Meta-population analysis: applications in microbial ecology 58.3% 87.5% 66% Challenges for in situ studies of soil microbial communities •Structure-function relationships high molecular diversityrelationship to functional diversity • 104 - 106 different species per gram of soil •Dormant groups represented as spores, small cells •Unknown timescale for metatranscriptomics •Need to target proteins and particularly enzymes in soil matrix involved in biodegradation •Develop sensitive meta-omic approaches Questions: 1. Metagenomic verses metagenic? 2. How deep to sequence? 3. Which pipelines to use? 4. Do we enlist bioinformaticians? 5. What level of replication is appropriate: 3, 5, 10, 20? 6. Do we need specialist databases for specific functional analyses? Chitin degradation: chitinases, domain multiplicity and shuffling • F18 proteins consist of discrete domains connected by linkers allowing them to rearrange, function, and evolve independently (Gilkes, et al. 1991; Warren 1996; Henrissat and Davies 2000). Two or more catalytic domains can be present in the same protein and can be from different F18 classes and subgroups. (Kawase, et al. 2006; Suzuki, et al. 1999) Properties of family 18 and 19 chitinases Multiplicity of genes Synergy of proteins Family 18 Family 19 Catalysis model Substrate assisted General acid-base Mechanism Retention Inversion mechanism mechanism Position of anomeric oxygen at C1 Equatorial (b) Axial (a) Exochitinase or Endochitinase Exo- and Endo- Endo- Inhibitor (s) Allosamidin Amidines, amidrazones and nojiritetrazoles Chitinase multiplicity • Family 18 chitinases are common in Actinobacteria, Bacillales, the Clostridiales classes of Firmicutes, the Burkholderiales class of the Betaproteobacteria and in all classes of Gammaproteobacteria (Karlsson and Stenlid 2009). – Highest number (10) - Streptomyces cœlicolor A3 (2) (Kawase, et al. 2006) • Altermonas sp. Strain O-7 has four specialised chitinases – When combined at an optimal ratio chitinolytic activity was much greater than the combined total individual chitinase activity demonstrating synergy (Orikoshi, et al. 2005) Shot-gun sequencing a soil metagenome • Soil metagenome: MiSeq 15 M reads 7 Gb data and annotated using GenDB. • Genome has coverage of 29.6 Mb,10,839 putative genes annotated plus 8,777 needing further attention. • Preliminary Pfam searches yielded sequences or part sequences with the Pfam domains 51 enzymes The metagenomic library was used to create a translated trypsin digested database for metaproteomics Plasmid clone library and phenotypic screening • • • • Hit rate ~10-4 chitinase activity Some novelty Labour intensive Captured gene Metagenomic expression screening chitin amended sandy soil MUF-diNAG activity assays for fosmids from test soil microcosms amended with 1% αchitin (D 7) D7 fosmids G9 fosmids 402 10123 10093 10892 9425 11267 8474 440 376 202117 9943 12033 10270 9539 7696 692 445 10885 9595 12316 9378 9860 7714 445 416 8990 9951 10873 9505 10201 8257 448 371 9903 8810 11325 9838 10052 7674 401 444 9060 12213 11220 9462 8498 8834 436 445 9864 9533 15108 9434 11877 10352 493 383 11285 9260 14345 11040 8392 10229 406 417 9840 9454 195324 10257 10717 10176 451 382 9347 9346 