CALCULUS BC Name HW4 , , ) \/{ -=T_T on problems I - 4, sketch the graph ofa function that satisfies the stated conditions. / l. / has a limit at-r- 3, but it is not continuous aix= 3. 2. / is not continuous at to /(:) 3..f r: 3, but ifits value at = 0, it becomes continuous at r: ¡-: 3 is changed from /(3) = I I 3. has a removable disconrinuity at -r = c for which /( c) is undefined. )-J --++-JÍlc 4..f has a removable discontinuity at.r = c for which /(c) is Oefined. ''" On problems t5 - t, 7, Find t,nd where each of these fi.rnc continuity to prove the discontinuity at that value. 5. J\t f (xt=t:t-:-o (x=qvxr) x-l 6. hþc)= x-¡ @ x<0 !e'ir l^ lx'if .r>0 d@ On problems 8 t t, use the fu nction continuous everywhere. - i .L- -'---W -yL À It_4sin, pþ)=1 x ' Ir-2,-s, that will make the k-5:l .r<0 x>0 On problems 9-10, a function 7 -a u conditions ofthe Intermediate value Theo¡em hold fo;the give[value of À. Ifthe conditions hold, find a number c such that f (")= t Ifthe theo¡em does nÀt hord, gìve the reason. whethe¡ the theorem holds or not, sketch the curve and the lìne y : ¡. . 9. f (x)=z¡¡-rz Con{ o"r fq'5] À 'o(ø1" í4 .{-_-::l ¡, , .L r'^fl I;Él --r+{-x' -., i4 k-r - 5-_ i,Sl ¡", i1=¡0,t1 frc*J' x¿-1- \' Ð ;- L:J tl fl¡)= I C1n+ o"r L3' t (i¡-\t3 I fl¡ì' t"," ,),=u,'r' - i^ 5Å-,"; \-t-=: '"y,_r; lo. t'o ,t, L 6 ¡v : 3, 11' rn^1996 the united states postage rate fo¡ a first class letter was $0.32 for the fìrsiilce and $0.23 per ounce thereafter. Does the function meet the hypotheses of the Intemediate value Theorem? Is there a weight of rette¡ that can be mailed foi exactly answers. C_.3Â+,A3X Crr'rl- .ñr o-íl K $ 1 .00? Justify your , if, +, J3Y: t, J 12. Jesse and Kay ran a 1000-m race. One minure affer the 29 ko,/Llr , and Kay was running 1 5 km/hr. Three minutes after lhe iace beguo, f;, slowed to lTkrn/hr,*ã ruv rru¿ speeded up to i9 kmfu. Assume that each runner,s ,T""¿' ' ::::Tg3l::r,:-^ 1krj r-.; ,,îî " lr is a continuous function of time. prove thai there is a time between 1 minute unJ¡ after-the ¡ace began at which each o¡e was ruming exactry the sam. rp"eu. r, it p"r.iîr" .-r1l,tY:*at+çd is? Is it possible ro rell whe-n thar sieed o.uo.d? e*pl^i,i. -Jyì,1 .i*t", ,(rìàoì , (5ìr r/ -3 C- -,\ v-)Ò=-J(t-i\ n,,-" *r,n 1¡,rbl - ' (g,rcl q/r ,, s ' ] = -31tV+ èt.f ,"1r-rt, -li+41 -7t r , One-Sided Limits; Limits of Piecewise Functions In Exercises l-3, use the graph to determine the limit, if it exists. Ifthe limit does not exist, explain (u) lyl(,) (b) i 4) (") lt$/(') l'ïl(") oll | b)t b)À (3. r) c) c=3 if it exists. lim /(x), Ifit wherc¡(x)= does not ex {.l ^ I t¿-zx lim/{.r), where /{.r) ;:iJ-"'"'-'-rw : l-4¡*6,_2, r<2 jg/k), : wtrere /(r) t>2 J l_Ìr+4n .I3+ l, r<l r+1. Ì> x, I 1 .r< I -r, ¡> 1 x'-4 y -,) tl-l ri,n ¡*r- r'+f -+ ,/L-1+ r"l"r('), [;"o.Y ir". o whereT(x)=le, ifx=0 DV{ [x'+ 3,r'. ifx >o ¿ e.
© Copyright 2025 ExpyDoc