Kingdom of Saudi Arabia Ministry of Higher Education Salman Bin Abdul Aziz University College of Science & Humanity Studies Mathematics Department Course Symbol: Math4350 Time: 1:00 hours Course Name: Complex analysis Date: 25 / 2/ 1436 Total Marks: 15 Marks Second Exam (1st Semester) 1434/1435 Question (1) (5 Marks) Choose the correct answer:1- Let = , + (, ) Then () is differentiable and ( ) = __________ a. ఏ ( + ) b. ିఏ ( + ) c. ఏ (ఏ + ) d. ିఏ (ఏ + ) 2- The principal value of (−) is __________ a. − b. c. 2 d. గ ଶ గ ସ 3- Let ௭ = −2, then z = _________ where (n = 0, ±1, ±2, ±3, … … … . . ) ଵ a. ln 2 + (2 + 2) b. ln 2 + (2 + ) c. ln 2 + (2 + 1) d. ln 2 + 2 4- + = ___________ ଷ a. − c. b. ଵ d. − ௭ ଵ ௭ 5- log(1 − ) = ___________ గ a. ln 2 − b. ସ ଵ గ ଶ ସ ଵ ଶ గ ln 2 − ଶ గ c. ln 2 − d. ln 2 − ଶ Question(2) (4 Marks) Suppose that: = , + (, , = + and = + Prove that: lim௭→௭బ = if and only if limሺ௫,௬ሻ→(௫బ,௬బ) , = Question(3) and limሺ௫,௬ሻ→(௫బ,௬బ) , = (5 Marks) Show that the function = sin cosh + 2 cos sinh + ଶ − ଶ + 4 is a harmonic and determine the corresponding analytic function = + .
© Copyright 2025 ExpyDoc