Author(s) Blau, J.; Cohn, K.; Colson, W.B.; Vigil, R. Title Free electron lasers in 2013 Publisher Issue Date 2013 URL http://hdl.handle.net/10945/44196 This document was downloaded on February 04, 2015 at 03:25:12 WEPSO01 Proceedings of FEL2013, New York, NY, USA FREE ELECTRON LASERS IN 2013 J. Blau#, K. Cohn, W. B. Colson and R. Vigil Physics Department, Naval Postgraduate School, Monterey CA 93943 USA Abstract Thirty-seven years after the first operation of the free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs operating in the infrared, visible, UV, and X-ray wavelength regimes are tabulated and discussed. c 2013 CC-BY-3.0 and by the respective authors Copyright ○ List of FELs in 2013 The following tables list existing (Table 1) and proposed (Tables 2, 3) relativistic free electron lasers (FELs) in 2013. The 1st column lists a location or institution, and the FEL’s name in parentheses. References are listed in Tables 4 and 5; another useful reference is http://sbfel3.ucsb.edu/www/vl_fel.html. The 2nd column of each table lists the operating wavelength , or wavelength range. The longer wavelength FELs are listed at the top and the shorter wavelength FELs at the bottom of each table. The large range of operating wavelengths, seven orders of magnitude, indicates the flexible design characteristics of the FEL mechanism. In the 3rd column, tb is the electron bunch duration (FWHM) at the beginning of the undulator, and ranges from almost CW to short sub-picosecond time scales. The expected optical pulse length in an FEL oscillator can be several times shorter or longer than the electron bunch depending on the optical cavity Q, the FEL desynchronism and gain. The optical pulse can be many times shorter in a high-gain FEL amplifier. Also, if the FEL is in an electron storage-ring, the optical pulse is typically much shorter than the electron bunch. Most FEL oscillators produce an optical spectrum that is Fourier transform limited by the optical pulse length. The electron beam kinetic energy E and peak current I are listed in the 4th and 5th columns, respectively. The next three columns list the number of undulator periods N, the undulator wavelength 0, and the rms undulator parameter K=eB0/2mc2 (cgs units), where e is the electron charge magnitude, B is the rms undulator field strength, m is the electron mass, and c is the speed of light. For an FEL klystron undulator, there are multiple undulator sections as listed in the N-column; for example 2x7. Some undulators used for harmonic generation have multiple sections with varying N, 0, and K values as shown. Some FELs operate at a range of wavelengths by varying the undulator gap as indicated in the table by