View/Open - Naval Postgraduate School

Author(s)
Blau, J.; Cohn, K.; Colson, W.B.; Vigil, R.
Title
Free electron lasers in 2013
Publisher
Issue Date
2013
URL
http://hdl.handle.net/10945/44196
This document was downloaded on February 04, 2015 at 03:25:12
WEPSO01
Proceedings of FEL2013, New York, NY, USA
FREE ELECTRON LASERS IN 2013
J. Blau#, K. Cohn, W. B. Colson and R. Vigil
Physics Department, Naval Postgraduate School, Monterey CA 93943 USA
Abstract
Thirty-seven years after the first operation of the free
electron laser (FEL) at Stanford University, there continue
to be many important experiments, proposed experiments,
and user facilities around the world. Properties of FELs
operating in the infrared, visible, UV, and X-ray
wavelength regimes are tabulated and discussed.
c 2013 CC-BY-3.0 and by the respective authors
Copyright ○
List of FELs in 2013
The following tables list existing (Table 1) and
proposed (Tables 2, 3) relativistic free electron lasers
(FELs) in 2013. The 1st column lists a location or
institution, and the FEL’s name in parentheses. References
are listed in Tables 4 and 5; another useful reference is
http://sbfel3.ucsb.edu/www/vl_fel.html.
The 2nd column of each table lists the operating
wavelength , or wavelength range. The longer
wavelength FELs are listed at the top and the shorter
wavelength FELs at the bottom of each table. The large
range of operating wavelengths, seven orders of
magnitude, indicates the flexible design characteristics of
the FEL mechanism.
In the 3rd column, tb is the electron bunch duration
(FWHM) at the beginning of the undulator, and ranges
from almost CW to short sub-picosecond time scales. The
expected optical pulse length in an FEL oscillator can be
several times shorter or longer than the electron bunch
depending on the optical cavity Q, the FEL desynchronism
and gain. The optical pulse can be many times shorter in a
high-gain FEL amplifier. Also, if the FEL is in an
electron storage-ring, the optical pulse is typically much
shorter than the electron bunch. Most FEL oscillators
produce an optical spectrum that is Fourier transform
limited by the optical pulse length.
The electron beam kinetic energy E and peak current I
are listed in the 4th and 5th columns, respectively. The
next three columns list the number of undulator periods N,
the undulator wavelength 0, and the rms undulator
parameter K=eB0/2mc2 (cgs units), where e is the
electron charge magnitude, B is the rms undulator field
strength, m is the electron mass, and c is the speed of light.
For an FEL klystron undulator, there are multiple
undulator sections as listed in the N-column; for example
2x7. Some undulators used for harmonic generation have
multiple sections with varying N, 0, and K values as
shown. Some FELs operate at a range of wavelengths by
varying the undulator gap as indicated in the table by a
range of values for K. The FEL resonance condition,
 = 0(1+K2)/22, relates the fundamental wavelength  to
K, 0, and the electron beam energy E=(−1)mc2, where 
is the relativistic Lorentz factor. Some FELs achieve
shorter wavelengths by using coherent harmonic
generation (CHG), high-gain harmonic generation
(HGHG), or echo-enabled harmonic generation (EEHG).
The last column lists the accelerator types and FEL
types, using the abbreviations listed after Table 3.
The FEL optical power is determined by the fraction of
the electron beam energy extracted and the pulse
repetition frequency. For a conventional FEL oscillator in
steady state, the extraction can be estimated as 1/(2N); for
a high-gain FEL amplifier, the extraction at saturation can
be substantially greater. In a storage ring FEL, the
extraction at saturation is substantially less than this
estimate and depends on ring properties.
In an FEL oscillator, the optical mode that best couples
to the electron beam in an undulator of length L=N0 has a
Rayleigh length z0  L/121/2 and has a fundamental mode
waist radius w0  (z0/)1/2. An FEL typically has more
than 90% of its power in the fundamental mode.
