YIG Magnonics

www.thalesgroup.com
YIG Magnonics
Abdelmadjid Anane
[email protected]
Unité Mixte de Physique CNRS/Thales, Palaiseau et Université de Paris-Sud, Orsay, France.
Spin based computation
2 /
CMOS is one of the greatest achievement in human history
buffer
Spintronic
computaion
Non volatile logic operation
Spintronic
computaion
CMOS interface underlayer
Spintronics computational schemes
‹
Spin-FET (Datta & Das transistor)
•
‹
Domain wall logic, Nanomagnet logic …
•
‹
Pure spin current logique
Neuromorphic computaion (spintronic synapses)
Magnon electronics
Spin based computation
3 /
CMOS is one of the greatest achievement in human history
buffer
Spintronic
computaion
Non volatile logic operation
Spintronic
computaion
CMOS interface underlayer
Spintronics computational schemes
‹
A. Khitun et al. J. of Physics D (2010)
Magnon electronics (spin waves)
Other applications include rf electronics
APL 87, 153501 2005
Kaiserslautern
Onde de spin dans les materiaux ferromagnétiques
Une onde de spin est une excitation collective des spin
Magnons
Lee K S and Kim S K 2008 J. Appl. Phys. 104 053909
VG ~ 105 m/s
O ~ 10 - 100 nm
•La relation de dispersion dépends des caractéristiques
magnétiques du matériau et de sa géométrie et du champ
appliqué.
•L’onde de spin est le vecteur d’information le moins couteux en
énergie
Condensat de Bose Einstein
Micromagnetisme des ondes de spin
Excitation local et propagation
DG est une constante du matériaux qui décrit la dissipation
Pour le Py : D = 0.01 et la longueur d’atténuation est ~ 10 µm
Relations de dispersion
Traitement de l’information avec les spin wave (Beyond CMOS)
Réalisation de portes logique sur le principe de l’interféromètre de Mach–Zehnder miniature
NOT gate
OR gate
L’information est encodée par modulation
de la phase de la SW
AND gate
Magnetic field
Calcul parallel à base d’interférence de SW
Magnetic Cellular Nonlinear Network
nce d’ondes de spin
Applications analogiques des SW : un peu d’histoire
Sphère de YIG (Y3Fe5O12 ) , FMR Q0 = 10 000
Accordable
de
0.5 Æ 40
GHz
Ce que peut apporter l’électronique de
Spin
Filtres à base de SW
Filtres actifs est amplification / atténuation de SW
I>0
&
§ dm
¨
© dt
&
§ dm
¨
© dt
Utiliser le couple de transfert de spin pour
Amplifier l’amplitude des SW sous le contact
ou
Atténuer l’amplitude des SW sous le contact
·
¸
¹ injec.
·
¸
¹ Heff
&
§ dm ·
¸
¨
dt
¹ injec
©
I<0
4
Heff
&
§ dm
¨
© dt
m
.
·
¸
¹D
Quelques réalisations experimentales
Magnonics
15 /
Magnonics at the nanoscale Challenge :
how to couple to a spin wave with a SCALABLE scheme ?
It depends on the medium material
‹
If it is a metal (permalloy or Heusler alloy)
STT for excitation and TMR for detection
‹
If it is a magnetic insulator
SHE for excitation and ISHE for detection
Spin Hall effect
16 /
Electron diffusion with spin orbit interaction
Factor of merit : spin Hall angle
metal
Au
< 1%
Pt
5%
E-W
30%
Spin Hall effect and inverse spin Hall effect
17 /
SHE :
convert charge current to spin current
ISHE
convert spin current to charge current
Factor of merit : spin Hall angle
metal
Au
< 1%
Pt
5%
E-W
30%
18 /
YIG is the best medium for magnonics
αYIG x YIG thikness
19
Direct SHE: damping compensation
FMR while passing a large dc curent in the Pt layer
YIG magnonics
Pure spin current magnonics requires :
Direct & Inverse spin
Hall Effect
VISHE
Jc
Large SOC metal
YIG (insulator)
Js
‹
spin transparent interface
‹
Ultrathin YIG films with low damping
Js
Energy efficiency, Compatibility with standard micro fabrication,
scalability of the technology…
MMM, Denver, November 4-8 2013
Micromagnetisme des ondes de spin
Excitation local et propagation
buffer
Spintronic
Spintronic
computaion
computaion
CMOS interface
underlayer
DG est une constante du matériaux qui décrit la dissipation
Pour le Py : D = 0.01 et la longueur d’atténuation est ~ 10 µm
Pour le YIG : D = 0.00001 et la longueur d’atténuation est ~ 1mm
Pulsed laser deposition (PLD)
4 PLD deposition chambers :
Manganites
ZnO
BiFeO3
SrTiO3
LaAlO3
BaTiO3
YBCO and many highTc SC
…..
