Nonlinear analysis and control of two-phase cell boost dc-dc converters Mr.Haimeng Wu, Prof.Volker Pickert, Dr.Damian Giaouris Newcastle University Email: [email protected] 1. Introduction 2. Objective In this research, we present a monodromy matrix based nonlinear analysis method to investigate the influence of parameters for the stability of a twophase cell boost dc-dc converter. The proposed approach applies Filippov theory to analyse the system behaviour during the switching instant. By using the knowledge gained from this analysis it is possible to design controllers that guarantee a satisfactory performance of the converter avoiding fast and slow scale bifurcations. In this method, all the comprehensive information, such as system input, load, converter parameters and coefficients of the control loop are introduced in the derivation of the Monodromy and Saltation matrices. which can be used for further stability analysis. Numerical and analytical results validate our work. L1 iL1 vc(t) D2 D1 Iref Δi iL1 iL2 C R iL2 Vi Δiin iin d1 d L2 iin Ф1 Ф2 Ф3 Ф 4 d2 S2 S1 Cs1 Cs2 S23 S34 S12 S41 clock (a) (b) Fig.1(b) Key operation waveforms when d>0.5 Fig.1(a) Diagram of interleaved boost converter 3. Nonlinear Analysis Ф1 Ф2 S12 ○ Saltation matrix is used to describe the switching instants X(t0 ) X(t0 T ) S41 Mcycle Vc (V) 239.9 S23 239.8 ○ Monodromy matrix represents the state transition of perturbation over a whole clock cycle. The locus of its eigenvalues is used to predict the stability of system. 239.9 239.7 239.8 0.0599 0.0599 0.0599 0.06 0.06 0.06 0.06 0.06 0.06 V (V) c 239.7 11 Ф3 S34 1 ~ 4 State transition matrix 239.6 9 12 8 10 7 S12 ~ S41 time (s) 10 iL1, iL2 (A) Ф4 Saltation matrix 0.0599 0.0599 0.0599 0.06 0.06 time (s) 0.06 0.06 0.06 8 7 Vin=110V (a) X(t0 T ) Mcycle X(t0 ) iL2 (A) 0.06 8 9 10 11 12 13 4.Simulation iL1 (A) (b) Table1. Simulation parameters 242 M cycle 1 S12 2 S23 3 S34 4 S41 V (V) 240 parameters Input voltage (V) Output voltage (V) Power rating (W) Inductance (uH) Output capacitance (uF) c 238 ①A1 x B1 E ②A 2 x B 2 E x ③A3 x B3 E ④A x B E 4 4 S1 and S 2 on S1 on and S 2 off S1 off and S 2 on S1 and S 2 off 236 0.0597 M cycle X X X 0.0598 0.0599 0.0599 time (s) 0.0599 0.06 0.06 240 Vc (V) 239 16 parameters Frequency (kHz) Slope coefficient Kp Ki value 100 -0.5 5 500 238 X X X 242 14 iL1, iL2 (A) 12 14 12 0.0598 0.0599 0.0599 time (s) (c) Monodromy matrix 0.0599 0.06 0.06 Vin=80V iL2 (A) Po=2kW L=200uH Vin=80~120V 241 16 0.5 12 10 Eigenvalues2 10 8 8 240 iL1 (A) Eigenvalues1 Vc (V) (d) Imag 10 8 0.0597 1 237 16 14 System differential equation X X X 241 value 80~120 240 2000 5~200 20 Vin=96V 0 96V Eigenvalues3&4: Conjugate complex eigenvaules 120V 239 Fig.3 (a)~(d) waveforms of inductor current and capacitor voltage and corresponding phase portrait -0.5 238 237 80 85 90 95 100 Vin (V) 105 110 115 -1 120 -1 -0.5 0 Real 0.5 1 (b) (a) Fig.4 (a)(b) Bifurcation diagram of interleaved boost converter and corresponding locus of eigenvalues ○The eigenvalues of Monodromy matrix jump out of unit cycle when Vin equals 96V, which indicates the system will lose stability in that condition. There is a good agreement with bifurcation diagram. 5. Conclusions / Future Work 1/s vip(t) vslope(t) KI Vref Vref Kp vco(t) viL(t) Clock Supervising S2 R Q S Q ¯ PWM S1 kvc kiL iL controller Vi D vc Fig.6 Interleaved boost converter with supervision control methodology ○ Nonlinear phenomenon is demonstrated and analysed in the two-cell boost converters. The influence of some parameters for system stability has been illustrated and described effectively by the proposed Monodromy matrix ○ Develop the supervising control methodology to address these nonlinear behaviors and to improve the system performance 260 240 Vc (V) 1 200 80 unstable 0.5 L (H) 100 Vin (V) 120 0 (a) 260 1.5 1 0.5 80 -4 90 100 110 x 10 Vin=80V Po=2kW L=5~200uH Vin=110V Po=2kW L=5~200uH 250 L=155uH Vc (V) 230 220 L=55uH 230 220 210 210 Vin=80V 0.5 1 1.5 L (H) The authors would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for supporting the Vehicle Electrical Systems Integration (VESI) project (EP/I038543/1) 0 240 Vc(V) 200 0 130 (b) 260 250 120 Vin(V) L (H) 240 Acknowledgement -4 x 10 unstable 220 140 ○ Start to prepare the experiments to verify the effectiveness of the proposed methods 1.5 Stable Stable (c) 2 Vin=110V 2.5 -4 x 10 200 0 0.5 1 1.5 2 L (H) (d) Fig.5 (a)(b) System stability at different values of input voltage and inductance (c)(d) Output voltage vs. inductance at Vin=80V and Vin=110V 2.5 -4 x 10
© Copyright 2024 ExpyDoc