At the 2013 FEL Conference, there were three new
lasings reported worldwide: an HGHG VUV/soft X-ray
FEL at FERMI in Trieste (FERMI-2), an EEHG UV FEL
at SINAP in Shanghai (SDUV-FEL), and a super-radiant
THz FEL at ELBE in Dresden (TELBE). Progress
continues on many other existing and proposed FELs,
including several large X-ray FEL facilities around the
world.
ACKNOWLEDGMENTS
The authors are grateful for support from ONR and the
HEL-JTO.
____________________________________________
#
[email protected]
ISBN 978-3-95450-126-7
486
Short Wavelength FELs
Proceedings of FEL2013, New York, NY, USA
WEPSO01
LOCATION (NAME)
Frascati (FEL-CATS)
UCSB (mm FEL)
Novosibirsk (FEL1)
Dresden (TELBE)
Nijmegen (FLARE)
KAERI (THz FEL)
Osaka (ISIR, SASE)
Himeji (LEENA)
UCSB (FIR FEL)
Osaka (ILE/ILT)
Novosibirsk (FEL2)
Osaka (ISIR)
Tokai (JAEA-FEL)
Bruyeres (ELSA)
Dresden (ELBE U100)
Osaka (iFEL4)
LANL (RAFEL)
Kyoto (KU-FEL)
Darmstadt (FEL)
Osaka (iFEL1)
Beijing (BFEL)
Daresbury (ALICE)
Dresden (ELBE U27)
Berlin (FHI MIR FEL)
Tokyo (MIR-FEL)
Nijmegen (FELIX)
Orsay (CLIO)
Nijmegen (FELICE)
Osaka (iFEL2)
Nihon (LEBRA)
Tsukuba (ETLOK-III)
UCLA-BNL (VISA)
JLab (IR upgrade)
DELTA (FELICITA-I)
Osaka (iFEL3)
JLab (UV demo)
Duke (OK-5)
BNL (SDL FEL)
Okazaki (UVSOR-II)
Tsukuba (ETLOK-II)
SINAP (SDUV-FEL)
DELTA (U250)
Duke (OK-4)
(m)
430-760
340
120-240
100-3000
100-1400
100-1200
70-220
65-75
60
47
40-80
32-150
22
20
18-280
18-40
15.5
5-21.5
6-8
5.5
5-25
5-8
4-21
4-50
4-16
3-250
3-150
3-40
1.88
0.8-6.5
0.85-1.45
0.8
0.7-10
0.42-0.47
0.3-0.7
0.25-0.7
0.25-0.79
0.2-1.0
0.2-0.8
0.2-0.6
0.2-0.35
0.2
0.19-0.4
ELETTRA (EUFELE)
Frascati (SPARC)
DESY (sFLASH)
0.09-0.26
0.066-0.8
0.038
SPring-8 (SCSS)
ELETTRA (FERMI-1)
ELETTRA (FERMI-2)
DESY (FLASH I)
SLAC (LCLS)
SPring-8 (SACLA)
0.03-0.06
0.02-0.08
0.004-0.0144
0.004
0.12 nm
0.08-0.25 nm
tb(ps)
15-20
25000
50
0.15
3
20
20-30
10
25000
3
20
20-30
2.5-5
30
1-4
10
15
<1
2
10
4
~1
1-4
1-5
2
1
10
1
10
1
90
0.5
0.35
50
5
0.35
5-20
0.5-1
6
55
2-8
100
50
E(MeV)
2.5
6
12
15-34
10-15
4.5-6.7
11
5.4
6
8
20
13-19
17
18
15-34
33
17
20-36
25-50
33.2
30
27.5
15-34
15-50
32-40
50
12-50
60
68
58-100
310
64-72
120
450-550
155
135
270-800
100-250
600-750
310
100-180
1500
1200
I(A)
5
2
8
15
50
0.5
1000
10
2
50
20
50
200
100
15
40
300
17-40
2.7
42
15-20
80
15
200
30
50
100
50
42
10-20
1-3
250
300
90
60
200
10-50
