Cognitive radio experimentation with VESNA platform Miha Smolnikar Jozef Stefan Institute ICTP School on Applications of Open Spectrum and White Spaces Technologies Outline 1. 2. 3. 4. VESNA platform LOG-a-TEC testbed CREW project Demos 2 VESNA platform 3 Concept • A HW/SW platform for wireless sensor networks • • • • • • • • • High processing power and low energy consumption Sensor node & concentrator/gateway capability Battery, solar or external power supply Multiple communication technologies Extensive portfolio of sensors and actuators JTAG debug interface OS ports: Contiki, NuttX, (RIOT) Libraries ports: Arduino (Maple, Spark, …), panStamp, OpenWSN, Wiselib, SensLAB … Arduino compatibility • Development, prototyping and testbed platform • Design files & source code • https://github.com/sensorlab/ 4 Supported … … peripherals … sensors • RS-232 • Temperature • RS-422/485 • Air pressure • • • • • • • • CAN USB (slave) SPI I2C 1wire SDIO 4…20 mA 1-10 V • Pressure (absolute, differential) … • • … Current (AC/DC, Hall, resistor) CO2 • VOC • NO, NO2, CO, O3, SO2 • PM, Pollen RFID, NFC • Camera • Ultrasound • … • IR (PIR, on-off, distance, temperature) • Capacitive/inductive touch/distance • Color • Reflectance • Luminance • Acceleration • Gyroskop • GPS/position • Microwave radar • Lightning • Microphone (intensity, • spectrum) • Hall Radio spectrum (ISM, UHF) Weather station Voltage • • Humidity • Gas / Particles Power quality (parametrization) • • • … communication interfaces • • IEEE 802.15.4 • ZigBee • 6LoWPAN • Wireless M-BUS • Bluetooth 4.0 • Wi-Fi • GSM/GPRS • Ethernet Load cell (weigh) • Rainfall rate • Wind speed & direction • Sun radiation (UV, VIS) 5 Modularity Sensor Node Expansion (SNE) application specific HW, firmware debugging over JTAG • VESNA=SNC+SNR+SNE • SNC = 7 cm x 5 cm • SNR = 3 cm x 5 cm • SNE = 7 (10) cm x 5 cm Battery / solar Sensor connector Power supply and RS-232 SDIO • Existing modules USB Sensor Node Core (SNC) data acquisition and processing, versatile power supply Sensor Node Radio (SNR) communication within the sensor network Radio connector Antenna • SNC-STM32 • SNR-TRX, SNR-MOD • SNE-PROTO, SNE-WG, SNE-WLG, SNE-ISMTV, SNE-ESHTER, SNE-SENS, SNE-AQA, SNE-AMIO, SNE-SH, SNE-BEECO, SNE-PMC 6 SNC-STM32 • Microcontroller • ST STM32F103xx • ST STM32L1zzxx • MRAM • Instrumentational amplifier • External / battery / solar power supply + charger • USB, RS232/UART, SPI, I2C, 12-bit DAC, 12-bit ADC • SD card slot 7 SNR-TRX (transceiver) • 315/433 MHz, 868/915 MHz • TI CC1101 • Atmel AT86RF212 (IEEE 802.15.4) • 2.4 GHz • TI CC2500 • Atmel AT86RF231 (IEEE 802.15.4) • nRF8001 (BLE) • Range extenders • TI CC1190 (sub-GHz) / TI CC2590 (2.4 GHz) 8 SNR-MOD (OEM module) • Digi XBee (ZigBee, proprietary) • Atmel ATZB-900 (ZigBee) • Atmel ATZB-24 (ZigBee) • Telit • ME50-868, (ME50-169) (WMBUS) • LExx, NEexx (pin compatible, proprietary) • ZExx-2.4 (pin compatible, ZigBee) 9 SNE-WG (wired gateway) • Lantronix Xport / Digi ConnectMe (Ethernet) • Power over Ethernet • CAN • RS-485/422 10 SNE-WLG (wireless gateway) • GainSpan GS1011 (WiFi) • BlueRadio BR-LE4.0 (Bluetooth 4.0 ) • Telit GL865 (GSM/GPRS) • uBlox MAX-6G (GPS) • Power supply 11 SNE-ISMTV (spectrum sensing) 1/2 • SNE-CREWTV • One PCB with several placement options 1. VHF/UHF (TVWS) • NXP TDA18219HN silicon tuner • Analog devices AD8307 demodulating logarithmic amplifier • RF input range: 420 – 870 MHz • Bandwidth: 1.7 MHz, 8 MHz • Linearity: ±1 dB • Dynamic range: 60 dB 12 SNE-ISMTV (spectrum sensing) 2/2 2. Sub-GHz ISM (315, 433, 783, 868, 915 MHz) • TI CC1101 • Receiver sensitivity: -112 dBm @ 868 Mhz • Programmable output power: 12 dBm 3. 