Four-current (p. 96) Z Z 1 i 4 i Ai j d x e u Ai ds = c Z X j i j i 4 j j (x ) = ceA uA δ (x − xA (τ )) ds Vector identities (Griffiths) A × (B × C) = B(A · C) − C(A · B) ∇(f g) = f ∇g + g∇f ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A ∇ · (f A) = f (∇ · A) + A · ∇f ∇ · (A × B) = B · (∇ × A) − A · (∇ × B) ∇ × (f A) = f (∇ × A) − A × (∇f ) ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A) Four-current for EM field (p. 101): j = (cρ, j) Action for scalar field (5) and EM field (6) Z Z i S = −mc ds + φ(x ) ds (5) Z Z Z e 1 i ij 4 S = −mc ds − u Ai ds − F Fij d x (6) c 16πc Vector identities (Jackson) (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c) Z Z 3 ∇ · Ad x = A · da VZ ZS 3 ∇ψ d x = ψ da V Z ZS 3 ∇ × Ad x = da × A V S Z Z 2 3 (φ∇ ψ + ∇φ · ∇ψ) d x = (φ∇ψ) · da V S Z Z 2 2 3 (φ∇ ψ − ψ∇ φ) d x = (φ∇ψ − ψ∇φ) · da V S Z Z (∇ × A) · da = A · dl SZ Z C da × ∇ψ = ψ dl (1) 2F ij δ(∂i Aj − ∂j Ai ) (3) (4) identity; ˆ dφ dl = ˆ r dr + r θˆ dθ + r sin θ φ ˆ ˆ = sin θ cos φ ˆ x r + cos θ cos φ θˆ − sin φ φ ˆ ˆ = sin θ sin φ ˆ y r + cos θ sin φ θˆ + cos φ φ ∇·v = 1 r2 1 ∂θ t θˆ + 1 2 ∂r (r vr ) + 1 r sin θ 1 = = = ∂B Implications: ∇ · B = 0 and ∇ × E = − 1 c ∂t Equation of motion for EM field (p. 107): ∂i F ij = 4π jj c ∂E j+ 1 Implications: ∇ · E = 4πρ and ∇ × B = 4π c c ∂t ∂χ Gauge invariance: φ0 ← φ + 1 ; A0 ← A − ∇χ i.e. c ∂t Ai0 ← Ai + ∂ i χ (χ is a Lorentz scalar field) Properties of Levi–Civita symbol (HW3) p= F αβ ij αβγ 2 γ Fkl ∝ B − E 0123 2 F ij F kl ijkl ∝ E · B (p. 85) F ij F kl ijkl is a boundary term (4-divergence) Approximate fields of localized charge configuration (x0 r, x0 λ) (p. 158) ˆ r r q 1 ˆ ˙ 0) + · d(t0 ) + · d(t r r2 c r 1 1 ˙ A(r, t) ≈ d(t0 ) c r where t0 = t − r/c, and d is the dipole moment. E and B fields for pure dipole (p. 163), Poynting vector (p. 164), and total power radiated (p. 165) 2 2 (7) E Ev hPtot i = e a3 ω 4 3c Electromagnetic stress-energy tensor (8) c2 Motion in uniform E-field: Integrate equations of motion to obtain energy and momentum, then use (7) to get velocity. Motion in uniform B-field: Note that energy is constant. Use (8) to write momentum in terms of velocity, then integrate equations of motion to get velocity. r sin θ r sin θ 1 ˆ r[∂θ (vφ sin θ) − ∂φ vθ ] 2 r sin θ Coulomb gauge: φ = 0; ∇ · A = 0; −∇2 A + 12 ∂ A =0 1 1 1 c ∂t2 ˆ r (rvθ ) − ∂θ vr ] + θˆ ∂φ vr − ∂r (rvφ ) + φ[∂ i i Lorentz gauge: ∂i A = 0; ∂i ∂ Aj = Aj = 0 r sin θ r Fourier series 1 1 1 2 2 ∂r (r ∂r t) + ∇ t= ∂θ (sin θ ∂θ t) + ∂φφ t ∞ X 1 r2 r 2 sin θ r 2 sin2 θ ik x f (x) = f˜(kn )e n L n=−∞ Cylindrical coordinates (Griffiths) Z L/2 ˆ dφ + z ˆ dz dl = ˆ s ds + sφ −ikn x f˜(kn ) = f (x)e dx ˆ ˆ ˆ = cos φ ˆ ˆ = sin φ ˆ x s − sin φ φ y s + cos φ φ −L/2 2πn ˆ = − sin φ x ˆ ˆ + sin φ y ˆ ˆ + cos φ y ˆ s = cos φ x φ kn = L 1 ˆ + ∂z t z ˆ ∇t = ∂s t ˆ s + ∂φ t φ Fourier transform s Z ∞ 1 1 1 ikx ∇ · v = ∂s (svs ) + ∂φ vφ + ∂z vz f (x) = f˜(k)e dk s 2π −∞ s Z ∞ 1 −ikx ˆ z vs − ∂s vz ] ∇×v =ˆ s ∂φ vz − ∂z vφ + φ[∂ f˜(k) = f (x)e dx s −∞ Z ∞ 1 0 )x i(k−k 0 ˆ[∂s (svφ ) − ∂φ vs ] + z e dx = 2πδ(k − k ) s −∞ 1 1 2 ∇ t = ∂s (s∂s t) + ∂φφ t + ∂zz t Need f˜(k) = f˜∗ (−k) in order for f (x) to be real. s s2 Solution of wave equation for EM field in Coulomb gauge Useful variation (p. 121) (dxi /dθ)(dδxi /dθ) ZZZ 3 δ(ds/dθ) = (54.2) i(k·x−ωt) d k ds/dθ ~ ∗ (−k)ei(k·x+ωt) + β(k)e ~ A(x, t) = β Primed frame moves with velocity vˆ x relative to unprimed (2π)3 frame. Monochromatic plane wave ct0 γ −βγ 0 0 ct ~ ~ 3 (k − p)(2π)3 which yields β(k) = βδ x0 −βγ x γ 0 0 0 = ~ cos(p · x − ωt) (p. 122) A(x, t) = 2β y 0 0 1 0 y k · (E × B) > 0 (p. 123) 0 0 0 1 z z0 ω = ckkk (p. 124) Transformation of the field (HW3, problem 2.1) Poynting vector and EM energy density (p. 126) 0 0 0 Ex = Ex Ey = γ(Ey − βBz ) Ez = γ(Ez + βBy ) c S= E×B 0 0 0 Bx = Bx By = γ(By + βEz ) Bz = γ(Bz − βEy ) 4π 1 2 2 Basic objects of relativistic electrodynamics Eem = (E + B ) 8π Ai = (φ, A) Ai = (φ, −A) Fij = ∂i Aj − ∂j Ai ∂ 1 2 2 E − ∇φ − ∂A/∂t B = ∇ × A (E + B ) = −j · E − ∇ · S ∂t 8π 0 Ex Ey Ez Z Z Z 2 2 d E +B −Ex 3 3 0 −Bz By d x=− j · Ed x − S · da Fij = −Ey dt V 8π Bz 0 −Bx V S −Ez −By Bx 0 Laplace Green function (GF1) 1 G(x) = 4πkxk ; ∇2 G(x) = −δ 3 (x) 0 −Ex −Ey −Ez d’Alembert Green function (GF5) Ex 0 −Bz By ij F = δ(ct−r) Ey Bz 0 −Bx G(xi ) = − 4πr ; G(xi ) = −δ 4 (xi ) Ez −By Bx 0 ˆ em Energy of plane wave (p. 128): S = kcE ~ em = S EM momentum density (p. 129): P F = − B (p. 80) 0123 = +1 = −1 ∇×v = 2 ¨ c (tr ))] [(c − vr )u + rr × (u × x 1 ¨ 0) × ˆ (d(t r) × ˆ r c2 r B=ˆ r×E 2 ¨ 2 kd(t0 )k S=ˆ r sin θ 4πc3 r 2 2 ¨ 0 )k2 Ptot = kd(t 3c2 Power of oscillating dipole, d = qa cos ωt (p. 165) αβγ pc2 2 (rr · u)3 B=ˆ rr × E E= αβγ µνλ = δµνλ αβγ µνγ = δαµ δβν − δαν δβµ v= u = cˆ rr − vr rr E=e 0 Useful relations for relativistic mechanics ∂φ vφ ˙ c (tr ); and tr is the retarded where rr = x − xc (tr ); vr = x time and satisfies c(t − tr ) = kx − xc (tr )k. E and B fields of