300-400
28.3
1-3
20-100
40
35
N
16
42
2x33
8
40
80
32
50
150
50
33
32
52
30
40
30
200
53
80
58
50
40
68
50
43
38
38
48
78
50
2x7
220
30
2x7
67
60
2x30
256
2x9
2x42
360
2x7
2x3
3
70
1000
150
2x19
0.15-8
80-177
40-380
450
0.5
700
1000
180
120
1
250
300
600
0.7-1.2
1250
300-600
252
0.7-1.6
1000-1400 300-700
396
0.01-0.5
370-1250 2000
984
0.07
15400
3500
3696
0.02-0.03 8300
3000-4000 6300
0(cm)
2.5
7.1
12
30
11
2.5
6
1.6
2
2
12
6
3.3
3.2
10
8
2
3.3
3.2
3.4
3
2.7
2.73
4
3.2
6.5
5
6.0
3.8
4.8
20
1.8
5.5
25
4
3.3
12
3.9
11
7.2
2.5
25
10
K(rms)
0.5-1.4
0.7
0.71
≤5.7
0.5-3.3
1.0-1.6
1.5
0.5
0.1
0.5
1.0
1.5
0.7
0.8
0.5-2.7
1.3-1.7
0.9
0.96
1.0
1.0
0.5-0.8
0.35-0.9
0.3-0.7
0.5-1.5
0.7-1.8
1.8
≤1.4
1.8
1.0
0.7-1.4
1-2
1.2
3.0
1.4-1.7
1.4
1.3
3.18
0.8
2.6-4.5
1-1.4
0.98
7.3-10
4.75
Type
RF
EA,O
ERL,O
RF,SU
RF,O
MA,O
RF,S
RF,O
EA,O
RF,O
ERL,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
ERL,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
RF,O
SR,O,K
RF,S
ERL,O
SR,O,K
RF,O
ERL,O
SR,O,K
RF,A,S,H
SR,O,K
SR,O,K
RF,A,H,E
SR,K,H
SR,O,K
10
2.8
3.1
3.3
1.5
5.5
3.5
2.73
3
1.8
4.2
0.5-1.55
1.9
2.1
0.3-1.06
1-3
0.85-1.6
0.87
2.5
1.52
SR,A,K,H
RF,A,S,H
RF,A
RF,S
RF,A,H
RF,A,H
RF,S
RF,S
RF,S
ISBN 978-3-95450-126-7
Short Wavelength FELs
487
c 2013 CC-BY-3.0 and by the respective authors
Copyright ○
Table 1: Existing Free Electron Lasers (2013)
WEPSO01
Proceedings of FEL2013, New York, NY, USA
Table 2: Proposed Free Electron Lasers (2013)
PROPOSED FELs
KAERI (THz-FEL)
Tokyo (FIR-FEL)
Colorado State University
NPS-Niowave (THz)
India (CUTE-FEL)
Berlin (FHI FIR FEL)
Novosibirsk (FEL3)
Beijing (PKU-FEL)
Turkey (TACIR I)
(TACIR II)
Tallahassee (Big Light)
Daresbury (CLARA)
Dalian (DCLS)
(m)
400-600
300-1000
200-1000
170-550
50-100
40-500
5-30
4.7-8.3
2.7-30
10-190
2-1500
0.1-0.4
0.05-0.15
tb (ps)
20
5
5-15
1-2
1000
1-5
10
1
1-10
1-10
1-10
0.5
1
E(MeV)
6.5
10
6
3-5
10-15
20-50
40
30
40
40
50
250
300
I(A)
1
30
100
3-7
20
200
20-100
60
8-80
12-120
50
400
300
N
28
25
50
10
50
40
3x33
50
56
40
45
500
360
0(cm)
2.3-2.6
7
2.5
3.3
5
11
6
3
3
9
5.5
2.9
3.0
K(rms)
2.1-2.4
1.5-3.4
1.0
0.5-1.2
0.57
1-3
2.0
0.5-1.4
0.2-0.8
0.4-2.5
4.0
0.7-1.5
0.3-1.6
Type
MA,O
RF,O
RF,O
RF,SU
RF,O
RF,O
ERL,O
ERL,O
RF,O
ERL,O
RF,A
RF,A,H
c 2013 CC-BY-3.0 and by the respective authors
Copyright ○
Table 3: Proposed Short Wavelength Free Electron Lasers (2013)
