Julia Shates Faculty mentor: Prof. Elizabeth Barnes July 31, 2014 Introduction Different atmospheric oscillations lead to storm development Southern hemisphere infamous for storminess -especially hazardous for maritime travelers New research from Thompson & Woodworth (2013) and Thompson & Barnes (2014) finds that storm intensity pulses with 20-30 day cycle Painting of ship during storm at sea Newly found cycle: Baroclinic Annular Mode (BAM) BAM = measure of storminess EDDY KINETIC ENERGY = signal of the BAM (A) Eddy Kinetic Energy (EKE) -upper atmosphere turbulence – storm development at the surface (where we experience weather. HIGH along path of where storms develop EKE (m2/s2) at 250mb GFDL−CM3 GCM; CMIP5 1950−2004 250 −10 200 −20 Latitude −30 150 −40 −50 100 −60 −70 50 −80 50 100 150 200 Longitude 250 300 350 0 Questions 1. What is the smallest scale at which the BAM signal appears? 2. Do different parts of the Southern Hemisphere contribute more to the BAM? Methods ! GFDL Aquaplanet GCM “AQUAPLANET” Water-world with sunlight Relatively even band of high EKE No continents/land, no chemistry EKE (m2/s2)at 275mb Aquaplanet GCM 0 200 −10 180 −20 160 Latitude −30 140 −40 120 −50 100 −60 80 −70 60 −80 0 50 100 150 200 Longitude 250 300 350 40 Methods Cont’d ! GFDL cm3 GCM Fully coupled global circulation model: as close to the real world as possible Sunlight + land + chemistry EKE (m2/s2) at 250mb GFDL−CM3 GCM; CMIP5 1950−2004 250 −10 200 −20 Latitude −30 150 −40 −50 100 −60 −70 50 −80 50 100 150 200 Longitude 250 300 350 0 Methods Cont’d How was the 20-30 oscillation even found? EKE (m2/s2) GFDLtime cm3 GCM EKE series daily data Spectral analysis: 250 Patterns in “noisy” data How often/at what frequency do ofwe see a pression for the time rate of change the baroclinicity as a function of the heat fluxes peak in energy? ∂〈b〉 〈b〉 net forcing of the baroclinicity by the wave fluxes of heat is linearly proportional to the heat fluxes themselves, and (ii) the damping of the baroclinicity due to both adiabatic and diabatic processes can be modeled as Newtonian cooling. The resulting equation was subsequently linearized about the climatological mean state to yield an ex0.045 ¼ b〈v* T * 〉 − ð3Þ EKE ∂t (m2/s2) t GFDL cm3 GCM: 1950−2004 where the regression coefficient b corresponds to the ° 0−360 lat: 20−60S amplitude of the&feedback between the eddy fluxes 100 22 days Power spectra of fields averaged 30-70 deg. S B EKE 300 100 0.04 150 EKE power spectra Spatial signatures of the BAM A EKE 300 Power 200 80 60 40 2 0 2 0.03 m /s −20 0.025 50 1950−2004 −40 −60 0.02 −80 0 0.05 −100 C V*T* 700 0.015 6 4 0 0 0 0.05 −2 −4 K m/s 2 0.005 0.15 Cycles/day 0.2 0.25 Figure Thompson and D V*T* from 850 Barnes (2014) 8 0.01 0.1 0.1 0.15 0.2 cycles per day −6 0 −8 E Precipitation 0..4 This peak shows us: pulse of EKE every 22 days Normalized Power normalized power 20 Normalized Power 0.035 0.05 0.1 0.15 Cycles/day F Precipitation ERA-Interim 0.2 0.25 0.25 Results Aquaplanet GCM width Max EKE & longitude lat: 20−60 Max EKE (m2/s2) 1) Scale: Aquaplanet Model 0.05 EKE 0.045 (m2/s2) Aquaplanet GCM ° Anchored at 0 lat: 20−60s EKE power spectra Different widths of longitude 0.05 31.25 days Power spectra of 360º; peak discussed in Thompson & Barnes 2014 0.045 0.04 normalized power max 0.04 0.035 0.035 0.03 normalized