Download Presentation - Wireless

Cognitive radio experimentation
with VESNA platform
Miha Smolnikar
Jozef Stefan Institute
ICTP School on Applications of Open Spectrum and White Spaces Technologies
Outline
1.
2.
3.
4.
VESNA platform
LOG-a-TEC testbed
CREW project
Demos
2
VESNA platform
3
Concept
• A HW/SW platform for wireless sensor networks
•
•
•
•
•
•
•
•
•
High processing power and low energy consumption
Sensor node & concentrator/gateway capability
Battery, solar or external power supply
Multiple communication technologies
Extensive portfolio of sensors and actuators
JTAG debug interface
OS ports: Contiki, NuttX, (RIOT)
Libraries ports: Arduino (Maple, Spark, …), panStamp, OpenWSN, Wiselib, SensLAB …
Arduino compatibility
• Development, prototyping and testbed platform
• Design files & source code
• https://github.com/sensorlab/
4
Supported …
… peripherals … sensors
•
RS-232
•
Temperature
•
RS-422/485
•
Air pressure
•
•
•
•
•
•
•
•
CAN
USB (slave)
SPI
I2C
1wire
SDIO
4…20 mA
1-10 V
•
Pressure (absolute,
differential)
…
•
•
…
Current (AC/DC, Hall,
resistor)
CO2
•
VOC
•
NO, NO2, CO, O3, SO2
•
PM, Pollen
RFID, NFC
•
Camera
•
Ultrasound
•
…
•
IR (PIR, on-off,
distance, temperature)
•
Capacitive/inductive
touch/distance
•
Color
•
Reflectance
•
Luminance
•
Acceleration
•
Gyroskop
•
GPS/position
•
Microwave radar
•
Lightning
•
Microphone (intensity, •
spectrum)
•
Hall
Radio spectrum (ISM,
UHF)
Weather station
Voltage
•
•
Humidity
•
Gas / Particles
Power quality
(parametrization)
•
•
•
… communication interfaces
•
•
IEEE 802.15.4
•
ZigBee
•
6LoWPAN
•
Wireless M-BUS
•
Bluetooth 4.0
•
Wi-Fi
•
GSM/GPRS
•
Ethernet
Load cell (weigh)
•
Rainfall rate
•
Wind speed &
direction
•
Sun radiation (UV, VIS)
5
Modularity
Sensor Node Expansion (SNE)
application specific HW, firmware
debugging over JTAG
• VESNA=SNC+SNR+SNE
• SNC = 7 cm x 5 cm
• SNR = 3 cm x 5 cm
• SNE = 7 (10) cm x 5 cm
Battery / solar
Sensor connector
Power supply and RS-232
SDIO
• Existing modules
USB
Sensor Node Core (SNC)
data acquisition and processing,
versatile power supply
Sensor Node Radio (SNR)
communication within
the sensor network
Radio connector
Antenna
• SNC-STM32
• SNR-TRX, SNR-MOD
• SNE-PROTO, SNE-WG, SNE-WLG, SNE-ISMTV, SNE-ESHTER, SNE-SENS,
SNE-AQA, SNE-AMIO, SNE-SH, SNE-BEECO, SNE-PMC
6
SNC-STM32
• Microcontroller
• ST STM32F103xx
• ST STM32L1zzxx
• MRAM
• Instrumentational amplifier
• External / battery / solar power supply + charger
• USB, RS232/UART, SPI, I2C, 12-bit DAC, 12-bit ADC
• SD card slot
7
SNR-TRX (transceiver)
• 315/433 MHz, 868/915 MHz
• TI CC1101
• Atmel AT86RF212 (IEEE 802.15.4)
• 2.4 GHz
• TI CC2500
• Atmel AT86RF231 (IEEE 802.15.4)
• nRF8001 (BLE)
• Range extenders
• TI CC1190 (sub-GHz) / TI CC2590 (2.4 GHz)
8
SNR-MOD (OEM module)
• Digi XBee (ZigBee, proprietary)
• Atmel ATZB-900 (ZigBee)
• Atmel ATZB-24 (ZigBee)
• Telit
• ME50-868, (ME50-169) (WMBUS)
• LExx, NEexx (pin compatible, proprietary)
• ZExx-2.4 (pin compatible, ZigBee)
9
SNE-WG (wired gateway)
• Lantronix Xport / Digi ConnectMe (Ethernet)
• Power over Ethernet
• CAN
• RS-485/422
10
SNE-WLG (wireless gateway)
• GainSpan GS1011 (WiFi)
• BlueRadio BR-LE4.0 (Bluetooth 4.0 )
• Telit GL865 (GSM/GPRS)
• uBlox MAX-6G (GPS)
• Power supply
11
SNE-ISMTV (spectrum sensing) 1/2
• SNE-CREWTV
• One PCB with several placement options