194261 12645 10053 10527 406 401 110796 20084 400 9154 9717 382 382 437 12282 200645 385 10798 9629 452 472 Metaproteomics Soil metaproteome vigorous vortexing in 50ml of cell lysis buffer and freshly made DTT. centrifugation, aggressive total extract with methanol and TCA, soil pellet rextracted x3 Three-phase soil metaexoproteome extraction comprised a gentle enzyme extraction with a buffer and metal chelator, dialysis to remove salt, and two-stage concentration by ultrafiltration Gel slices LC-ESI-MS/MS In house Triple quadrapole Quantiva + Orbitrap fusion Alex Jones 2D-LC Velos LTQ-Orbitrap analysis Nathan VerBerkmoes Berg Diagnostics Metaproteomics Soil metaproteome vigorous vortexing in 50ml of cell lysis buffer and freshly made DTT. centrifugation, aggressive total extract with methanol and TCA, soil pellet rextracted x3 Three-phase soil metaexoproteome extraction comprised a gentle enzyme extraction with a buffer and metal chelator, dialysis to remove salt, and two-stage concentration by ultrafiltration Gel slices LC-ESI-MS/MS In house pre-Alex era! 2D-LC Velos LTQ-Orbitrap analysis Nathan VerBerkmoes Berg Diagnostics Protein extraction from soil In summary, the three-phase soil exoproteome extraction comprises a gentle enzyme extraction with a buffer and metal chelator, dialysis to remove salt, and two-stage concentration by ultrafiltration Johnson-Rollings et al ISME J 2014 Proteins and peptides from mass spectrophotometric analysis Cuban soil Proteins ID >1 peptide 61 Proteins ID = 1 peptide Total peptides ID Unassigned peptides 169 1502 1682 47% 53% Total peptides Extracts tryptically digested and submitted to LC-ESI-MS/MS gel based; solution based approach LC-ESI-MSE (quantitative label-free nanoLC-MSE based approach) 3184 Superkingdoms by % of significant identified peptides Bacteria Eukaryota 4% Note: This includes only protein hits with >1 unique peptides 96% Note: Same as the previous pie chart but split up by phylum Cluster of Orthologous Groups (COG) categories for chitin amended Cuban soil metaexoproteome Unknown Function, 15% Carbohydrate transport and metabolism, 13% Coenzyme transport and metabolism, 3% General Function, 8% Inorganic ion transport and metabolism, 16% Amino acid transport and metabolism, Signal transduction, 18% Other, 9% Energy production and conversion, 2% Secondary metabolites biosynthesis transport and catabolism, 2% Amino acid transport and metabolism, 21% Amino acid transport and metabolism, Carbohydrate transport and metabolism, 2% http://img.jgi.doe.gov/ Examples of previous work on secretomes or exoproteomes • Several pathogenic bacteria (e.g. Erwinia chrysanthemi –25 different proteins including cellulases, proteases, flagellin and intracellular proteins (Gohar et al., 2005) and Bascillus cereus – 46 proteins including degradative enzymes and toxins such as proteases, phospholipases, haemolysins and enterotoxins(Kazemi-Pour et al., 2004) • Non-pathogenic bacteria (e.g. Ruegeria pomeroyi – 60 different proteins - many ABC and TRAP related transporters ChristieOleza and Armengaud, 2010) • Cellulolytic thermophile Thermobifida fusca –grown in cellulose and/or lignin. iTRAQ (high-throughput isobaric tag) labelled for relative and absolute quantification. 