2.4 GHz ISM • TI CC2500 • Receiver sensitivity: -104 dBm • Programmable output power: 1 dBm • IEEE 802.15.4 transceiver (ISM 868 MHz) • Atmel AT86RF212 13 SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT • Embedded Sensing Hardware for TVWS Experimental Radio (ESHTER) • http://www.tablix.org/~avian/blog/articles/talks/next_generation_tv_band_r eceiver_for_vesna.pdf • Motivation for redesign • Experiment with advanced spectrum sensing methods (require access to signal magnitude and phase) • Higher frequency resolution for energy detection (wireless microphones occupy ~200 kHz of spectrum, 1700 kHz narrowest TDA18219HN channel setting) • Practical problems (form-factor, EMI noise cancellation) 14 SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT • Going beyond energy detection • • • • Covariance Absolute Value detector Eigenvalue detector Information-theoretic detection Compressive sensing • Block diagram 15 LOG-a-TEC testbed 16 Projects • Photovoltaic power plant monitoring (Telekom Slovenije) • http://sensors.ijs.si/ • Air quality (FP7 CITI-SENSE) • http://www.citi-sense.eu/ • Sensor support for unexpected & temporary events (FP7 ABSOLUTE) • http://www.absolute-project.eu/ • Robust network infrastructure for smart distribution grids (FP7 SUNSEED) • TBD • Spectrum sensing and cognitive radio (FP7 CREW) • http://www.crew-project.eu/ 17 PV power plant monitoring • Systematically investigate the pros and cons of different PV technologies (amorphous & crystalline silicon), effect of panels deployment (S, E, W orientation) and impact of environment (weather) conditions • Sensorics on 5 sets of PV panels • • • • • Light intensity in different spectrum (UV/VIS/IR) Solar pannel U/I characteristic Performance of inverter MPP tracker Temperature of a PN junction Environment conditions (context) • 7 VESNA sensor nodes, 1 VESNA gateway, ZigBee network @ 868 MHz 18 Air quality • Static indoor unit (Wi-Fi) • T, rH, PM • Gas: CO2 (CO2-IRC-A1), VOC, NH3 (B1) • Static outdoor unit (Wi-Fi) • • • • Weather: T, rH, wind speed & direction, rainfall rate Solar radiation: VIS, IR Lightning Gas: NO, NO2, SO2, O3, CO (ISB-B4) • Portable unit (Wi-Fi / BLE) • VESNA SNE-AQA • T, rH, accelerometer • Gas: NO2, O3, CO (AFE-A4) 19 Spectrum sensing testbed location • Deployed in the city of Logatec, Slovenia • Based on wireless sensor network • Sensor nodes are (mostly) installed on public light poles • Infrastructure rewiring ensures 24/7 power supply • Used to support the experimentally-driven research 20 Spectrum sensing VESNA nodes SNE-ISMTV 2.4 GHz TRX CC2500 868 MHz TRX CC1101 TV UHF RX 868 MHz TRX TDA18219HN AT86RF212 SPI, GPIO SNC v1.0 SNR-MOD v1.0 custom code ATZB-900-B0 Contiki + custom code SPI / UART or 21 Spectrum sensing VESNA nodes deployment 22 Spectrum sensing infrastructure • 50+ sensor nodes are deployed in 3 clusters • City center (23) • Industrial zone (27) • JSI campus • Management network ZigBee @ 868 