MTH-140 Extra Review for Test 2 Find an equation of the tangent line at x = a. 1) y = x 3 - 9x + 2; a = 3 2) Find an equation for the tangent to the curve y = 10x at the point (1, 5). x2 + 1 3) The curves y = ax2 + b and y = 2x2 + cx have a common tangent line at the point (-1, 0). Find a, b, and c. 4) Find all points (x, y) on the graph of y = x with tangent lines perpendicular to the line y = 5x - 5. (x - 5) Find the second derivative. 5) y = 3x3 - 7x2 + 3ex Suppose u and v are differentiable functions of x. Use the given values of the functions and their derivatives to find the value of the indicated derivative. 6) u(1) = 3, u (1) = -7, v(1) = 7, v (1) = -3. d v at x = 1 dx u 7) u(2) = 10, u (2) = 4, v(2) = -2, v (2) = -4. d (2u - 4v) at x = 2 dx Find y . 8) y = x + 9) y = 1 x x- 1 x x2 + 8x + 3 x 10) y = (x + 3)(x + 1) (x - 3)(x - 1) 11) y = 3et 2et + 1 12) y = 6x2 e-x 13) y= t5 tan t - t 14) y = (csc x + cot x)(csc x - cot x) 1 15) y = sin x 8x + 8x sin x 16) Does the graph of the function y = tan x - x have any horizontal tangents in the interval 0 x 2 ? If so, where? 17) Does the graph of the function y = 12x + 6 sin x have any horizontal tangents in the interval 0 x 2 ? If so, where? Suppose that the functions f and g and their derivatives with respect to x have the following values at the given values of x. Find the derivative with respect to x of the given combination at the given value of x. x f(x) g(x) f (x) g (x) 18) 3 1 4 6 7 -4 4 -3 3 5 g(x), x = 3 x f(x) g(x) f (x) g (x) 19) 3 1 16 6 7 -6 4 3 3 5 f2 (x) · g(x), x = 3 Find the derivative of the function. cos x 6 20) h(x) = 1 + sin x Find dy/dt. 21) y = cos 4 ( t - 17) 22) y = ecos(t/5) 4 Find the derivative of y with respect to x, t, or , as appropriate. 1+ x 23) y = ln x5 24) y = ln(cos(ln )) Find the derivative of the function. 5/2 25) y = log 9 (3x2 - 2x) | Use logarithmic differentiation to find the derivative of y with respect to the independent variable. 26) y = (x + 10)x 27) y = (x + 2) sin x 2 Find the derivative of y with respect to x. 8x 28) y = -cot-1 3 29) y = -sin-1 (3x 2 - 4) 30) y = tan-1 5x 31) y = tan-1 (ln 4x) 4x + 15 32) y = -csc-1 3 3 Answer Key Testname: MTH-140 EXTRA REVIEW TEST 2 1) 2) 3) 4) y = 18x - 52 y=5 a = 1, b = -1, c = 2 (0, 0), (10, 2) 5) 18x - 14 + 3ex 40 6) 9 7) 24 8) 2x + 2 x3 9) y = 3x2 + 8x - 3 2x3/2 10) y = 11) -8x2 + 24 (x - 3)2 (x - 1)2 3et (2et + 1)2 12) 6xe-x(2 - x) ds 1 = t5 sec2 t + 5t4 tan t 13) dt 2 t 14) y = 0 dy x cos x - sin x 8 sin x - 8x cos x = + 15) dx 8x2 sin 2 x 16) Yes, at x = 0, x = , x = 2 17) No 7 18) 4 19) 199 20) -6 cos5 x (1 + sin x)6 21) -4 cos3 ( t - 17) sin( t - 17) 4 t 4 cos(t/5) e 22) - sin 5 5 23) -10 - 9 x 2x(1 + x ) 24) 25) tan(ln ) 5(3x - 1) ln 9(3x2 - 2x) 26) (x + 10)x ln(x + 10) + x x + 10 27) (x + 2) sin x cos x ln (x + 2) + sin x x+2 4 Answer Key Testname: MTH-140 EXTRA REVIEW TEST 2 28) 29) 30) 31) 32) 24 64x2 + 9 -6x 1 - (3x2 - 4)2 5 2(1 + 5x) 5x 1 x(1 + (ln 4x)2 ) 12 (4x + 15) (4x + 15)2 - 9 5
© Copyright 2025 ExpyDoc