point charge (p. 148) A (r, t) ≈ Bianchi identity (p. 88): ijkl ∂j Fkl = 0 αβγ µβγ = 2δαµ ˆ ∂φ t φ ∂θ (vθ sin θ) + 2F ij δFij 2F ij ∂i δAj − 2F ij ∂j δAi αβγ µνλ Aαµ Aβν Aγλ = 6 det A ˆ = cos θ ˆ z r − sin θ θˆ ˆ ˆ + sin θ sin φ y ˆ + cos θ z ˆ r = sin θ cos φ x ˆ − sin θ z ˆ θˆ = cos θ cos φˆ x + cos θ sin φ y ˆ = − sin φ x ˆ + cos φ y ˆ φ r = 4F ij ∂i δAj = 4∂i (F ij δAj ) − 4(δAj )∂i F ij (2) Li´ enard–Wiechert potentials (p. 146) ec 0 A (x, t) = crr − vr · rr evr A(x, t) = crr − vr · rr du F u Equation of motion for charged particle: mc dsi = e c ij j j = 0 gives: dE = eE · v dt j = 1, 2, 3 gives: dp =e E+ v ×B dt c Useful variation δ(F ij Fij ) = F ij δFij + Fij δF ij C ∇t = ∂r t ˆ r+ 3 ˙ c (t)δ (x − xc (t)) j(x, t) = ex i 2 (1) divergence theorem; (2) Green’s first (3) Green’s theorem; (4) Stokes’s theorem Spherical coordinates (Griffiths) 3 ρ(x, t) = eδ (x − xc (t)) A ∇ × (∇ × A) = ∇(∇ · A) − ∇ A S Four-current for point particle (p. 142) T η km ij 1 kj m F F j + F Fij 4π 16π km ∂k T = 0 (172.1) =− T km mk =T (p. 172) 1 2 2 (E + B ) = Eem T = 8π S α0 0α T =T = c 1 αβ T =− Eα Eβ + Bα Bβ 4π 1 2 2 − δαβ (E + B ) (p. 176) 2 αβ σαβ = −T 00 σ is Maxwell stress tensor. T α0 is c times momentum density. T 0α is 1/c times energy flux density. T αβ is momentum flux. Total electromagnetic force on volume (p. 178) Z β α αβ FV = n T da S Z 1 d β β 3 Sd x FV = fV + c2 dt V β n is inward unit normal. fV is total force on charges and currents, Z j β 3 ρE + fV = × Bd x c V R 3 1 2 V S d x is total electromagnetic momentum. c Classical electron radius (p. 187): re = Radiation reaction (p. 198): ma = F + Electromagnetic duality: e me c2 2e2 a ˙ 3c3 ≈ 10−13 cm E→B B → −E µ ~ d→ c µ ~ → −cd d is electric dipole moment, µ ~ is magnetic dipole moment Potential of uniformly moving charge (x0 = (vt, 0, 0), HW2) γe φ= p γ 2 (x − vt)2 + y 2 + z 2 Ax = βφ Ay = 0 Az = 0 Field of uniformly moving charge (HW3) Ex = Ey = Ez = c2 Inhomogeneous wave equation in Lorenz gauge (p. 133): Ai = 4π ji c Retarded four-potentials in Lorenz gauge (142.1) Z i 0 1 j (x , t − kx − x0 k/c) 3 0 i A (x, t) = d x c kx − x0 k km γe(x − vt) Bx = 0 (γ 2 (x − vt)2 + y 2 + z 2 )3/2 γey By = −βEz (γ 2 (x − vt)2 + y 2 + z 2 )3/2 γez Bz = βEy (γ 2 (x − vt)2 + y 2 + z 2 )3/2 ~×E i.e., B = β Boundary conditions for E and B fields + − + E⊥ − E⊥ = 4πσ − B⊥ − B⊥ = 0 4π − ˆ − =0 − Bk = ~ κ×n c σ is surface charge density, ~ κ is surface current density + Ek − Ek + Bk
© Copyright 2024 ExpyDoc