MHz, Ethernet gateway green – UHF, blue - ISM 868 MHz, red - ISM 2400 MHz, yellow - reserve locations 23 CREW project 24 FP7 project CREW • Cognitive Radio Experimentation World • http://www.crew-project.eu/ • Establish an open federated test platform • Research on advanced spectrum sensing, cognitive radio and cognitive networking • Horizontal and vertical spectrum sharing in licensed and unlicensed bands • LOG-a-TEC • Outdoor • ISM/TVWS • Spectrum sensing and cognitive radio 25 • 3 clusters • Sensor nodes (23+27+1) City of Logatec LOG-a-TEC spectrum sensing infrastructure • SNC-STM32 • SNR-MOD (ZigBee mesh @ 868 MHz) • SNE-ISMTV • SNC-STM32 • SNR-MOD (ZigBee mesh @ 868 MHz) • SNE-WG JSI Campus / Ljubljana • Gateways 26 LOG-a-TEC spectrum sensing infrastructure • Web access portal • User administration and scheduling • Python library • SSL connection and protocol proxy • GRAS-RaPlaT 27 LOG-a-TEC testbed access portal • Testbed access portal available at www.log-a-tec.eu allows to • Show node status • Choose particular cluster • Perform an experiment • Described as a sequence of GET and POST requests • Remote (over-the-air) reprograming 28 LOG-a-TEC testbed access portal Sensor node clusters 29 LOG-a-TEC testbed access portal UHF, 868 MHz, 2.4 GHz spectrum sensing demos 30 LOG-a-TEC testbed access portal Direct interaction with nodes using GET and POST requests 31 LOG-a-TEC testbed access portal Execution of predefined experiments (sequence of GET and POST requests / Python script) 32 LOG-a-TEC testbed access portal GRASS-RaPlaT radio coverage simulations 33 VESNA spectrum sensing experimentation • VESNA spectrum sensing software • A batch of pre-prepared spectrum sensing profiles is available • Once profile is selected VESNA sensor node is accordingly configured • Experiment is run according to spectrum sensing specifications • Results are saved locally on the SD card and sent in batches to the server Sensing profile • Frequency band • Channel bandwidth • Averaging • … 34 GRASS-RaPlaT experimentation • Integrated Radio Planning Tool (RaPlaT) based on open-source GIS system GRASS • • • • Experiment planning Tx radio coverage calculation Visualization Supporting REM estimation • Incorporating • • • • Digital Elevation Model Clutter file Six path loss prediction models Ray-tracing approach for rural and urban environments http://www-e6.ijs.si/en/software/grass-raplat 35 Experimentation in LOG-a-TEC 1. Remote experiments (RE) • • • • Define your experiments Ask for an account to LOG-a-TEC Use the Python scripts https://github.com/sensorlab/vesna-alh-tools to develop your own experiment Use the web portal to run pre-defined experiments and simulations https://crn.log-a-tec.eu/ 2. On site experiments (OE) • If the experiments requires mobile equipment or a particular type of equipment to be brought on site 3. A mix of remote and on-site experiments (ME) • A combination of the above 36 Demos 37 Demos 1. UHF coverage simulation 2. Context awareness in TVWS 38 Acknowledgements • Thanks to colleagues in SensorLab who greatly contributed to this work. • The work reported in this presentation has been partially funded by the European Community through the FP7 project CREW (FP7–258301). 40 Thanks for attention! [email protected] http://sensorlab.ijs.si/
© Copyright 2024 ExpyDoc