Measuring currents below 4K Cryogenic electronics

Electrical characterisation of nanoscale samples & biochemical
interfaces: methods and electronic instrumentation
Measuring currents below 4K
Cryogenic electronics
Giorgio Ferrari
Dipartimento di elettronica e informazione Politecnico di Milano
Milano, November 27 2014
Motivation 1: enviroment temperature
Example: Astronomical applications
Moon minimum temperature: 40 K
Space background: 3K
• Cryogenics electronics
to avoid heating units
• mid- and far-infrared
detectors require
temperature below 5K
Conceptual image of JAXA/SPICA.
2
Cryogenic electronics - G. Ferrari
1
Motivation 2: improving the system
•
•
•
•
1m
less thermal fluctuations
low drift
Ultra High Vacuum
dI/dV prop. to the sample density
of states: energy resolution ≈ kBT
10mK
3nm
3
Cryogenic electronics - G. Ferrari
Y.J.Song et al., Rev. Sci. Instr., 81, 121101 (2010)
Example: STM / SPM at 10mK
graphene, profile ±20pm: (T=13mK)
Motivation 3: quantum devices
Ex.: spectroscopy of a single As atom in FinFET
T= 1.6K (kBT= 138 µeV)
E. Prati lesson
G. P. Lansbergen et al.,Nature Physics 4, 656 - 661 (2008)
4
Cryogenic electronics - G. Ferrari
2
Experimental set-up to study quantum devices
RF
VOUT
CP≈1nF
≈ 2 meter
12T Cryomagnet
270mK
I RMS
T=300K
T=1.5K
B
2πeN C P B
=
3
Bandwidth =
T=0.3K
3
2
GBWP
10 ⋅ 2πR f C P
CP reduces performances
E. Prati, CNR laboratory
Sample
Cryogenic electronics - G. Ferrari
5
Experimental Set-up
RF
VOUT
CP≈1nF
12T Cryomagnet
270mK
T=300K
T=1.5K
B
T=0.3K
Sample
6
RF
Bandwidth Resolution
10GΩ
12Hz
1GΩ
130Hz
15fARMS
186fARMS
100MΩ 718Hz
1.06pARMS
10MΩ
6.34kHz
14.7pARMS
1MΩ
100kHz
750pARMS
E. Prati, CNR laboratory
Cryogenic electronics - G. Ferrari
3
Experimental Set-up
RF
CP≈1nF
VOUT
eN
12T Cryomagnet
270mK
T=300K
Si ,eq =
4kT
+ eN2 ω 2C P2
RF
T=1.5K
Both drastically lowered
B
T=0.3K
Sample
7
how does electronics
work at few Kelvin?
Cryogenic electronics - G. Ferrari
http://fog.ccsf.cc.ca.us/~wkaufmyn/
Semiconductor freeze-out
8
ionization energy for
phosphorus: 45meV
T≈ 70K
log n
n ≈ ND
Cryogenic electronics - G. Ferrari
4
Freeze-out: consequences
silicon bipolar transistors
silicon JFET transistors
almost all commercial OpAmp
…
cannot be operated below ≈ 40-70K !!!
G
What about MOSFET?
S
D
SiO2
heavily doped
region
moderately
doped region
n+
n+
p-well
Cryogenic electronics - G. Ferrari
9
increasing doping level
The impurity band model
≈1019
10
Akturk et al., Silicon qubit
For N ≈ 1019 cm-3 → interactionECof impurity atoms
workshop, 2009
band of energies
Ev
Overlapping in degenerate
Overlapping inwill
degenerate
semiconductor
make it
semiconductor
make it
behave
more like awill
conductor
behave
more like a metal
than a semiconductor
than a semiconductor
Cryogenic
electronics
Ferrari
E. Prati
et al.,
Nature- G.Nanotechnology
7, 443–447 (2012)
5
http://www.extremetemperatureelectronics.com
Degenerate semiconductor
Cryogenic electronics - G. Ferrari
11
Electronics below the freeze-out temp.
electric field creates a
conductive channel!
G
S
SiO2
no freeze-out:
conductive
freeze-out:
insulator
D
n+
n+
p-well
Silicon (standard) MOSFET operates below 40K!
Many GaAs devices operate at cryogenic temperature:
degenerate at 1016 cm-3
Limitation: small (and expensive) scale integration
12
Cryogenic electronics - G. Ferrari
6
MOSFET operating at 4K
Standard analog CMOS Technology 3.3V, 0.35µm
PMOS 50µm / 0.7µm
IDRAIN
0.0
0.0
-2.0m
-4.0m
-6.0m
IDRAIN
-2.0m
300K
4.2K
-4.0m
-6.0m
-8.0m
-8.0m
-10.0m
-10.0m
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
T = 4K
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
VGATE
VDRAIN
very similar to the room temperature behavior!