1. VHF/UHF (TVWS)
• NXP TDA18219HN silicon tuner
• Analog devices AD8307 demodulating
logarithmic amplifier
• RF input range: 420 – 870 MHz
• Bandwidth: 1.7 MHz, 8 MHz
• Linearity: ±1 dB
• Dynamic range: 60 dB
12
SNE-ISMTV (spectrum sensing) 2/2
2. Sub-GHz ISM (315, 433, 783, 868, 915 MHz)
• TI CC1101
• Receiver sensitivity: -112 dBm @ 868 Mhz
• Programmable output power: 12 dBm
3. 2.4 GHz ISM
• TI CC2500
• Receiver sensitivity: -104 dBm
• Programmable output power: 1 dBm
• IEEE 802.15.4 transceiver (ISM 868 MHz)
• Atmel AT86RF212
13
SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT
• Embedded Sensing Hardware for TVWS Experimental Radio (ESHTER)
• http://www.tablix.org/~avian/blog/articles/talks/next_generation_tv_band_r
eceiver_for_vesna.pdf
• Motivation for redesign
• Experiment with advanced spectrum sensing methods (require access to
signal magnitude and phase)
• Higher frequency resolution for energy detection (wireless microphones
occupy ~200 kHz of spectrum, 1700 kHz narrowest TDA18219HN channel
setting)
• Practical problems (form-factor, EMI noise cancellation)
14
SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT
• Going beyond energy detection
•
•
•
•
Covariance Absolute Value detector
Eigenvalue detector
Information-theoretic detection
Compressive sensing
• Block diagram
15
LOG-a-TEC testbed
16
Projects
• Photovoltaic power plant monitoring (Telekom Slovenije)
• http://sensors.ijs.si/
• Air quality (FP7 CITI-SENSE)
• http://www.citi-sense.eu/
• Sensor support for unexpected & temporary events (FP7 ABSOLUTE)
• http://www.absolute-project.eu/
• Robust network infrastructure for smart distribution grids (FP7 SUNSEED)
• TBD
• Spectrum sensing and cognitive radio (FP7 CREW)
• http://www.crew-project.eu/
17
PV power plant monitoring
• Systematically investigate the pros and cons
of different PV technologies (amorphous &
crystalline silicon), effect of panels
deployment (S, E, W orientation) and impact
of environment (weather) conditions
• Sensorics on 5 sets of PV panels
•
•
•
•
•
Light intensity in different spectrum (UV/VIS/IR)
Solar pannel U/I characteristic
Performance of inverter MPP tracker
Temperature of a PN junction
Environment conditions (context)
• 7 VESNA sensor nodes, 1 VESNA gateway,
ZigBee network @ 868 MHz
18
Air quality
• Static indoor unit (Wi-Fi)
• T, rH, PM
• Gas: CO2 (CO2-IRC-A1), VOC, NH3 (B1)
• Static outdoor unit (Wi-Fi)
•
•
•
•
Weather: T, rH, wind speed & direction, rainfall rate
Solar radiation: VIS, IR
Lightning
Gas: NO, NO2, SO2, O3, CO (ISB-B4)
• Portable unit (Wi-Fi / BLE)
• VESNA SNE-AQA
• T, rH, accelerometer
• Gas: NO2, O3, CO (AFE-A4)
19
Spectrum sensing testbed location
• Deployed in the city of Logatec, Slovenia
• Based on wireless sensor network
• Sensor nodes are (mostly) installed on public light poles
• Infrastructure rewiring ensures 24/7 power supply
• Used to support the experimentally-driven research
20
Spectrum sensing VESNA nodes
SNE-ISMTV
2.4 GHz TRX
CC2500
868 MHz TRX
CC1101
TV UHF RX
868 MHz TRX
TDA18219HN
AT86RF212
SPI, GPIO
SNC v1.0
SNR-MOD v1.0
custom code
ATZB-900-B0
Contiki + custom code
SPI / UART
or
21
Spectrum sensing VESNA nodes deployment
22
Spectrum sensing infrastructure
• 50+ sensor nodes are deployed in 3 clusters
• City center (23)
• Industrial zone (27)
• JSI campus