a range of values for K. The FEL resonance condition, = 0(1+K2)/22, relates the fundamental wavelength to K, 0, and the electron beam energy E=(−1)mc2, where is the relativistic Lorentz factor. Some FELs achieve shorter wavelengths by using coherent harmonic generation (CHG), high-gain harmonic generation (HGHG), or echo-enabled harmonic generation (EEHG). The last column lists the accelerator types and FEL types, using the abbreviations listed after Table 3. The FEL optical power is determined by the fraction of the electron beam energy extracted and the pulse repetition frequency. For a conventional FEL oscillator in steady state, the extraction can be estimated as 1/(2N); for a high-gain FEL amplifier, the extraction at saturation can be substantially greater. In a storage ring FEL, the extraction at saturation is substantially less than this estimate and depends on ring properties. In an FEL oscillator, the optical mode that best couples to the electron beam in an undulator of length L=N0 has a Rayleigh length z0 L/121/2 and has a fundamental mode waist radius w0 (z0/)1/2. An FEL typically has more than 90% of its power in the fundamental mode. At the 2013 FEL Conference, there were three new lasings reported worldwide: an HGHG VUV/soft X-ray FEL at FERMI in Trieste (FERMI-2), an EEHG UV FEL at SINAP in Shanghai (SDUV-FEL), and a super-radiant THz FEL at ELBE in Dresden (TELBE). Progress continues on many other existing and proposed FELs, including several large X-ray FEL facilities around the world. ACKNOWLEDGMENTS The authors are grateful for support from ONR and the HEL-JTO. ____________________________________________ # [email protected] ISBN 978-3-95450-126-7 486 Short Wavelength FELs Proceedings of FEL2013, New York, NY, USA WEPSO01 LOCATION (NAME) Frascati (FEL-CATS) UCSB (mm FEL) Novosibirsk (FEL1) Dresden (TELBE) Nijmegen (FLARE) KAERI (THz FEL) Osaka (ISIR, SASE) Himeji (LEENA) UCSB (FIR FEL) Osaka (ILE/ILT) Novosibirsk (FEL2) Osaka (ISIR) Tokai (JAEA-FEL) Bruyeres (ELSA) Dresden (ELBE U100) Osaka (iFEL4) LANL (RAFEL) Kyoto (KU-FEL) Darmstadt (FEL) Osaka (iFEL1) Beijing (BFEL) Daresbury (ALICE) Dresden (ELBE U27) Berlin (FHI MIR FEL) Tokyo (MIR-FEL) Nijmegen (FELIX) Orsay (CLIO) Nijmegen (FELICE) Osaka (iFEL2) Nihon (LEBRA) Tsukuba (ETLOK-III) UCLA-BNL (VISA) JLab (IR upgrade) DELTA (FELICITA-I) Osaka (iFEL3) JLab (UV demo) Duke (OK-5) BNL (SDL FEL) Okazaki (UVSOR-II) Tsukuba (ETLOK-II) SINAP (SDUV-FEL) DELTA (U250) Duke (OK-4) (m) 430-760 340 120-240 100-3000 100-1400 100-1200 70-220 65-75 60 47 40-80 32-150 22 20 18-280 18-40 15.5 5-21.5 6-8 5.5 5-25 5-8 4-21 4-50 4-16 3-250 3-150 3-40 1.88 0.8-6.5 0.85-1.45 0.8 0.7-10 0.42-0.47 0.3-0.7 0.25-0.7 