55 proteins including cellulases, proteases, peroxidases and transporter proteins (Adav et al., 2010). Actinosynnema mirumDSM 43827 Prasinophyceae Anthoza Chlorophyta Cnidaria teria Stappia IAM 12 aggregata 614 3 ora 83 isp 43 a ob SM or erm ra D nosp 183 h T po o 43 bis rmom SM D 5 e GB Th rvata p. H u s c s tipe es 84 s id li o r A 431 cte Actinobacteria Actinobacteria Eukaryota bac Mamiellales teo Micromonas sp. RCC299 pro och Beta Actiniaria les s Spir ettsia riale es ta Chorda s aete lde Salinispora tropica CNB-440 ii Rick kho pteryg Bur o na d al Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111 Actinomycetales Actino A lt e ro m formes Gammaproteobacteria Oceanospirillales la Nematostel vectensis a sp . CC GE 100 3 nt Ps sp. ychro CN mo P T na s Burk hold 3 eri s Hahella chejuensis KCTC 2396 sp O ce an os pir illu m m on sp as .M sp . M ED9 2 ED 12 1 in o s ale ad on om ud se ar donti haeta Tetrao Spiroc etes gdinae ocha smara Spir 11293 s DS M etale ocha Spir aeta e och Spir ragdina es sma 11293 d al ona 297 DS M ED h om .M a on M Can Pela didatus gib u b a c te r HTC ique C 10 62 Sulfit obacte sp . E E-36 r a s Xa eke ona Rein om nth -1 oxa is 11 s eud Ps onen a utid suw sp m P do le s eu Ps 2440 lla na O1 re KT mo PA eu do sa st s eu no u Pa nic Ps gi u o r j ap ae io P ibr 7 s llv 0 lu H 1 C e eda hi 00 U op 350 em yi Ha ucre d Split based on superkingdom, phylum, class, order, and organism Ruegeria pomeroyi DSS-3 B Bac id tero Bac s ete idia tero Sph ob ing id ero act ba ingo S ph s ale c a b a TC C Par dae A cter r me aginiba 18603 les teria il M Muc dis DS palu ter ibac 8603 1 ilagin Muc is DSM d palu ! "#$%&'"( ) #*+, - "#$%&'"( ) #*+, - "#$%&'"( ) #*+, . /#%$"0%1( ) #*+, 1/++%. "(. '&2. (3 45 (6789: ( ; , #"&<', =1'1(<"11, +>'00%'(12- 1=?(<"11, +>'00 4"0'+'1=, &"($&, ='#"(A; ! B66C( DE%&. , - '1=, &"(- '1=, &"(3 45 (67877( DE%&. , . , +, 1=, &"(#2&>"$"(3 45 (67@87( ! "#$%&, '<%$%1( ! "#$%&, '<'"( ! "#$%&, '<"0%1( ) 0'1*=%1(1=?(F G! H( I "&"- "#$%&, '<%1(. %&<"%() DAA(67@86( 4=E'+J , - "#$%&'"( 4=E'+J , - "#$%&'"0%1( 5 2#'0"J '+'- "#$%&(="02<'1(3 45 (@8KC7( I &, $%, - "#$%&'"( ) 0=E"=&, $%, - "#$%&'"( L E'M, - '"0%1( ) J &, - "#$%&'2. (&"<', - "#$%&(N86( ) J &, - "#$%&'2. ($2. %O"#'%+1(1$&?(AH8( ) J &, - "#$%&'2. (>'*1(46( ria acte ) 2&"+*. , +"1(. "+J "+, P/<"+1(4Q8HBR) @( ! &2#%00"(. %0'$%+1'1(- >?(@(1$&?(@K5 ( F , %S%"(=E, $, $&, =E'#"(3 TUB67( 5 %1, &E'M, - '2. (#'#%&'(- ', >"&(- '1%&&20"%(V 4 5 %1, &E'M, - '2. (0, *(5 ) TT7C7CRR( Agrobacterium tumefaciens str. C58 5 %1, &E'M, - '2. (1=?(! ; A@( 5 %$E/0, #%00"(1'0>%1$&'1(! U9( L E'M, - '2. (%$0'(AT; (69( L E'M, - '2. (%$0'(GL HK( 4'+, &E'M, - '2. (O&%<''(; GL 976( 4'+, &E'M, - '2. (. %<'#"%(V 45 6@R( 4'+, &E'M, - '2. (. %0'0, *(@C9@( L E, <, - "#$%&"0%1( U"- &%+M'"("0%P"+<&''(3 TUB@@( I 1%2<, >'- &', (1=?(W XCK9( L , 1%, - "#$%&(1=?(5 X3 @R7( L , 1%, >"&'21(1=?(9@: ( L 2%J %&'"(=, . %&, /'(3 44B7( Roseovarius sp. 217 4$"=='"("J J &%J "$"(Q) 5 (@9K@6( Agrobacterium vitis S4 Rhodobacterales 420Y$, - "#$%&(1=?(XXB7K( L '#Z%[ 1'"0%1( A"+<'<"$21(I %0"J '- "#$%&(2- '\ 2%(F DAA@CK9 ! %$"=&, $%, - "#$%&'"( ! 2&ZE, 0<%&'"0%1( ! 2&ZE, 0<%&'"(1=?