13
Cryogenic electronics - G. Ferrari
Effects of low temperature
• reduction in electron - phonon scattering
→ increase in carrier mobility
• freeze-out of the dopants in the substrate
→ increase of the threshold voltage
14
Engelectronics
et al. Silicon
Qubit
Cryogenic
- G. Ferrari
Workshop ‘09
7
MOSFET operating at 4K: problems
Ghibaudo, Balestra, “Low Temperature
characterization of Silicon CMOS Devices”, 1995
Y. Creten et al., IEEE J. Solid-State circuits,
p. 2019 (2009)
Cryogenic electronics - G. Ferrari
15
MOSFET operating at 4K: problems
kink effect, hyteresys, slow charging of traps…
G
G
S
D
S
SiO2
n+
SiO2
n+
p-well
impact ionization → accumulation
of holes → VT decreases
16
D
n+
n+
p-well
slow charging of shallow traps at the SiSIO2 interface → free charge decreases
Cryogenic electronics - G. Ferrari
8
Problems are tech and size dependent
PMOS=50umx0.7um
…and no models from foundry!
SOLUTION:
Preliminary extraction of the model
parameters for the target technology
Cryogenic electronics - G. Ferrari
17
Design rule 1
MOS parameters strongly depend on the size
Experimental characterization of few MOS sizes
series or parallel combinations of these basic transistors
W/2L
W/L
W/L
W/L
2W/L
W/L
less conductive MOS
18
more conductive MOS
Cryogenic electronics - G. Ferrari
9
pay attention to mismatch:
deterioration of mismatch by a factor of 2-3 at low
temperature compared with room temperature.
19
K. Das et al. EEE Symposium on Circuits and Systems, 2010
Design rule 2
Cryogenic electronics - G. Ferrari
Design rule 3: avoid subthreshold
Eng et al. Silicon Qubit Workshop ‘09
VT mismatch of 1mV:
20
Cryogenic electronics - G. Ferrari
10
Design rule 4
pay attention to the dynamic range:
•
•
•
•
VT,n from 0.45V to 0.7V
VT,p from -0.7V to -1.4V
Power supply: 3.3V
no subthreshold
stack up few transistors!
no deep-submicron technologies
(reduced supply voltages)
and
kink effect
limit the VDS!
Cryogenic electronics - G. Ferrari
21
Noise
γ
2
Thermal noise: en = 4kT g
m
T
, gm
→ noise
(0.1nV/sqrt(Hz))
Flicker noise: sometime increases, sometime decreases...
Noise (A/sqrt(Hz))
Id=100uA
100p
10p
T=4K
T=7K
T=15K
T=20K
T=30K
T=110K
T=135K
T=150K
T=300K
dominant noise up
tens of MHz
T
1k
22
pmos 50/0.7
Frequency (Hz)
10k
Cryogenic electronics - G. Ferrari
11
Cryogenic transimpedence amplifier
Standard structure:
Noise equivalent to
1.7GΩ @ 300K
250fF
IIN
22.5 MΩ
VOUT
Capacitor:
Resistor:
23
Cryogenic electronics - G. Ferrari
Cryogenic transimpedence amplifier
1.2mm
IIN
22.5 MΩ
700µm
250fF
VOUT
CMOS Technology
3.3V 0.35µm
nMos: 50µm/1.4µm
pMos: 50µm/0.7µm
VDD
200µm
0.7µm
IP
200µm
0.7µm
650µm
0.7µm
VOUT
V-
2500µm
1.4µm
V+
I1
I2
VSS
24
Cryogenic electronics - G. Ferrari
12
1.5
1.0
Gain, linearity and
bandwidth match the
simulations
T=4K
0.5
0.0
-0.5
-1.0
-1.5
-75n -50n -25n
R=22.54MOhm
0
25n 50n 75n
Input current [A]
Transimpedence (VOUT/IIN)
Output voltage [V]
Measurements at 4 Kelvin
F-3dB=32kHz
10M
T=4K
1M
100k
Cryogenic electronics - G. Ferrari
25
10k
10 100 1k 10k 100k 1M
Frequency (Hz)
Input Noise (A/sqrt(Hz))
Measurements at 4 Kelvin
Quantum dots with a
single ion implanted
1p
T=4K
100f
Measured
Theoretical
S
10f
D
1f
10
100
1k
10k
Frequency (Hz)
100k
Single charge state sensing
• 2.33pARMS resolution
• 32kHz Bandwidth
≈ 30 times better of RT
26
Mazzeo et al APL 2012
Cryogenic electronics - G. Ferrari
13
Temperature dependence
4K
300K
Iin
-
Vout
+
Output Voltage (V)
Rf
0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.4
300K
280K
260K
225K
200K
165K
125K
85K
60K
46K
20K
15K
11K
8K
4K
T
-50.00n -25.00n
0.00
25.00n
50.00n
Input current (A)
• Opamp works in a wide temperature tange
• The gain depends on temperature (RF)
Cryogenic electronics - G. Ferrari
27
Current-mode output
Rf
8.6MΩ
+
Rout Iout
Vout 123kΩ
Output Current (A)
Iin
10.0µ
4K
300K
5.0µ
4K
6K
8K
11K
33K
60K
100K
150K
220K
300K
0.0
-5.0µ
-10.0µ
-100.0n
-50.0n
0.0
50.0n
100.0n
Input current (A)
• Simple solution
• Current gain = 70
• Better temperature performances
28
Cryogenic electronics - G. Ferrari
14
Summary
• Cryogenic CMOS circuits are feasible
•
•
transimpedance amplifiers (BW=30kHz, noise= 2.3pARMS)
ADC (Ockan et al., RSI 2010 and 2012)
• Anomalous behavior of the MOSFETs
•
•
29
preliminary characterization of the transistors (and R)
design techniques to limit effects
Cryogenic electronics - G. Ferrari
15