Intelligente Oberflächen für Werkzeuge und Automobil

Intelligente Oberflächen für Werkzeuge
und Automobil
Vorstellung, Themenfelder, Anwendungsbeispiele,
Kooperationsansätze
Christian Mitterer1, Kerstin Chladil2
1 Lehrstuhl für Funktionale Werkstoffe und Werkstoffsysteme
Department Metallkunde und Werkstoffprüfung
Montanuniversität Leoben, Austria
2 Materials Center Leoben Forschung GmbH, Leoben, Austria
[email protected]
1
Who we are
The Department of Physical Metallurgy and Materials Testing…

is focusing on basic research of industrial relevance

is dedicated to top-quality and innovative teaching

is one of the leading departments in Austria devoted to all aspects of
Materials Science and Engineering

represents a strong research unit with internationally leading groups

has a long tradition and long-term experience in industrial collaborations

is proud of its unique research facilities

contributes to about 25 % of the
scientific publications of the Montanuniversität
2
Physical Metallurgy and Materials Testing
Physical Metallurgy and
Metallic Materials
Functional Materials and
Materials Systems
Univ.-Prof. Dr. Helmut Clemens
Univ.-Prof. Dr. Christian Mitterer
High-Performance Materials and
Steels
Thin Film Synthesis and Process
Characterization
Dr. Sophie Primig
Dr. Robert Franz
Phase Transformation and HighTemperature Materials
Multi-functional Materials
Metallography
N.N.
Dr. Nina Schalk
Ass.-Prof. Dr. Svea Mayer
Materials Testing, Radiation
Protection and Failure Analysis
Design and Architecture of
Functional Materials Systems
Dr. Michael Panzenböck
Ass.-Prof. Dr. Rostislav Daniel
Modeling of Materials
Dr. David Holec
High-Resolution Analytics
Dr. Francisca Martin Mendez
Microstructural Characterization
Dr. Boriana Rashkova
Christian Doppler Laboratories and Research Studios Austria
Non-scientific staff
Office Management
Metallography
Electron microscopy
Computing
Surface engineering
Materials testing
Machine shop
3
Some research examples
New high-temperature materials
Multi-functional hard coatings
Modern steels
Computational materials design
Atom probe tomography of a Maraging steel
Phase stabilities in the system TiN-AlN
4
Who am I?
Christian Mitterer
Academic Background
1981-1984 Study of Materials Science (1987 Dipl.-Ing., 1994 Dr.mont.)
2000
Habilitation in Surface Engineering
2011
Appointment as Full Professor for Functional Materials
and Materials Systems at Montanuniversität Leoben
Employment
1986 – 1988
1988 – 1994
1999 –
2000 - 2011
2004 – 2011
Background
Project engineer at Metallwerk Plansee, Reutte
ph.d. student at Montanuniversität Leoben
Key Researcher in Surface Engineering at the Materials Center Leoben
Associate Professor in Surface Engineering at Montanuniversität Leoben
Head of the Christian-Doppler-Laboratory for Advanced Hard Coatings,
Montanuniversität Leoben,
2005 – 2012 Scientific head of the Research Project Cluster NANOCOAT “Development of
Nanostructured Coatings for the Design of Multifunctional Surfaces”of the
Austrian NanoInitiative
Publications
>280 publications, >230 of them in reviewed journals, 5 patents, 9 edited conference
proceedings and special journal issues, 1 book, 2 book chapters, >70 invited lectures
Areas of expertise
Surface functionalization, PVD, CVD, coatings and thin films for tools, components,
functional devices
5
R&D topics
„Multi-functional Coatings“
Area 1:
Tools: steel, ceramics,
cemented carbide
(tribological coatings,
oxidation-resistant
coatings)
Area 2:
Area 3:
intermetallics, polymers
metals, polymers, glass
Components: metal,
(active, chemically-resistant
coatings)
Functional Devices:
(adhesion layers, diffusion
barriers, optical films)
Self-hardening
Self-lubricating
Diffusion barriers
Self-lubricating
Anti-adhesive
Adhesion layers
Anti-adhesive
Oxidation protection
Thermal management
Crack-arresting
Thermal barrier
TCO
Self-healing
Self-healing
Flexible films
Design, synthesis, characterization, and application are cross-sectional topics
Self-adaptation by tailored surface reactions
available
Expertise
to be established
6
Our R&D approach
Load- / failure
analysis
Materials design /
Process development
Performance in
application
SynthesisStructure-Property
relations
7
Materials synthesis approach
Plasma-assisted vapor deposition as versatile tool for combinatorial synthesis of functional
materials and materials systems
TiBN nanocomposite, 3D-APT
Substrate
nc Cr-C/a-C:H nanocomposite, HR-TEM
a-C:H
B
C
A
Neidhardt et al., in preparation
TiN/Ag multilayer, SEM
nc Cr-C
(Ø 2…10 nm)
10 nm
Gassner et al., JVSTB 2006
Köstenbauer et al., TSF 2008
8
Materials synthesis approach
Sputtering
(industrial scale,
functional films)
Plasma-assisted vapor deposition
(Physical Vapor Deposition)
Sputtering
(laboratory scale, basic research)
Sputtering
(industrial scale,
hard coatings)
9
Al
N
Ti,Cr
TiN
CrN
AlN content
~ 0.6 - 0.75
AlN
wurtzite - structure
solubility limit
NaCl - structure
MeAlN coatings for tools
M. Kawate et al., JVSTA 20 (2002) 569
Arc Source 2
Arc Source 3
AlCr
AlCr
Oerlikon Balzers RCS/INNOVA
cathodic arc evaporation system
Arc Source 1
Arc Source 4
AlCr
AlCr
Arc Source 5
Arc Source 6
AlCr
AlCr
Innova Etching Technology
IET
10
CrAlN alloyed with V
coefficient of friction
0.6 - 0.7
700°C
CrAlVN
0.2
Magnéli phase oxides
V2O5
Al0.71Cr0.29N
0.8
0.6
0.4
0.2
Al0.67Cr0.05V0.28N
0.0
0
50
100
150
200
250
300
Sliding distance [m]
lubricious oxide
Wear track after sliding against
Al2O3 at 700°C for 300 m
wear track
Intensity [a.u.]
Raman analysis
Coefficient of friction
CrAlN
tribological test
1.0
V2O5
200
400
600
800
1000
-1
Wave number [cm ]
R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R Tessadri, P.
Polcik, V.-H. Derflinger, C. Mitterer, Tribol. Lett. 23 (2006) 101
1200
4 µm
11
CrAlN alloyed with V
TEM specimen
Electron energy loss spectroscopy
V
350
400
450
500
Intensity [arb.u.]
Intensity [arb.u.]
capping layer
O Cr
550
600
Energy loss [eV]
650
N
V
350
400
450
500
Cr
550
600
650
Energy loss [eV]
scanning TEM spectrum imaging
R. Franz, J. Neidhardt, C. Mitterer, B. Schaffer, H. Hutter, R.
Kaindl, B. Sartory, R. Tessadri, M. Lechthaler, P. Polcik, JVSTA
26(2) (2008) 302
12
CrAlN alloyed with V
( + STEM SI )
Energy dispersive X-ray spectroscopy
Aluminium
Chromium
1000 nm
1000 nm
reduced Al and Cr
concentrations in
outer oxide layer
V-rich layer
V depleted
Vanadium
Iron
1000 nm
1000 nm
V diffusion
to surface
diffusion of Fe
to underdense
zone near droplets
13
Cutting performance of TiAlVN
Lifetime of multi-layer coatings in
multifunctional cutting (drilling and
turning) compared to a TiAlN reference
(lifetime criterion: flank wear
mark 0.25 mm).
Lifetime of single- and multi-layer
coatings in milling compared to a TiAlN
reference (lifetime criterion: flank wear
mark 0.3 mm)
Superior performance of TiAlVN
single-layer and TiAlVN/TiAlN
multilayer coatings in milling
(interrupted cutting)
M. Kathrein, C. Michotte, M. Penoy, P. Polcik, C. Mitterer,
Surf. Coat. Technol. 200 (2005) 1867
14
Piston rings
© Mahle
15
Typical engine data
© Mahle
16
Amorphous carbon coatings