(AAGX@CC7( G". . "=&, $%, - "#$%&'"( ) 0$%&, . , +"<"0%1( I 1/#E&, . , +"1(1=?(A; I D7( Roseobacter sp. MED193 ] #%"+, 1='&'00"0%1( F "E%00"(#E%^2%+1'1(NADA(97RK( 5 "&'+, . , +"1(1=?(5 X3 @9@( Aurantimonas manganoxydans SI85-9A1 Bacteria Pseudovibrio sp. JE062 ; %=$2+''- "#$%&(#"%1"&'%+1'1(_] #%"+, 1='&'002 I "1$%2&%00"0%1( F "%. , =E'021(<2#&%/'(7HCCCF I ( I 1%2<, . , +"<"0%1( A%00>'- &', (^"=, +'#21(a %<"@C: ( I 1%2<, . , +"1("%&2J '+, 1"(I ) ] @( I 1%2<, . , +"1(=2*<"(ND966C( b"+$E, . , +"<"0%1( Bru cell bv. a melite 1 str . 16 nsis M Labrenzia alexandrii DFL-11 Proteobacteria I 1%2<, P"+$E, . , +"1(12c , +%+1'1(@@B@( ; d) ( L %'+%Z%"(1=?(5 X3 9R: ( 4='&, #E"%$%1( 4='&, #E"%$%1( 4='&, #E"%$"0%1( 4='&, #E"%$"(1. "&"J <'+"%(3 45 (@@9R7( X2Z"&/, $"( AE, &<"$"( ) #*+, =$%&/J ''( D%$&", <, +*O, &. %1( D%$&", <, +(+'J &, >'&'<'1( A+'<"&'"( Sinorhizobium meliloti 1021 Hoeflea phototrophica DFL-43 ) +$E, M, "( ) #*+'"&'"( ; %. "$, 1$%00"(>%#$%+1'1( AE0, &, =E/$"( I &"1'+, =E/#%"%( 5 ". '%00"0%1( 5 '#&, . , +"1(1=?(L AA9RR( Sinorhizobium medicae WSM419 Me so bis rhiz er ob ru ium lae W cice SM ri 12 biov 71 ar Alphaproteobacteria Sinorhizobium fredii NGR234 Mesorhizobium loti MAFF303099 Rhizobiales Rhizobium etli GR56 Mesorhizobium sp. BNC1 Rhizobium etli CFN 42 Methylocella silvestris BL2 Some proteins from Cuban soil metaexoproteome Organism Protein general L-amino acid ABC transporter, substrate-binding Rhizobium etli GR56 protein hypothetical protein Roseovarius sp. 217 ROS217_05884 general L-amino acid ABC Agrobacterium radiobacter K84 transporter predicted phosphate ABC transporter, substrate-binding Sinorhizobium fredii NGR234 protein Agrobacterium vitis S4 Thermomonospora curvata DSM 43183 Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111 Thermobispora bispora DSM 43833 hypothetical protein Avi_9075 Unknown Superoxide dismutase class III aminotransferase aminotransferase class-III aminotransferase class-III COG Description ABC-type amino acid transport/signal Amino acid transport and transduction systems, periplasmic metabolism component/domain Amino acid transport and metabolism Amino acid transport and metabolism Inorganic ion transport and metabolism Carbohydrate transport and metabolism Amino acid transport and metabolism Coenzyme transport and metabolism Coenzyme transport and metabolism Inorganic ion transport and metabolism ABC-type sugar transport system, periplasmic component 4-aminobutyrate aminotransferase and related aminotransferases Adenosylmethionine-8-amino-7oxononanoate aminotransferase Adenosylmethionine-8-amino-7oxononanoate aminotransferase Nocardiopsis dassonvillei Energy production and subsp. dassonvillei DSM 43111 dihydrolipoamide dehydrogenase conversion Actinosynnema mirum DSM General function 43827 amidohydrolase prediction Pyruvate/2-oxoglutarate dehydrogenase complex, dihydrolipoamide dehydrogenase (E3) component, and related enzymes Metal-dependent amidase/aminoacylase/carboxypeptidase Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111 Glycosyl hydrolase Family 18 (GH18) chitinase II Carbohydrate transport and metabolism Visual representation of the distribution of primary COG assignments of proteins retrieved from α- and β-chitin amended soil. *denotes periplasmic