YIG
Olivier d’ALLIVY KELLY, CNRS/THALES
MMM, Denver, November 4-8 2013
PLD growth
PLD parameters
Laser
Target
Substrate
Laser
Nd:YAG 355nm
Pulses repetition rate
2.5 Hz
Substrate
GGG (111)
Target-substrate
distance
44 mm
O2 pressure
2.5 x 10-1 mbar
Temperature
650°C
A part from the laser there is no significant differences from the conditions used in Colorado State University by
M. Wu and coll.
Olivier d’ALLIVY KELLY, CNRS/THALES
MMM, Denver, November 4-8 2013
24 /
RHEED YIG(20nm)/GGG (111)
Room Temperature.
YIG(20nm)//GGG(111)
Rotation(°)
10
295
Po2(mbar)
~.10-7
~.10-7
RT
RT
T(°C)
24
Room temperature.
25 /
RHEED YIG(20nm)/GGG
25
Substrate :(1)
YIG :(2)
YIG:(3)
YIG(20nm)//GGG(111)
AL4539
(1)
(2)
(3)
Rotation(°)
267
342
342
Po2(mbar)
2.10-2
2,5.10-1
3,6.10-7
674
663
RT
T(°C)
26
Characterization : X-ray diffraction
No parasitic phases
Lattice parameter:
27
Characterization : X-ray diffraction
No parasitic phases
6
10
20 nm
7 nm
4 nm
104
102
100
118
120
118
120
2T degree
118
120
28
Characterization : AFM topography
RMS roughness
4 nm
0.3 nm on 1µm2
7 nm
20 nm
Rq = 0.3 nm
Rq = 0.3 nm
Rq = 0.1 nm
Rq = 0.5 nm
Rq = 0.5 nm
Rq = 0.2 nm
29
Characterization : SQUID magnetometry
Ultra soft nanometer-thick YIG
10 nm
T = 300K
30
Characterization : SQUID magnetometry
Ultra soft nanometer-thick YIG
-20
2500
2000
-15
-10
-5
0
5
10
15
bulk
20
2500
2000
4 SMsYIG : 1750 G
1500
1500
1000
1000
500
500
0
0
-500
-500
-1000
-1000
4 nm
7 nm
15 nm
200 nm
-1500
-2000
-2500
-20
-15
-10
-5
0
5
Magnetic Field (Oe)
10
15
-1500
-2000
-2500
20
31
Characterization : Ferromagnetic resonance
Narrow FMR linewidth
32
Characterization : Ferromagnetic resonance
Narrow FMR linewidth
;
33
Characterization : Ferromagnetic resonance
Spin mixing conductance
20 nm
Pt/YIG
/
,
/
Surface preparation before
Pt deposition :
Ar/O2 plasma
. ∙
.
YIG
,
. ∙
.
↑↓
34
Characterization : Ferromagnetic resonance
Origin of of ΔH0
35
YIG nanostructures
etching rate
20 nm YIG on
GGG
SIMS detection
Ar
Etch conditions :
Angle : 30 deg.
Beam intensity : 0.50 mA/ cm2
Acceleration voltage: 350 V
36
Toward nanostructures
Extended Film
Nanodisk
37
Toward nanostructures
Extended Film
Samples (300,500,700 nm)
Nanodisk
38
Toward nanostructures
Extended Film
Samples (300,500,700 nm)
Nanodisk
MRFM Measurement
39
Ferromagnetic resonance on YIG nanodisks
Extended Film
Nanodisk
40
Ferromagnetic resonance on YIG nanodisks
41
Local FMR on nanodisks
n=0
n=0
n=1
n=2
- discrete MRFM-spectra observed for YIG and YIG/Pt nanodiscs
n=1
ISHE measurements : Experimental results
42
Experimental setup
z
x
y
13 nm
A. V. Chumak et al., Applied Physics Letters 100, 082405 (2012)
43
ISHE measurements : Experimental results
z
x
y
44
ISHE measurements : Experimental results
Thickness dependence of ISHE
Coherent behaviour with:
Y. Kajiwara et al., Nature 464, 262 (2010)
45
ISHE measurements : Experimental results
Thickness dependence of ISHE
ΔH=4.6 Oe
ΔH=13 Oe
ΔH=19 Oe
Coherent behaviour with:
Y. Kajiwara et al., Nature 464, 262 (2010)
Conclusion
9
Detection of pure spin current by ISHE
on 0.5nm Pd/YIG
9
No induced magnetism in Pd/YIG
9
Results that support SMR theory
Todo list
9
Damping compensation on nanodisks
9
Measurements of group velocity
Thanks to
O. d’Allivy Kelly , V. Cros, P. Bortolotti and A. Fert
R. Bernard, E. Jacquet and A. H. Molperces.
In collaboration with :
J. Ben Youssef Université de Bretagne Occidentale, LMB-CNRS, Brest, France.
F. Wilhelm and A. Rogalev ID12 Beamline, (ESRF), Grenoble, France.
M. Muñoz Instituto de Microelectronica de Madrid, Madrid, Spain.
C. Hahn, G. de Loubens, V. Naletov, M. Viret and O. Klein CEA SPEC, Saclay France.