PROPOSED FELs
JLab (JLAMP)
Rome (SPARX 1)
SINAP (SXFEL)
DESY (FLASH II)
Wisconsin (WiFEL)
Glasgow (ALPHA-X)
LBNL (NGLS)
Rome (SPARX 2)
(nm)
10-100
10-30
8.8
4-60
2.3-6.9
2-300
1-5
1-14
tb (ps)
0.1
0.2-0.01
0.26
0.01-0.5
0.1
0.001-0.005
0.5
0.2-0.01
E(GeV)
0.6
0.96-1.5
0.84
0.5-1.2
1.7
0.10-1.0
2.4
0.96-2.6
I(kA)
1
1
0.6
2.5
1
1
0.6
1-2.3
Groningen (ZFEL)
Rome (SPARX 3)
PSI (SwissFEL Athos)
(SwissFEL Aramis)
SLAC (LCLS-II SXR)
(LCLS-II HXR)
Pohang (PAL SXFEL)
(PAL HXFEL)
DESY (Europe XFEL)
LANL (MaRIE)
0.8
0.6-1.6
0.7-7
0.1-0.7
1.0-6.2
0.06-1.2
1-10
0.06-1
0.05-0.1
0.03
0.1
0.2-0.01
0.002-0.015
0.002-0.015
0.01-0.1
0.01-0.1
0.06-0.18
0.045-0.09
0.1
0.03
1-2.1
1.5-2.4
2.5-3.4
2.1-5.8
2.0-4.0
7.5-13.5
2.6-3.2
4-10
17.5
12
1.5
2.3
1.5-2.7
1.5-2.7
1-4
1-4
1-3
2-4
5
3.4
N
330
715
720
768
788
200
2300
220
900
400
2600
2520
1200
3192
2746
3138
1300
4100
4700
3200
0(cm)
3.3
3.4
2.5
3.14
3.3
1.5
1.9
4.0
2.8
2.2
1.5
1.5
4
1.5
3.9
2.6
3.43
2.44
3.65
1.86
K(rms)
1.0
0.2-2.3
0.95
0.5-2
0.74-1.9
0.5
1.4
3.1
1.63
1.34
0.85
0.91
0.7-2.5
0.85
1.5-3.7
0.41-2.2
1.6-3.4
1.3-2.1
3.3
0.86
Type
ERL,O,A
RF,S
RF,H,E
RF,S,H
RF,H
PW,A
RF,S,H
RF,S
RF,S,H
RF,S
RF,S,E
RF,S
RF,S,SS
RF,S,SS
RF,S
RF,S
RF,S
RF,S,H,E
Accelerator type:
FEL type:
MA - Microtron Accelerator
ERL - Energy Recovery Linear Accelerator
EA - Electrostatic Accelerator
RF - Radio-Frequency Linear Accelerator
SR - Electron Storage Ring
PW- Laser Plasma Wakefield Accelerator
A - FEL Amplifier
K - FEL Klystron
O - FEL Oscillator
S - Self-Amplified Spontaneous Emission (SASE)
H - Harmonic Generation (CHG, HGHG)
E - Echo-Enabled Harmonic Generation (EEHG)
SS - Self-Seeded Amplifier
SU - Super-radiant FEL
ISBN 978-3-95450-126-7
488
Short Wavelength FELs
Proceedings of FEL2013, New York, NY, USA
WEPSO01
DELTA (U250)
DESY (FLASH, sFLASH)
Dresden (FELBE)
Duke (OK-4, OK-5)
ELETTRA (EUFELE)
ELETTRA (FERMI)
Frascati (FEL-CATS)
Frascati (SPARC)
Himeji (LEENA)
JLab (IR upgrade)
JLab (UV demo)
KAERI (THz FEL)
Kyoto (KU-FEL)
LANL (RAFEL)
Nihon (LEBRA)
Nijmegen (FELICE, FELIX)
Nijmegen (FLARE)
Novosibirsk (FEL1)
Novosibirsk (FEL2)
Okazaki (UVSOR- II)
Orsay (CLIO)
Osaka (iFEL4)
Osaka (iFEL1,2,3)
Osaka (ILE/ILT)
Osaka (ISIR)
SINAP (SDUV-FEL)
SLAC (LCLS)
SPring-8 (SCSS, SACLA)
Tokai (JAEA-FEL)
Tokyo (MIR-FEL)
Tsukuba (ETLOK-II)
Tsukuba (ETLOK-III)
UCLA-BNL (VISA)
UCSB (mm, FIR FEL)