component for abbreviation purposes Chitinases detected • Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111 glycoside hydrolase family 18 (GH18) chitinase II; cellulose-binding family II; Fibronectin type III domain protein Also detected • Microbulbifer hydrolyticus ChiC GH18 class II endochitinase with chitin/cellulose binding domain • Kitasatospora setae putative chitinase precursor class II GH18 chitinase A visual summary of the assigned bacterial community structure, recovered metaexoproteome community, and GH18 chi gene taxonomic matches for the combined α- and β-chitin amended soil Metaproteomics Soil metaproteome vigorous vortexing in 50ml of cell lysis buffer and freshly made DTT. Centrifugation, aggressive total extract with methanol and TCA, soil pellet reextracted x 3 Three-phase soil metaexoproteome extraction comprised a gentle enzyme extraction with a buffer and metal chelator, dialysis to remove salt, and two-stage concentration by ultrafiltration Gel slices LC-ESI-MS/MS In house 2D-LC Velos LTQ-Orbitrap analysis Nathan VerBerkmoes New England Labs Proteins in soil Three-phase soil metaexoproteome extraction comprised a gentle enzyme extraction with a buffer and metal chelator, dialysis to remove salt, and two-stage concentration by ultrafiltration Soil metaproteome vigorous vortexing in 50ml of cell lysis buffer and freshly made DTT. Centrifugation, aggressive total extract with methanol and TCA, soil pellet rextracted x 3 soil metaexoproteome Gram positive Gram negative Metaproteome combined with metaexoproteome of a soil Metaproteome metaexoproteome Sample TS a TP TS a TP TS a TP TS a TP TS a TP TS a TP TS a TP TS a TP TS b XP TS b TP TS b TP TS b TP TS b TP TS b TP TS b TP TS b TP Total metaproteome chitinase hits Run Protein ID 1/2 Chitinasea 1/2 Chitinaseb 1 Chitinasec 1 Chitobiased 1 Chitinasee 1/2* Chitinasef 1 Chitinaseg 1 Chitinaseh ½ Chitosanasei 2* Chitinasej 2* Chitinasek 2 Chitinasel 2* Chitinasem 2 Chitinasen 2 Chitinaseo 2 Chitinasep Phylum Actinobacteria Actinobacteria Actinobacteria Proteobacteria Proteobacteria Actinobacteria Firmicutes Uncultured Bacterium Firmicutes Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Class Actinobacteria Actinobacteria Actinobacteria Betaproteobacteria Betaproteobacteria Actinobacteria Clostridia Family Frankineae Frankineae Pseudonocardiaceae Burkholderiaceae Burkholderiaceae Streptomycetaceae Synthrophomonadaceae Genus Acidothermus Acidothermus Amycolatopsis Burkholderia Burkholderia Streptomyces Syntrophomonas Bacilli Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Listeriaceae Streptomycetaceae Streptomycetaceae Streptomycetaceae Streptomycetaceae Streptomycetaceae Streptomycetaceae Streptomycetaceae Listeria Streptomyces Streptomyces Streptomyces Streptomyces Streptomyces Streptomyces Streptomyces Species cellulolyticus cellulolyticus mediterannei pseudomallei pseudomallei coelicolor A3(2) wolfeiq grayi avermitilis avermitilis bingchenggensis griseus sp. SPB74 sviceuss thermoviolaceus Community changes due to baiting with chitin 16S rRNA gene sequencing 16S rRNA library versus the metaproteome 200 1200 Exo B Whole A Whole B Rhodanobacter 16S instances / genus 1000 180 Nocardia 160 Burkholderia 