Starting point: Amorphous carbon matrix
Application for engine parts like pistons or liners
Friction and wear minimization up to 450°C in air
Significant reduction of CO2 emission
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095
D. Teer, Wear 251 (2001) 1068




High resolution TEM
Enhancement of thermal stability
Reduction of graphitization processes, oxidation
Reduced wear induced degradation
Coating protection due to protecting layer formation
D. Teer, Wear 251 (2001) 1068
17
Si-doped amorphous carbon
Low-friction effect at elevated temperatures
0.14
350
0.12
300
0.10
250
0.08
200
Sample
temperature -->
<-- COF
0.06
150
0.04
100
0.02
50
0.00
0
5000
10000
15000
20000
Sample temperature [°C]
Coefficient of friction
a-C:Si tested in ambient air (humidity 25±5%), Al2O3 balls, 10 N load
0
Laps
Reversible onset of low-friction at 240±15°C
 High temperature regime: T> 240°C, COF <0.02
 Low temperature regime: T<240°C, COF ~0.1±0.02

18
Si-doped amorphous carbon
a-C
a-C-Si
Ab-initio molecular dynamics simulations indicate that
 Si forms strong tetrahedral bonds with C → high thermal stability
 effect of Si doping on density and elastic modululs is minor
O. Jantschner, S.K. Field, D. Music, V.L. Terziyska, J.M. Schneider, F. Munnik, K. Zorn, C. Mitterer, Tribol. Int. 77 (2014) 15
O. Jantschner, S.K. Field, D. Holec, A. Fian, D. Music, J.M. Schneider, K. Zorn, C. Mitterer, Acta Mater., in press
19
Cooperations
Scientific network
Industrial network
20
Contact
Department Metallkunde und Werkstoffprüfung, Montanuniversität Leoben
Franz-Josef-Straße 18, A-8700 Leoben, Austria
Phone: +43-3842-402-4201; Fax +43-3842-402-4202, [email protected]
21