0.25-0.79 0.2-1.0 0.2-0.8 0.2-0.6 0.2-0.35 0.2 0.19-0.4 ELETTRA (EUFELE) Frascati (SPARC) DESY (sFLASH) 0.09-0.26 0.066-0.8 0.038 SPring-8 (SCSS) ELETTRA (FERMI-1) ELETTRA (FERMI-2) DESY (FLASH I) SLAC (LCLS) SPring-8 (SACLA) 0.03-0.06 0.02-0.08 0.004-0.0144 0.004 0.12 nm 0.08-0.25 nm tb(ps) 15-20 25000 50 0.15 3 20 20-30 10 25000 3 20 20-30 2.5-5 30 1-4 10 15 <1 2 10 4 ~1 1-4 1-5 2 1 10 1 10 1 90 0.5 0.35 50 5 0.35 5-20 0.5-1 6 55 2-8 100 50 E(MeV) 2.5 6 12 15-34 10-15 4.5-6.7 11 5.4 6 8 20 13-19 17 18 15-34 33 17 20-36 25-50 33.2 30 27.5 15-34 15-50 32-40 50 12-50 60 68 58-100 310 64-72 120 450-550 155 135 270-800 100-250 600-750 310 100-180 1500 1200 I(A) 5 2 8 15 50 0.5 1000 10 2 50 20 50 200 100 15 40 300 17-40 2.7 42 15-20 80 15 200 30 50 100 50 42 10-20 1-3 250 300 90 60 200 10-50 300-400 28.3 1-3 20-100 40 35 N 16 42 2x33 8 40 80 32 50 150 50 33 32 52 30 40 30 200 53 80 58 50 40 68 50 43 38 38 48 78 50 2x7 220 30 2x7 67 60 2x30 256 2x9 2x42 360 2x7 2x3 3 70 1000 150 2x19 0.15-8 80-177 40-380 450 0.5 700 1000 180 120 1 250 300 600 0.7-1.2 1250 300-600 252 0.7-1.6 1000-1400 300-700 396 0.01-0.5 370-1250 2000 984 0.07 15400 3500 3696 0.02-0.03 8300 3000-4000 6300 0(cm) 2.5 7.1 12 30 11 2.5 6 1.6 2 2 12 6 3.3 3.2 10 8 2 3.3 3.2 3.4 3 2.7 2.73 4 3.2 6.5 5 6.0 3.8 4.8 20 1.8 5.5 25 4 3.3 12 3.9 11 7.2 2.5 25 10 K(rms) 0.5-1.4 0.7 0.71 ≤5.7 0.5-3.3 1.0-1.6 1.5 0.5 0.1 0.5 1.0 1.5 0.7 0.8 0.5-2.7 1.3-1.7 0.9 0.96 1.0 1.0 0.5-0.8 0.35-0.9 0.3-0.7 0.5-1.5 0.7-1.8 1.8 ≤1.4 1.8 1.0 0.7-1.4 1-2 1.2 3.0 1.4-1.7 1.4 1.3 3.18 0.8 2.6-4.5 1-1.4 0.98 7.3-10 4.75 Type RF EA,O ERL,O RF,SU RF,O MA,O RF,S RF,O EA,O RF,O ERL,O RF,O RF,O RF,O RF,O RF,O RF,O RF,O RF,O RF,O RF,O ERL,O RF,O RF,O RF,O RF,O RF,O RF,O RF,O RF,O SR,O,K RF,S ERL,O SR,O,K RF,O ERL,O SR,O,K RF,A,S,H SR,O,K SR,O,K RF,A,H,E SR,K,H SR,O,K 10 2.8 3.1 3.3 1.5 5.5 3.5 2.73 3 1.8 4.2 0.5-1.55 1.9 2.1 0.3-1.06 1-3 0.85-1.6 0.87 2.5 1.52 SR,A,K,H RF,A,S,H RF,A RF,S RF,A,H RF,A,H RF,S RF,S RF,S ISBN 978-3-95450-126-7 Short Wavelength FELs 487 c 2013 CC-BY-3.0 and by the respective authors Copyright ○ Table 1: Existing Free Electron Lasers (2013) WEPSO01 Proceedings of FEL2013, New York, NY, USA Table 2: Proposed Free Electron Lasers (2013) PROPOSED FELs KAERI (THz-FEL) Tokyo (FIR-FEL) Colorado State University NPS-Niowave (THz) India (CUTE-FEL) Berlin (FHI FIR FEL) Novosibirsk (FEL3) Beijing (PKU-FEL) Turkey (TACIR I) (TACIR II) Tallahassee (Big Light) Daresbury (CLARA) Dalian (DCLS) (m) 400-600 300-1000 200-1000 170-550 50-100 40-500 5-30 4.7-8.3 2.7-30 10-190 2-1500 0.1-0.4 0.05-0.15 tb (ps) 20 5 5-15 1-2 1000 1-5 10 1 1-10 1-10 1-10 0.5 1 E(MeV) 6.5 10 6 3-5 10-15 20-50 40 30 40 40 50 250 300 I(A) 1 30 100 3-7 