140 Kitasatospora 120 Streptomyces Rhodoplanes 800 100 80 Pseudomonas 60 Bradyrhizobium 600 40 20 Rhodopseudomonas 0 400 0 20 40 60 80 100 120 140 Afipia Massilia 200 Burkholderia Yersinia Salmonella Shigella Escherichia 0 0 500 1000 1500 2000 2500 Protein instances / genus 3000 3500 Conclusions •Protein extraction from soil now realistic approach for studying microbial function •Community analysis overemphasis on biomass rather than activity •Initial metaexoproteome studies promising insight into key biodegraders and transport proteins •Some ‘rare’ actinobacteria are highly active in soil A metagenomic approach to drug discovery Metagenome/Amplicon sequencing Allows the study of diversity of soils. Could be used for a method of prospecting the bioactive potential of various soils Functional metagenomics The extraction of total community DNA and cloning it into a vector to capture genes of interest Will allow capture of biosynthetic gene clusters Antarctica: believed to be a potential biodiversity hotspot (Yergeau et al. 2007) unique soil chemistry, when compared to the surrounding area (Chong et al. in press). Situated on the Antarctic Peninsula 1000 km from South America, isolated by the Antarctic Circumpolar current and prevailing wind direction from the continental interior Metagenomic library 454 sequencing reads Antarctic metagenome: gene ontology by Function MG-RAST 1 Gb Pearce et al 2013 Antarctic metagenome genus prevalence Actinobacteria Actinobacteria Actinomycetales unclassified_Actinomycetales unclassified_Actinomycetales 13132 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Shewanella 12650 Bacteroidetes Bacteroidetes Bacteroidales Prevotellaceae Prevotella Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae unclassified_Enterobacteriaceae 551 Proteobacteria unclassified_Bacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia unclassified_Bacteria 320 207 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Salmonella 180 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae unclassified_Xanthomonadaceae 85 Proteobacteria Gammaproteobacteria Oceanospirillales unclassified_Oceanospirillales unclassified_Oceanospirillales 80 Proteobacteria Gammaproteobacteria unclassified_Gammaproteobacteria unclassified_Gammaproteobacteria 48 Proteobacteria Betaproteobacteria Burkholderiales unclassified_Burkholderiales 37 Proteobacteria Betaproteobacteria unclassified_Betaproteobacteria unclassified_Betaproteobacteria 33 Proteobacteria Betaproteobacteria Rhodocyclales Dechloromonas 28 Proteobacteria unclassified_Proteobacteria unclassified_Proteobacteria 22 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Pantoea 20 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae unclassified_Rhodobacteraceae 16 Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc 11 Bacteroidetes Sphingobacteria Sphingobacteriales Crenotrichaceae Chitinophaga 10 Proteobacteria Gammaproteobacteria Enterobacteriales Shigella 10 Cyanobacteria Cyanobacteria Deferribacterales Enterobacteriaceae unclassified_Deferribacterale s unclassified_Deferribacterales 9 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 9 Proteobacteria Deltaproteobacteria unclassified_Deltaproteobacteria