PHY 4523 “Statistical Physics” Spring 2003 Formula and Fact Sheet (Version of 07 April 2014) Professor Mark W. Meisel Page 1 kB = 1.381 × 10−23 J/K = 8.617 × 10−5 eV/K [( ) 12 − d r V (r) = 4 ϵ ( )6 ] 3 −u x2 2! ln(1 + x) = x − + x3 3! + ... = x2 2 + x3 3 − x = ∫∞ x4 4 ∑ i ( ) pi = limN →∞ nNi ! W = n1 !×n2N!×n 3 !×... pi = 1 n! n Cr = r!(n−r)! i (∆x)2 = pi x i e−(x−x) ∑ i PL (x) = 1 2 (2π) ∆x x PP (x) = x −x e x! PB (x) = n! px (1 − p)n−x x!(n − x)! Z = j e−E(j /kB T ) ln Z U = kB T 2 ∂ ∂T pi = β = ∑ P = − ( ) ∂F ( ∂V ) T S = − ∂F ∑∂T V d′ Q = i dpi Ei )1/2 ( h2 λD = m2π¯ kB T V ( ) ∂(T ln Z) ( ∂V ) T kB ∂(T∂Tln Z) V P = kB S = ∑ U = i pi Ei √ π pi,j = pi pj e−Ei /kB T Z 1 kB T ( µB kB T ) V F = −kB T ln Z dF = −SdT − P dV S = UT + kB ln(Z) ∑ ∑ dU = i dpi Ei + i pi dEi Z = Ztrans × Zvib × Zrot ∫ ∞ 1∫∞ −E(px ,x)/kB T Z = dx dpx e h −∞ −∞ ∫ Z = 0 ∞ (2n)! n! 1 Γ/2 π (x − x)2 + (Γ/2)2 M = µ(n+V−n− ) = µN tanh ( V) ∑ ∂Ei Mz = − V1 i pi ∂B z Z = n gn e−En /kB T ln Z U = − ∂ ∂β dx = p(i+j) = pi + pj S = ϕ(W ) S = kB ln(W ) ∆UA2 = − kSB′′ = kB T 2 CA ∑ π 2 pi (xi − x)2 2 /[2∆x2 ] PG (x) = 2 √ vrms = v 2 P V = 31 N m v 2 ∫ ∑ |u| < ∞ |u| < ∞ 1 ∫ ∞ 3 ∫ ∞ 3 −E(⃗p,⃗r)/kB T d ⃗r d p⃗ e Z = 3 h −∞ −∞ e−ϵ(k)/kB T D(k) dk π 2 √ e−x dx = 0 ∫ ∞ 2n −(x/a)2 0 x e |x| < 1 , x = 1 + ... , v 2 = 0∞ v 2 f (v) dv P = 13 n m v 2 ϵ = f2 kB T x = 2n+1 xn n=0 n! ∫ n! ∑ (n−r)! n x i i i N 5 2 5 17 7 62 tanh u = u − 13 u3 + 15 u − 315 u + 2835 u9 − ... |u| < d d (cosh u) = du (sinh u) (tanh u) =√du (sech2 u) dx dx dx dx ∫ ∑∞ ∞ −nx −ax2 = 1−e1−x dx = πa n=0 e −∞ e ∑∞ v = 0∞ v f (v) dv Φ = 14 n v 3 k T = 12 mv 2 2 B pi = W1 n Pr = R NA u sinh u = u + u3! + u5! + ... + (2n+1)! + ... 2 4 2n u cosh u = 1 + u2! + u4! + ... + (2n)! + ... −e ) tanh u = (e (eu +e−u ) d (sinh u) = du (cosh u) ∫dx∞ 2n+1 −axdx 2 e dx = 2an! n+1 0 x ex = 1 + x + kB = ln(M !) ≈ M ln(M ) − M d r sinh u = 12 (eu − e−u ) cosh u = 12 (eu + e−u ) u 1 eV = 1.602 × 10−19 J ( )2n+1 a s PHY 4523 “Statistical Physics” Spring 2003 Formula and Fact Sheet (Version of 25 February 2004) Professor Mark W. Meisel ZN ≃ Z1N N! ∫∞ f (k) A(k) dk 0∫ ∞ A = e D(k) dk = ω = ck −1 dQ dt f (k) dk Ak dk 2π 0 2 D(k) dk = V2πk2 dk n(⃗k) = h¯ ω(⃗k)/k1 B T Page 2 D(k) dk = Lπ dk 2 CV = −T ( ∂∂TF2 )V ∫ F = −kB T ⃗k ln Z(⃗k) = kB T 0∞ D(k) ln(1 − e−¯hω/kB T )dk ∑ A ∫∞ U = ⃗k h U = 2π ¯ ω(k)n(k)kdk ¯ ω(k)n(⃗k) 0 h ∑ −¯ hωα /kB T F = N ϵ + kB T α ln(1 − e ) ∑ −¯ hωE /kB T F = N ϵ + 3N kB T ln(1 − e ) ( ∂S ∂N ) U,V µchem = −T ( dU = T dS ( − P dV ) + µdN ∂ ln(WR ) 1 = kB T ∂UR µ = ∆ + kB T Ξ = ∑ j e NR ln( nn ′ ) Q ( CV = 3N kB D(ω)dω = 2πV 2 ω 2 ( s13 + s23 )dω T ∫L −¯ hω/kB T F = N ϵ + 3k2πB2Ts3V 0∞ ω 2 ln(1 − e )dω 3 ∫ V ω ω 3N = 2π3V2 s3 0 D ω 2 dω = 2π2 Ds3 ∫ −¯ hω/kB T F = N ϵ + 3k2πB2Ts3V 0ωD ω 2 ln(1 − e )dω ( )3 ∫ 4 x XD x e CV = 9N kB ΘTD dx 0 (ex −1)2 µ = −T ) ∂S ∂n U,V 3 s3 = ( s13 L + 2 s3T )2 hωE ¯ kB T XD = µ = ( ∂U ∂N −(Ej −µNj )/kB T (e pi = Ξ ΦG = U − µN − T S = −kB T ln(Ξ) ( ∂ΦG S = − ∂T ( ∂ΦG P = − ∂V ( N = − ∂ΦG ∂µ 4 V 2π 2 kB 5¯ h5 s3 ( 3kB T V 2π 2 s3 kB T h ¯ )3 ∫ ωD /T 0 ) µ = S,V ( ) ∂G ∂N T,P ( = V,µ ) ( = T,µ ) 1 λ3D = ( mkB T 2π¯ h2 1 +1 = T,V 1 e[ϵ(k)−µ]/kB T +1 ∂(kB T ln(Ξ)) ∂T ∂(kB T ln(Ξ)) ∂V ( −x x2 ln(1 − e )dx µ = µint + ∆(⃗r) W = i Wi dΦG = −SdT − P dV − N dµ ) T3 ΘD T (ϵi −µ)/kB T ∑ −(Ei −µNi )/kB T −1)2 ) nQ = e −1) h ¯ ωE /kB T dG = −SdT( + V dP ) + µdN ∂ ln(WR ) µ = −kB T ∂NR ni = hc/λkB T e UR e λ5 (e h ¯ ωE /kBT ωD = s(6π 2 N )1/3 V F = Nϵ + 8πhc u(λ) = CV = nQ′ = gnQ nF D = n(k) = σ = 5.67 × 10−8 W m−2 K−4 = Aσ T4 ) V,µ ) ∂(kB T ln(Ξ)) ∂µ T,µ ) nBE = f (k) = T,V 1 e[ϵ(k)−µ]/kB T −1 )3/2 PHY 4523 “Statistical Physics” Spring 2003 Formula and Fact Sheet (Version of 24 April 2003) Professor Mark W. Meisel nF D = n(k) = N = 2 ∑ 1 e[ϵ(k)−µ]/kB T ⃗ ⃗k n(k) 2 2 h k ¯ 2m 2 1/3 ( )3/2 2mϵ V 2 2 3π h ¯ 2 CVel = 31 π 2 D(ϵF ) kB N = +1 2 kB Tc = 3.31 ¯hm (N − N0 ) = I = − W −1 ∑ e[ϵ(k)−µ]/kB T nM B = e−[ϵ(k)−µ]/kB T −1 ∫ V k2 1 k 2 dk n = N = π12 0∞ [ϵ(k)−µ]/k B T +1 2π 2 V e ∫ N = 2 2πV 2 0kF k 2 dk = 3πV 2 kF3 kF h2 ¯ vF = ¯hm EF = ϵF = 2m (3π 2 n)2/3 = kB TF ( )3/2 = 2πV 2 2m D(ϵ) = dN ϵ1/2 dϵ ( ¯h2 ) 2 1 2 π N kB TTF = N k2B π kEBFT 2 T = µ = kB T ln(nλ3D ) ¯ 2 k2 h 2m 1 nBE = f (k) = D(k) = ϵ(k) = kF = (3π n) ϵ(k) = Page 3 ( D(k) = 2π 2 N V )2/3 N V 1 V ∫∞ 2π 2 0 e[ϵ(k)−µ]/kB T −1 = ( i=0 N = ) 2mkB Tc 3/2 2 h ¯ k 2 dk = N S = −kB pi log2 pi V k2 2π 2 ∑ ( T Tc ∫∞ 0 V 2π 2 ∑ A(n) Pe (n) n ∂t P (n, t) = ∑ n′ 0 1 e [ϵ(k)−µ]/kB T −1 k 2 dk x2 2 ex −1 dx κ = kB J 1 = 9.57 × 10−24 log2 e K bit )3/2 pi ln pi i ⟨A⟩e = ∫∞ ⟨A(t)⟩ = ∑ A(n) P (n, t) n [ Wn′ n P (n′ , t) − Wnn′ P (n, t) ]
© Copyright 2024 ExpyDoc