20 200 20-100 60 8-80 12-120 50 400 300 N 28 25 50 10 50 40 3x33 50 56 40 45 500 360 0(cm) 2.3-2.6 7 2.5 3.3 5 11 6 3 3 9 5.5 2.9 3.0 K(rms) 2.1-2.4 1.5-3.4 1.0 0.5-1.2 0.57 1-3 2.0 0.5-1.4 0.2-0.8 0.4-2.5 4.0 0.7-1.5 0.3-1.6 Type MA,O RF,O RF,O RF,SU RF,O RF,O ERL,O ERL,O RF,O ERL,O RF,A RF,A,H c 2013 CC-BY-3.0 and by the respective authors Copyright ○ Table 3: Proposed Short Wavelength Free Electron Lasers (2013) PROPOSED FELs JLab (JLAMP) Rome (SPARX 1) SINAP (SXFEL) DESY (FLASH II) Wisconsin (WiFEL) Glasgow (ALPHA-X) LBNL (NGLS) Rome (SPARX 2) (nm) 10-100 10-30 8.8 4-60 2.3-6.9 2-300 1-5 1-14 tb (ps) 0.1 0.2-0.01 0.26 0.01-0.5 0.1 0.001-0.005 0.5 0.2-0.01 E(GeV) 0.6 0.96-1.5 0.84 0.5-1.2 1.7 0.10-1.0 2.4 0.96-2.6 I(kA) 1 1 0.6 2.5 1 1 0.6 1-2.3 Groningen (ZFEL) Rome (SPARX 3) PSI (SwissFEL Athos) (SwissFEL Aramis) SLAC (LCLS-II SXR) (LCLS-II HXR) Pohang (PAL SXFEL) (PAL HXFEL) DESY (Europe XFEL) LANL (MaRIE) 0.8 0.6-1.6 0.7-7 0.1-0.7 1.0-6.2 0.06-1.2 1-10 0.06-1 0.05-0.1 0.03 0.1 0.2-0.01 0.002-0.015 0.002-0.015 0.01-0.1 0.01-0.1 0.06-0.18 0.045-0.09 0.1 0.03 1-2.1 1.5-2.4 2.5-3.4 2.1-5.8 2.0-4.0 7.5-13.5 2.6-3.2 4-10 17.5 12 1.5 2.3 1.5-2.7 1.5-2.7 1-4 1-4 1-3 2-4 5 3.4 N 330 715 720 768 788 200 2300 220 900 400 2600 2520 1200 3192 2746 3138 1300 4100 4700 3200 0(cm) 3.3 3.4 2.5 3.14 3.3 1.5 1.9 4.0 2.8 2.2 1.5 1.5 4 1.5 3.9 2.6 3.43 2.44 3.65 1.86 K(rms) 1.0 0.2-2.3 0.95 0.5-2 0.74-1.9 0.5 1.4 3.1 1.63 1.34 0.85 0.91 0.7-2.5 0.85 1.5-3.7 0.41-2.2 1.6-3.4 1.3-2.1 3.3 0.86 Type ERL,O,A RF,S RF,H,E RF,S,H RF,H PW,A RF,S,H RF,S RF,S,H RF,S RF,S,E RF,S RF,S,SS RF,S,SS RF,S RF,S RF,S RF,S,H,E Accelerator type: FEL type: MA - Microtron Accelerator ERL - Energy Recovery Linear Accelerator EA - Electrostatic Accelerator RF - Radio-Frequency Linear Accelerator SR - Electron Storage Ring PW- Laser Plasma Wakefield Accelerator A - FEL Amplifier K - FEL Klystron O - FEL Oscillator S - Self-Amplified Spontaneous Emission (SASE) H - Harmonic Generation (CHG, HGHG) E - Echo-Enabled Harmonic Generation (EEHG) SS - Self-Seeded Amplifier SU - Super-radiant FEL ISBN 978-3-95450-126-7 488 Short Wavelength FELs Proceedings of FEL2013, New York, NY, USA WEPSO01 DELTA (U250) DESY (FLASH, sFLASH) Dresden (FELBE) Duke (OK-4, OK-5) ELETTRA (EUFELE) ELETTRA (FERMI) Frascati (FEL-CATS) Frascati (SPARC) Himeji (LEENA) JLab (IR upgrade) JLab (UV demo) KAERI (THz FEL) Kyoto (KU-FEL) LANL (RAFEL) Nihon (LEBRA) Nijmegen (FELICE, FELIX) Nijmegen (FLARE) Novosibirsk (FEL1) Novosibirsk (FEL2) Okazaki (UVSOR- II) Orsay (CLIO) Osaka (iFEL4) Osaka (iFEL1,2,3) Osaka (ILE/ILT) Osaka (ISIR) SINAP (SDUV-FEL) SLAC (LCLS) SPring-8 (SCSS, SACLA) Tokai (JAEA-FEL) Tokyo (MIR-FEL) Tsukuba (ETLOK-II) Tsukuba (ETLOK-III) UCLA-BNL (VISA) UCSB (mm, FIR FEL) Internet Site or Reference http://www.ihep.ac.cn/english/BFEL/index.htm http://fel.fhi-berlin.mpg.de http://sdl.nsls.bnl.gov P. Guimbal et al., Nucl. Inst. and Meth. A341, 43 (1994). http://www.stfc.ac.uk/ASTeC/Alice/projects/36060.aspx M. Brunken et al., Nucl. Inst. and Meth. A429, 21 (1999). D. Nölle et al., Nucl. Inst. And Meth. A445, 128 (2000). H. Huck et al., Proceedings of FEL 2011, Shanghai, China. http://accelconf.web.cern.ch/AccelConf/FEL2011/papers/mooa5.pdf http://flash.desy.de http://www.hzdr.de/FELBE http://www.fel.duke.edu http://www.elettra.trieste.it/elettra-beamlines/fel.html http://www.elettra.trieste.it/FERMI http://www.frascati.enea.it/fis/lac/fel/fel2.htm http://www.roma1.infn.it/exp/xfel T. Inoue et al., Nucl. Inst. and Meth. A528, 402 (2004). G. R. Neil et al., Nucl. Inst. and Meth. A557, 9 (2006). S. V. Benson et al., Proceedings of FEL 2011, Shanghai, China. http://accelconf.web.cern.ch/AccelConf/FEL2011/papers/weoci1.pdf Y. U. Jeong et al., Nucl. Inst. and Meth. A575, 58 (2007). http://wonda.iae.kyoto-u.ac.jp/index-e.html D. C. Nguyen et al., Proceedings of LINAC 2000, Monterey, CA, USA. http://accelconf.web.cern.ch/AccelConf/l00/papers/TH301.pdf K. Hayakawa et al., Proceedings of FEL 2007, Novosibirsk, Russia. http://accelconf.web.cern.ch/AccelConf/f07/papers/MOPPH046.pdf http://www.ru.nl/felix http://www.ru.nl/flare N. G. Gavrilov et al., Nucl. Inst. and Meth. A575, 54 (2007). N. A. Vinokurov et al., Proceedings of FEL 2009, Liverpool, UK. http://accelconf.web.cern.ch/AccelConf/FEL2009/papers/tuod01.pdf H. Zen et al., Proceedings of FEL 2009, Liverpool, UK. http://accelconf.web.cern.ch/AccelConf/FEL2009/papers/wepc36.pdf http://clio.lcp.u-psud.fr T. Takii et al., Nucl. Inst. and Meth. A407, 21 (1998). H. Horiike et al., Proceedings of FEL 2004, Trieste, Italy. http://accelconf.web.cern.ch/AccelConf/f04/papers/THPOS17/THPOS17.pdf N. Ohigashi et al., Nucl. Inst. and Meth. A375, 469 (1996). R. Kato et al., Proceedings of FEL 2007, Novosibirsk, Russia. http://accelconf.web.cern.ch/AccelConf/f07/papers/FRAAU04.pdf Z. T. Zhao and D. Wang, Proceedings of FEL 2010, Malmo, Sweden. http://accelconf.web.cern.ch/AccelConf/FEL2010/papers/moobi1.pdf http://lcls.slac.stanford.edu http://www.riken.jp/XFEL/eng/index.html R. Hajima et al., Nucl. Inst. and Meth. A507, 115 (2003). http://www.rs.noda.tus.ac.jp/fel-tus/English/E-Top.html K.Yamada et al., Nucl. Inst. and Meth. A528, 268 (2004). N. Sei, H. Ogawa and K. Yamada, Optics Letters 34, 1843 (2009). A. Tremaine et al., Nucl. Inst. and Meth. A483, 24 (2002). http://sbfel3.ucsb.edu ISBN 978-3-95450-126-7 Short Wavelength FELs 489 c 2013 CC-BY-3.0 and