Internet Site or Reference
http://www.ihep.ac.cn/english/BFEL/index.htm
http://fel.fhi-berlin.mpg.de
http://sdl.nsls.bnl.gov
P. Guimbal et al., Nucl. Inst. and Meth. A341, 43 (1994).
http://www.stfc.ac.uk/ASTeC/Alice/projects/36060.aspx
M. Brunken et al., Nucl. Inst. and Meth. A429, 21 (1999).
D. Nölle et al., Nucl. Inst. And Meth. A445, 128 (2000).
H. Huck et al., Proceedings of FEL 2011, Shanghai, China.
http://accelconf.web.cern.ch/AccelConf/FEL2011/papers/mooa5.pdf
http://flash.desy.de
http://www.hzdr.de/FELBE
http://www.fel.duke.edu
http://www.elettra.trieste.it/elettra-beamlines/fel.html
http://www.elettra.trieste.it/FERMI
http://www.frascati.enea.it/fis/lac/fel/fel2.htm
http://www.roma1.infn.it/exp/xfel
T. Inoue et al., Nucl. Inst. and Meth. A528, 402 (2004).
G. R. Neil et al., Nucl. Inst. and Meth. A557, 9 (2006).
S. V. Benson et al., Proceedings of FEL 2011, Shanghai, China.
http://accelconf.web.cern.ch/AccelConf/FEL2011/papers/weoci1.pdf
Y. U. Jeong et al., Nucl. Inst. and Meth. A575, 58 (2007).
http://wonda.iae.kyoto-u.ac.jp/index-e.html
D. C. Nguyen et al., Proceedings of LINAC 2000, Monterey, CA, USA.
http://accelconf.web.cern.ch/AccelConf/l00/papers/TH301.pdf
K. Hayakawa et al., Proceedings of FEL 2007, Novosibirsk, Russia.
http://accelconf.web.cern.ch/AccelConf/f07/papers/MOPPH046.pdf
http://www.ru.nl/felix
http://www.ru.nl/flare
N. G. Gavrilov et al., Nucl. Inst. and Meth. A575, 54 (2007).
N. A. Vinokurov et al., Proceedings of FEL 2009, Liverpool, UK.
http://accelconf.web.cern.ch/AccelConf/FEL2009/papers/tuod01.pdf
H. Zen et al., Proceedings of FEL 2009, Liverpool, UK.
http://accelconf.web.cern.ch/AccelConf/FEL2009/papers/wepc36.pdf
http://clio.lcp.u-psud.fr
T. Takii et al., Nucl. Inst. and Meth. A407, 21 (1998).
H. Horiike et al., Proceedings of FEL 2004, Trieste, Italy.
http://accelconf.web.cern.ch/AccelConf/f04/papers/THPOS17/THPOS17.pdf
N. Ohigashi et al., Nucl. Inst. and Meth. A375, 469 (1996).
R. Kato et al., Proceedings of FEL 2007, Novosibirsk, Russia.
http://accelconf.web.cern.ch/AccelConf/f07/papers/FRAAU04.pdf
Z. T. Zhao and D. Wang, Proceedings of FEL 2010, Malmo, Sweden.
http://accelconf.web.cern.ch/AccelConf/FEL2010/papers/moobi1.pdf
http://lcls.slac.stanford.edu
http://www.riken.jp/XFEL/eng/index.html
R. Hajima et al., Nucl. Inst. and Meth. A507, 115 (2003).
http://www.rs.noda.tus.ac.jp/fel-tus/English/E-Top.html
K.Yamada et al., Nucl. Inst. and Meth. A528, 268 (2004).