• Management network ZigBee @ 868 MHz, Ethernet gateway
green – UHF, blue - ISM 868 MHz, red - ISM 2400 MHz, yellow - reserve locations
23
CREW project
24
FP7 project CREW
• Cognitive Radio Experimentation World
• http://www.crew-project.eu/
• Establish an open federated test platform
• Research on advanced spectrum sensing,
cognitive radio and cognitive networking
• Horizontal and vertical spectrum sharing in
licensed and unlicensed bands
• LOG-a-TEC
• Outdoor
• ISM/TVWS
• Spectrum sensing and
cognitive radio
25
• 3 clusters
• Sensor nodes (23+27+1)
City of Logatec
LOG-a-TEC spectrum
sensing infrastructure
• SNC-STM32
• SNR-MOD (ZigBee mesh @ 868 MHz)
• SNE-ISMTV
• SNC-STM32
• SNR-MOD (ZigBee mesh @ 868 MHz)
• SNE-WG
JSI Campus / Ljubljana
• Gateways
26
LOG-a-TEC spectrum sensing infrastructure
• Web access portal
• User administration and
scheduling
• Python library
• SSL connection and
protocol proxy
• GRAS-RaPlaT
27
LOG-a-TEC testbed access portal
• Testbed access portal available
at www.log-a-tec.eu allows to
• Show node status
• Choose particular cluster
• Perform an experiment
• Described as a sequence of GET and POST requests
• Remote (over-the-air) reprograming
28
LOG-a-TEC testbed access portal
Sensor node clusters
29
LOG-a-TEC testbed access portal
UHF, 868 MHz, 2.4 GHz spectrum sensing demos
30
LOG-a-TEC testbed access portal
Direct interaction with nodes using GET and POST requests
31
LOG-a-TEC testbed access portal
Execution of predefined experiments (sequence of GET and POST requests / Python script)
32
LOG-a-TEC testbed access portal
GRASS-RaPlaT radio coverage simulations
33
VESNA spectrum sensing experimentation
• VESNA spectrum sensing software
• A batch of pre-prepared spectrum
sensing profiles is available
• Once profile is selected VESNA
sensor node is accordingly
configured
• Experiment is run according to
spectrum sensing specifications
• Results are saved locally on the SD
card and sent in batches to the
server
Sensing profile
• Frequency band
• Channel bandwidth
• Averaging
• …
34
GRASS-RaPlaT experimentation
• Integrated Radio Planning Tool (RaPlaT)
based on open-source GIS system GRASS
•
•
•
•
Experiment planning
Tx radio coverage calculation
Visualization
Supporting REM estimation
• Incorporating
•
•
•
•
Digital Elevation Model
Clutter file
Six path loss prediction models
Ray-tracing approach for rural
and urban environments
http://www-e6.ijs.si/en/software/grass-raplat
35
Experimentation in LOG-a-TEC
1. Remote experiments (RE)
•
•
•
•
Define your experiments
Ask for an account to LOG-a-TEC
Use the Python scripts https://github.com/sensorlab/vesna-alh-tools to develop
your own experiment
Use the web portal to run pre-defined experiments and simulations
https://crn.log-a-tec.eu/
2. On site experiments (OE)
•
If the experiments requires mobile equipment or a particular type of equipment to
be brought on site
3. A mix of remote and on-site experiments (ME)
•
A combination of the above
36
Demos
37
Demos
1. UHF coverage simulation
2. Context awareness in TVWS
38
Acknowledgements
• Thanks to colleagues in SensorLab who greatly
contributed to this work.
• The work reported in this presentation has been
partially funded by the European Community through
the FP7 project CREW (FP7–258301).
40
Thanks for attention!
[email protected]
http://sensorlab.ijs.si/