unclassified_Deltaproteobacteria 7 Firmicutes Bacilli Bacillales unclassified_Bacillales 6 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Verrucomicrobium 6 unclassified_Burkholderiales Rhodocyclaceae unclassified_Bacillales Genera_incertae_sedis_TM7 TM7 1082 TM7 5 Planctomycetes Planctomycetacia Planctomycetales Planctomycetaceae unclassified_Planctomycetaceae 5 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae unclassified_Sphingomonadaceae 5 Proteobacteria Deltaproteobacteria Myxococcales unclassified_Myxococcales unclassified_Myxococcales 5 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae unclassified_Alteromonadaceae 5 Detection of antibiotic gene clusters PCR screening BACs and fosmids Peptides Polyketides NRPS-nonribosomal peptide synthetase PKS-polyketide synthase 0 100 KAGGA A 200 300 SGTTGXPK G 400 TG D 50 0 KIRGXRIE NGK L 600 The minimal PKS LGGXS Peptide synthetase 1 2 3 4 5 ac tI 6 act III act VII act IV act gra fren gris tcm ORF 1 minimal PKS ORF 2 ORF 3 Cyclases / aromatasesketoreductase act III KR KSa ac tI KSb ACP other act VII act IV Aromatase / Cyclase 60 100 PSPA7_2859 Pseudomonas aeruginosa PA7 pvsA Pseudomonas fluorescens SBW25 pvdD Pseudomonas aeruginosa 206-12 Druridge 38 psvA Pseudomonas fluorescens Druridge 26 Athens 26 PSPA7_2858 Pseudomonas aeruginosa PA7 Diversity of NRPS library screening Druridge 16 Athens 12 100 Cockle 45 92 Cockle 48 Cockle 36 Daci_4753 Delftia acidovorans SPH-1 92 RS06179 Ralstonia solanacearum GMI1000 megaplasmid RSMK04952 Ralstonia solanacearum MolK2 84 RSIPO_02940 Ralstonia solanacearum IPO1609 100 bglu_2g09010 Burkholderia glumae BGR1 chromosome 2 Athens 29 Athens 8 sypB Bradyrhizobium sp. BTAi1 Druridge 1 51 BURPS1106A_A2213 Burkholderia pseudomallei 1106a 93 Cockle 28 Athens 48 63 Druridge 17 Athens 5 100 Cockle 3 Cockle 41 Athens 35 65 Cockle 25 Cockle 4 89 Druridge 13 Athens 13 82 Athens 25 64 ECA1487 Pectobacterium atrosepticum SCRI1043 Druridge 28 53 Druridge 7 80 massB Pseudomonas fluorescens SS101 59 Antarctic 215 Druridge 32 bacB Bacillus subtilis 916 Cockle 2 86 Athens 39 96 Druridge 15 Athens 7 99 PSPTO_4519 Pseudomonas syringae DC3000 Cockle 13 Cockle 37 71 Antarctic 244 Cockle 16 63 MXAN_4403 Myxococcus xanthus DK 1622 Cockle 35 Druridge 22 50 Druridge 30 100 Druridge 37 Athens 4 69 Athens 10 Athens 36 Cockle 20 Cockle 38 88 Athens 46 76 Cockle 29 Cockle 7 100 Athens 6 Athens 24 100 Cockle 39 84 Cockle 50 Antarctic 318 Druridge 11 Druridge 33 100 Druridge 2 Athens 23 60 Athens 33 snbDE S. virginiae 51 MXAN_3636 Myxococcus xanthus DK 1622 Athens 28 MXAN 3779 Myxococcus xanthus DK 1622 98 Antarctic 337 Cockle 40 Cockle 21 Athens 14 Athens 34 Antarctic 283 MXAN_4532 Myxococcus xanthus DK 1622 Antarctic 326 Athens 41 Athens 37 92 Athens 42 89 Antarctic 9 Antarctic 14 50 Antarctic 27 67 Antarctic 353 74 Antarctic 78 nrps2-1 S. avermitilis MA-4680 Antarctic 104 55 sce8255 Sorangium cellulosum 'So ce 56' Antarctic 335 72 Druridge 31 Athens 17 Druridge 39 sce2387 Sorangium cellulosum 'So ce 56' Hoch_1747 Haliangium ochraceum DSM 14365 scpsB Saccharothrix mutabilis subsp. capreolus Druridge 9 73 Druridge 3 95 Cockle 5 74 SACE_4288 Saccharopolyspora erythraea NRRL2338 snbC S. pristinaespiralis Athens 