N. Sei, H. Ogawa and K. Yamada, Optics Letters 34, 1843 (2009).
A. Tremaine et al., Nucl. Inst. and Meth. A483, 24 (2002).
http://sbfel3.ucsb.edu
ISBN 978-3-95450-126-7
Short Wavelength FELs
489
c 2013 CC-BY-3.0 and by the respective authors
Copyright ○
Table 4: References and Websites for Existing FELs
LOCATION (NAME)
Beijing (BFEL)
Berlin (FHI MIR)
BNL (SDL FEL)
Bruyeres (ELSA)
Daresbury (ALICE)
Darmstadt (FEL)
DELTA (FELICITA-I)
WEPSO01
Proceedings of FEL2013, New York, NY, USA
Table 5: References and Websites for Proposed FELs
LOCATION (NAME)
Beijing (PKU-FEL)
Berlin (FHI FIR)
Colorado State University
Dalian (DCLS)
Daresbury (CLARA)
DESY (FLASH II)
DESY (Europe XFEL)
Glasgow (ALPHA-X)
Groningen (ZFEL)
India (CUTE-FEL)
JLab (JLAMP)
KAERI (THz-FEL)
LANL (MaRIE)
LBNL (NGLS)
Novosibirsk (FEL3)
NPS-Niowave (THz)
Pohang (PAL XFEL)
PSI (SwissFEL Athos,Aramis)
Rome (SPARX 1, 2, 3)
SINAP (SX-FEL)
c 2013 CC-BY-3.0 and by the respective authors
Copyright ○
Tallahassee (Big Light)
Tokyo (FIR-FEL)
Turkey (TACIR I & II)
Wisconsin (WiFEL)
Internet Site or Reference
Z. Liu et al., Proceedings of FEL 2006, Berlin, Germany.
http://accelconf.web.cern.ch/AccelConf/f06/papers/TUAAU05.pdf
http://fel.fhi-berlin.mpg.de
S. Milton et. al., Proceedings of FEL 2012, Nara, Japan. http://www.jacow.org
T. Zhang et. al., Proceedings of IPAC2013, Shanghai, China
http://accelconf.web.cern.ch/accelconf/IPAC2013/papers/weodb102.pdf
J. A. Clarke et. al., Proceedings of IPAC 2012, New Orleans, LA, USA.
http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/tuppp066.pdf
http://flash.desy.de
http://www.xfel.eu
http://phys.strath.ac.uk/alpha-x/
J. P. M. Beijers et al., Proceedings of FEL 2010, Malmo, Sweden.
http://accelconf.web.cern.ch/AccelConf/FEL2010/papers/mopc22.pdf
S. Krishnagopal and V. Kumar, Proceedings of FEL 2007, Novosibirsk, Russia.
http://accelconf.web.cern.ch/accelconf/f07/papers/MOPPH074.pdf
S. V. Benson et al., Proceedings of FEL 2009, Liverpool, UK.
http://accelconf.web.cern.ch/accelconf/FEL2009/papers/mopc70.pdf
Y. U. Jeong et al., Proceedings of FEL 2012, Nara, Japan.
http://www.jacow.org
http://marie.lanl.gov
J. N. Corlett et al., Proceedings of IPAC 2010, Kyoto, Japan.
http://accelconf.web.cern.ch/accelconf/IPAC10/papers/wepea067.pdf
N. G. Gavrilov et al., Nucl. Inst. and Meth. A575, 54 (2007).
http://www.niowaveinc.com
J.-H. Han et. al., Proceedings of IPAC 2012, New Orleans, LA, USA.
http://accelconf.web.cern.ch/accelconf/IPAC2012/papers/tuppp061.pdf
http://www.psi.ch/swissfel
http://www.sparx-fel.it
Z. T. Zhao and D. Wang, Proceedings of FEL 2010, Malmo, Sweden.
http://accelconf.web.cern.ch/AccelConf/FEL2010/papers/moobi1.pdf
http://www.magnet.fsu.edu/usershub/scientificdivisions/emr/facilities/fel.html
http://www.rs.noda.tus.ac.jp/fel-tus/English/E-Top.html
http://www.tarla-fel.org
http://www.wifel.wisc.edu
ISBN 978-3-95450-126-7
490
Short Wavelength FELs