15.2 3, 8, 9, 13, 15, 17, 18, 21, 25, 27, 29 3–14 Calculate the iterated integral. R4R2 3. 1 0 (6x2 y 2x) dy dx R2 y=2 (6x2 y 2x) dy = [3x2 y 2 2xy]y=0 = 12x2 4x R04 4 (12x2 4x) dx = [4x3 2x2 ]1 = (256 32) (4 2) = 1 222 R 3 R 5 ln y 8. 1 1 dy dx xy y=5 R 5 ln y 1 2 1 2 dy = ln y = ln 5 1 xy 2x 2x y=1 R3 1 2 3 ln 5 dx = 12 ln x ln2 5 1 = 21 ln 3 ln2 5 1 2x R4R2 x y 9. 1 1 + dy dx y x y=2 R2 x y 3 y2 = x ln 2 + + dy = x ln y + 1 y x 2x y=1 2x 4 2 R4 x 3 ln x 3 dx = ln 2 + = 15 x ln 2 + ln 2 + 3 ln 2 = 2 1 2x 2 2 1 21 ln 2 R2 2 R 13. R0 0 r sin2 d dr r sin2 d = 12 r R02 1 2 r dr = 14 r2 0 = 0 2 15–22 Calculate the double integral. RR 15. R sin (x y) dA, R = f(x; y) : 0 x =2; 0 y =2g R =2 R =2 The iterated integral is 0 sin (x y) dx dy. 0 R =2 =2 sin (x y) dx = [ cos (x y)]x= = cos ( =2 y) + x=0 0 cos ( y) = cos y sin y R =2 (cos y sin y) dy = [sin y + cos y]0 =2 = 1 1 = 0. Obvi0 ous. RR xy 2 17. R 2 dA, R = f(x; y) : 0 x 1; 3 y 3g x +1 R 1 R 3 xy 2 The iterated integral is 0 3 2 dy dx. x +1 1 y=3 R3 xy 2 x y3 18x dy = = 2 3 2 2 x +1 x + 1 3 y= 3 x + 1 R 1 18x 1 dx = [9 ln (x2 + 1)]0 = 9 ln 2 0 x2 + 1 RR 1 + x2 18. R dA, R = f(x; y) : 0 x 1; 0 1 + y2 R 1 R 1 1 + x2 The iterated integral is 0 0 dx dy. 1 + y2 x=1 R 1 1 + x2 4=3 x + x3 =3 = dx = 0 2 2 1+y 1+y 1 + y2 x=0 4 4 R1 1 dy = [arctan y]10 = =3 0 2 3 1+y 3 RR xy 21. R ye dA, R = [0; 2] [0; 3] R3R2 The iterated integral is 0 0 ye xy dx dy. R2 x=2 ye xy dx = [ e xy ]x=0 = 1 e 2y R03 3 (1 e 2y ) dy = y + 21 e 2y 0 = 3 + 12 e 6 0 y 1 2 = 1g 5 2 + 21 e 6 25. Find the volume of the solid that lies under the plane 4x+6y 2z+ 15 = 0 and above the rectangle R = f(x; y) : 1 x 2; 1 y 1g The height of the plane above R 2 the R 1 point (x; y) is z = 2x+3y+15=2, so the iterated integral is 1 1 (2x + 3y + 15=2) dy dx. R1 y=1 (2x + 3y + 15=2) dy = [2xy + (3=2) y 2 + (15=2) y]y= 1 = (2x + 3=2 + 15=2) 1 ( 2x + 3=2 15=2) = 4x + 15 R2 2 (4x + 15) dx = [2x2 + 15x] 1 = (8 + 30) (2 15) = 51 1 27. Find the volume of the solid lying under the elliptic paraboloid x2 =4 + y 2 =9 + z = 1 and above the rectangle R = [ 1; 1] [ 2; 2] The height of the surface above the point (x; y) is z = 1 x2 =4 R R 1 2 y 2 =9, so the iterated integral is 1 2 (1 x2 =4 y 2 =9) dy dx. Note that z is always positive for (x; y) in that region because 1=4 + 4=9 < 1. R2 y=2 (1 x2 =4 y 2 =9) dy = [y x2 y=4 y 3 =27]y= 2 = (2 x2 =2 8=27) 2 ( 2 + x2 =2 + 8=27) = 92=27 x2 R1 1 (92=27 x2 ) dx = [92x=27 x3 =3] 1 = (83=27) ( 83=27) = 1 166=27 29. Find the volume of the solid enclosed by the surface z = x sec2 y 2 and the planes x = 1, y = 0, y = =2, and z = 0, x = 0, x = 2, y = 0, and y = =4. That’s under the surface and above the rectangle [0; 2] [0; =4]. R 2 R =4 So the iterated integral is 0 0 x sec2 y dy dx. R =4 R2 =4 x sec2 y dy = [x tan y]y= = x and 0 x dx = 2. y=0 0 15.3 1, 5, 7, 13, 17, 21 1–6 Evaluate the iterated integral. R 4 R py 1. 0 0 xy 2 dx dy p R py 2 1 2 2 x= y x y = 12 y 3 xy dx = 2 x=0 R04 1 3 4 y dy = 18 y 4 0 = 32. 0 2 R 1 R s2 5. 0 0 cos s3 dt ds R s2 t=s2 cos s3 dt = [t cos s3 ]t=0 = s2 cos s2 0 R1 2 1 s cos s3 ds = 31 sin s3 0 = 13 sin 1. 0 7–10 Evaluate the double integral. RR 7. D y 2 dA, D = f(x; y) : 1 y 1, y R1 Ry 2 The iterated integral is 1 y 2 y dx dy. Ry y 2 dx = (2y + 2) y 2 = 2y 3 + 2y 2 R 1y 2 3 1 (2y + 2y 2 ) dy = 21 y 4 + 32 y 3 1 = 4=3. 1 2 x yg 13–14 Express D as a region of type I and also as a region of type II. Then evaluate the double integral in two ways. RR 13. D x dA, D is enclosed by the lines y = x, y = 0, x = 1 R1Rx R1 As type I, the iterated integral is 0 0 x dy dx = 0 x2 dx = 1=3. R1R1 As type II, the iterated integral is 0 y x dx dy. R1 x=1 x dx = 21 x2 x=y = 12 (1 y 2 ) y R1 1 1 (1 y 2 ) dy = 21 (y y 3 =3) 0 = 1=3. 0 2 17–22 Evaluate the double integral. RR 17. D x cos y dA, D is bounded by y = 0, y = x2 , x = 1 R 1 R x2 As type I, the iterated integral is 0 0 x cos y dy dx. 3 R x2 R01 0 RR 2 x cos y dy = [x sin y]xy=0 = x sin x2 1 1 x sin x2 dx = cos x2 0 = 21 (1 cos 1) 2 21. D (2x y) dA, D is bounded by the circle with center the origin and radius 2 R 2 R p 4 x2 As type I, the iterated integral is 2 p4 x2 (2x y) dy dx. p p R p 4 x2 4 x2 1 2 y= p p (2x y) dy = 2xy y = 4x 4 x2 2 4 x2 4 x2 y= i2 h p R2 4 2 3=2 2 (4 x ) = 0. Of course! 4x 4 x dx = 3 2 2 4
© Copyright 2024 ExpyDoc