by the respective authors Copyright ○ Table 4: References and Websites for Existing FELs LOCATION (NAME) Beijing (BFEL) Berlin (FHI MIR) BNL (SDL FEL) Bruyeres (ELSA) Daresbury (ALICE) Darmstadt (FEL) DELTA (FELICITA-I) WEPSO01 Proceedings of FEL2013, New York, NY, USA Table 5: References and Websites for Proposed FELs LOCATION (NAME) Beijing (PKU-FEL) Berlin (FHI FIR) Colorado State University Dalian (DCLS) Daresbury (CLARA) DESY (FLASH II) DESY (Europe XFEL) Glasgow (ALPHA-X) Groningen (ZFEL) India (CUTE-FEL) JLab (JLAMP) KAERI (THz-FEL) LANL (MaRIE) LBNL (NGLS) Novosibirsk (FEL3) NPS-Niowave (THz) Pohang (PAL XFEL) PSI (SwissFEL Athos,Aramis) Rome (SPARX 1, 2, 3) SINAP (SX-FEL) c 2013 CC-BY-3.0 and by the respective authors Copyright ○ Tallahassee (Big Light) Tokyo (FIR-FEL) Turkey (TACIR I & II) Wisconsin (WiFEL) Internet Site or Reference Z. Liu et al., Proceedings of FEL 2006, Berlin, Germany. http://accelconf.web.cern.ch/AccelConf/f06/papers/TUAAU05.pdf http://fel.fhi-berlin.mpg.de S. Milton et. al., Proceedings of FEL 2012, Nara, Japan. http://www.jacow.org T. Zhang et. al., Proceedings of IPAC2013, Shanghai, China http://accelconf.web.cern.ch/accelconf/IPAC2013/papers/weodb102.pdf J. A. Clarke et. al., Proceedings of IPAC 2012, New Orleans, LA, USA. http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/tuppp066.pdf http://flash.desy.de http://www.xfel.eu http://phys.strath.ac.uk/alpha-x/ J. P. M. Beijers et al., Proceedings of FEL 2010, Malmo, Sweden. http://accelconf.web.cern.ch/AccelConf/FEL2010/papers/mopc22.pdf S. Krishnagopal and V. Kumar, Proceedings of FEL 2007, Novosibirsk, Russia. http://accelconf.web.cern.ch/accelconf/f07/papers/MOPPH074.pdf S. V. Benson et al., Proceedings of FEL 2009, Liverpool, UK. http://accelconf.web.cern.ch/accelconf/FEL2009/papers/mopc70.pdf Y. U. Jeong et al., Proceedings of FEL 2012, Nara, Japan. http://www.jacow.org http://marie.lanl.gov J. N. Corlett et al., Proceedings of IPAC 2010, Kyoto, Japan. http://accelconf.web.cern.ch/accelconf/IPAC10/papers/wepea067.pdf N. G. Gavrilov et al., Nucl. Inst. and Meth. A575, 54 (2007). http://www.niowaveinc.com J.-H. Han et. al., Proceedings of IPAC 2012, New Orleans, LA, USA. http://accelconf.web.cern.ch/accelconf/IPAC2012/papers/tuppp061.pdf http://www.psi.ch/swissfel http://www.sparx-fel.it Z. T. Zhao and D. Wang, Proceedings of FEL 2010, Malmo, Sweden. http://accelconf.web.cern.ch/AccelConf/FEL2010/papers/moobi1.pdf http://www.magnet.fsu.edu/usershub/scientificdivisions/emr/facilities/fel.html http://www.rs.noda.tus.ac.jp/fel-tus/English/E-Top.html http://www.tarla-fel.org http://www.wifel.wisc.edu ISBN 978-3-95450-126-7 490 Short Wavelength FELs
© Copyright 2024 ExpyDoc