power 0.03 0.025 0.025 0.02 0.02 0 50 100 150 200 250 range: longitude 0.015 0.01 35−360° Width 0.005 0 0 0.05 0.1 0.15 cycles per day 0.2 0.25 300 350 Max EKE (m2/s2) GFDL−cm3 GCM; CMIP5: 1950−2004 120° ranges lat: 20−60S Results cont’d 2)Geographic distribution of EKE- fully coupled model Max EKE at center longitude point 0.034 0.033 EKE power spectra All 120º width Different anchors in the Southern Hemisphere 0.035 EKE0.032 (m2/s2) GFDL−cm3 GCM; CMIP5: 1950−2004 ° 120 ranges lat: 20−60S EKE (m2/s2) at 250mb EKE (m2/s2) at 250mb GFDL−CM3 GCM; CMIP5 GFDL−CM3 GCM; 0.031 1950−2004 CMIP5 1950−2004 max power 20.83 days −10 0.03 −10 250 200 −20 −20 Latitude −30 Latitude normalized power 200 0.029 −30 0.025 0.02 150 −40 0.028 150 −40 −50 100 0.027 −50 −60 100 Indian Ocean −60 0.026 −70 0.015 Pacific Ocean 50 100 150 Atlantic Ocean 200 250 300 center longitude 50 −70 −80 0.01 50 50 100 100 150 200 Longitude 150 250 200 300 250 300 Longitude 0.005 West to East 0−360° anchor longitude 0 350 50 −80 0 250 0.03 0.05 0.1 0.15 cycles per day 0.2 0.25 0 350 350 0 Conclusion/Summary 1)Scale Aquaplanet model: clear signal visible with 35º range GFDLcm3 model: signal visible with 120º range 2) Geographic Distribution GFDLcm3 model: Different parts of Southern Hemisphere=different contributions to total signal ->results suggest Indian to W. Pacific Ocean= bigger contribution Future Questions ! Statistical Significance at peaks with smaller longitude ranges- (statistical significance confirmed for 0-360º (lat 30-70) Thompson & Woodworth and Thompson & Barnes) EKE (m2/s2) GFDL−cm3 GCM; CMIP5: 1950−2004 120° ranges lat: 20−60S 0.035 ~20 days 20.83 days ! Comparison with Observations ->already in process 0.03 ! Frequency/period at peaks normalized power 0.025 0.02 0.015 0.01 0.005 West to East 0−360° anchor longitude 0 0 0.05 0.1 0.15 cycles per day 0.2 Acknowledgements Many thanks to Elizabeth Barnes, Marie McGraw, Brian Crow, Melissa Burt and fellow CMMAP interns References (A) Buttersworth, James E. The American Clipper Ship Flying Cloud, Scudding in a Gale of Wind off Cape Horn. 1854. Oil on canvas. Bonhams. Web. <http://www.bonhams.com/auctions/21474/lot/132/>. Thompson, David W. J., Elizabeth A. Barnes, 2014: Periodic Variability in the Large-Scale Southern Hemisphere Atmospheric Circulation. Science. 343. 641-645. Thompson, David W.J., Jonathan D. Woodworth, 2013: Barotropic and Baroclinic Annular Variability in the Southern Hemisphere. Journal of Atmospheric Science. 71.1480-1493. GFDL cm3 GCM Why I picked 120 range 120 degree range EKE (m2/s2) cm3 GCM EKEgfdl spectra GFDLcm3 Anchored at 0 lat: 20−60s Different longitude widths ° 0.05 0.045 0.04 0.035 normalized power 0.03 0.025 0.02 0.015 0.01 30−360° Width 0.005 0 0 0.05 0.1 0.15 cycles per day 0.2 0.25 Additionally Max power over fixed latitudes change in max as function of width Aquaplanet GCM 0.025 ! EHF & EKE showing max points verifying relationship normalized power max 0.02 ! GFDL cm3 GCM 3 ensemble runs EKE (m2/s2) GFDL−cm3 GCM; CMIP5 ° 360 range; lat: 20−60S bsmooth3,numchunk 500 0.015 0.025 1 2 3 0.02 EKE; latitude 20−70S; 20−33day cycle; 275mb EHF; latitude 20−80S; 18.5−23.8day cycle; 850mb 0.01 0 50 normalized power 0.015 0.01 0.005 0 0 0.05 0.1 0.15 cycles per day 0.2 0.25 100 150 200 range: longitude 250 300 350
© Copyright 2024 ExpyDoc