝N ⎠ ⎛ 1 ⎞ m ( x; r , p ) Also, if N is large, then O ⎜ 2 ⎟ ≈ 0 . So nh ( x; r , N , M ) ≈ nb ⎝N ⎠ 3 Numerical examples The following numerical examples are given to illustrate how well the improved negative binomial distribution approximates the negative hypergeometric distribution. 3.1 Let N = 50, M = 30, r = 5, p = M N = 0.6 and the numerical results are as follows: x nh ( x; r , N , M ) m ( x; r , p ) nb nb ( x; r , p ) 5 6 7 8 9 10 11 12 13 0.06725915 0.14946478 0.19362483 0.18912193 0.15309870 0.10754250 0.06721406 0.03791563 0.01945670 0.06739200 0.15033600 0.19314103 0.18579456 0.14863565 0.10478813 0.06752305 0.04074378 0.02340374 0.07776000 0.15552000 0.18662400 0.17418240 0.13934592 0.10032906 0.06688604 0.04204265 0.02522559 m ( x; r , p ) nh ( x; r , N , M ) − nb 0.00013285 0.00087122 0.00048380 0.00332737 0.00446306 0.00275437 0.00030899 0.00282815 0.00394704 nh ( x; r , N , M ) − nb ( x; r , p ) 0.01050085 0.00605522 0.00700083 0.01493953 0.01375278 0.00721344 0.00032802 0.00412703 0.00576889 A new improvement of negative binomial approximation 3.2 Let N = 100, M = 80, r = 10, p = M N 3995 = 0.8 and the numerical results are as follows: x nh ( x; r , N , M ) m ( x; r , p ) nb nb ( x; r , p ) 10 11 12 13 14 15 16 17 18 19 20 0.09511627 0.21136949 0.24818104 0.20305721 0.12895300 0.06717552 0.02963626 0.01129000 0.00375767 0.00109980 0.00028378 0.09529459 0.21206401 0.24690949 0.20007078 0.12732431 0.06821496 0.03218305 0.01378640 0.00547808 0.00205003 0.00073053 0.10737418 0.21474836 0.23622320 0.18897856 0.12283606 0.06878820 0.03439410 0.01572302 0.00668228 0.00267291 0.00101571 m ( x; r , p ) nh ( x; r , N , M ) − nb 0.00017831 0.00069452 0.00127155 0.00298643 0.00162869 0.00103945 0.00254679 0.00249640 0.00172041 0.00095022 0.00044675 nh ( x; r , N , M ) − nb ( x; r , p ) 0.01225791 0.00337887 0.01195783 0.01407865 0.00611693 0.00161268 0.00475784 0.00443301 0.00292462 0.00157311 0.00073193 For approximating the negative hypergeometric distribution in the examples 3.1 and 3.2. When N is large, the improved negative binomial distribution is more accurate than the negative binomial approximation. 4 Conclusion This study gave a new improved negative binomial distribution to approximate the negative hypergeometric distribution with parameters N, M and r. The new improved probability function was corrected to accord the property of m ( x ; r , p ) ≥ 0 for every x. In addition, the improved probability function, nb negative binomial distribution can be used as an approximation of the negative hypergeometric distribution, and it also gives a good approximation for the negative hypergeometric distribution when N is large. References [1] D.P. Hu, Y.Q. Cui, A.H. Yin, An Improved Negative Binomial Approximation for Negative Hypergeometric Distribution, Applied Mechanics and Materials, 427-429 (2013), 2549-2553. [2] N.L. Johnson, S. Kotz, A.W. Kemp, Univariate Discrete Distributions, 3rd ed., Wiley, New York, 2005. Received: May 21, 2014
© Copyright 2024 ExpyDoc