16 100 83 79 Athens 18 Tcur_1886 Thermomonospora curvata DSM 43183 Amir_3602 Actinosynnema mirum DSM 43827 visE S. virginiae 86 Antarctic library and the 3 European soils with markers from GenBank in bold. The tree was constructed using the neighbor-joining method; the numbers besides the branches indicate the percentage bootstrap value of 1000 replicates. The scale bar indicates 10% nucleotide dissimilarity nrps2-1 S. avermitilis MA-4680 Antarctic clones 78 and 104 0.1 Gene clusters showing some similarity ST1P6A4, ~30 kb Similarity 99 % Delftia acidovorans SPH-1, ~59 kb Delftibactin (NRP syderophore interacting with gold, produced by Delftia acidovorans) Analysis of biosynthetic gene diversity None of the soils differed significantly in their alpha diversity for 16S, 16S Actino, NRPS or PKS sequences using several measures of diversity (Chao1, PD, Observed). Soils were vastly different with significant differences occurring in levels of beta-diversity with soils significantly clustering away from one another 16S Actino PKS NRPS Relationships between function and phylogeny- procrustes PKS and NRPS diversity correlated with one another (Mantel P < 0.001 ). Both functional genes significantly correlated with the phylogeny present in the soils. Analysis of taxa revealed diversity of Actinobacteria, Proteobacteria and Bacteroidetes were the main drivers PKS and NRPS NRPS and Actinobacteria PKS and Actinobacteria Network analysis: cytoscape showing significant β diversity Conclusion… beta-diversity of key taxa (Actinobacteria) beta-diversity of secondary metabolites outgroup Mycobacteria: Pathogen ecology Fast growing mycobacteria Order Actinomycetales, Family Mycobacteriaceae, genus Mycobacterium include ‘atypical’ or ‘nontuberculous’ mycobacteria or MOTT Slow growing mycobacteria Neighbour-joining Phylogenetic Tree (16S Why use 16S rRNA for identity? Accuracy 100% Kindom 80% Phylum Class 60% Order Family 40% Genus Species 20% 0% Blast RDP Uclust Actinomycetales Oligotyping • Perform and analyse many sequence reads • Entropy analysis of variable sites in sequences • Identification of short hypervariable region of 16S rRNA • More detailed phylogenetic structure of community • Important connection between microbial community structure and environmental dataset Shannon entropy analysis 𝑛 H X = − 𝑝 𝑥𝑖 𝑙𝑜𝑔𝑏 𝑝 𝑥𝑖 𝑖=0 Oligotyping: tetramers insufficient separation WIKW (water sample) 0.8% 1.1% 3.1% 0.6% 0.4% 1.3% 3.5% 4.7% 19.3% 63.9% CGGG TATA TAAA TATT ~~TT TGTA CGTT ~~GA TAGA TAGG TGAA ~~AG ~~~~ CGGA CGAA ~~TC CGTA ~~GG C-AG CT~~ ~~CT ~~CC ~~C~ TGGG C~TA ~~TA TAAG TA~~ TGAT C~TT Matching oligotypes to species Blast ID results WIKW (water sample) 63.92% 60% 40% 20% 19.27% 3.52% 4.70% 0% 1.34% 0.82% 0.38% 0.21% 0.11% 0.01% 0.01% 0.01% 0.02% 0.10% 0.05% 0.03% 0.02% 3.10% 0.03% 0.01% 0.01% 1.05% 0.03% 0.02% 0.02% 0.24% 0.58% 0.05% 0.21% 0.10% Prevalence of SG Mycobacterium species in relation to sample type OTU network Clustering analysis bTB and TB in Tanzania - qPCR Faecal shedding Cattle herds RD4 scar assay (bTB) Goat herds RD4 scar assay Household dust RD9 assay (TB) Prevalence: qPCR detection of M. bovis vs amplicon sequencing M. tuberculosis complex pyrosequencing reads M. bovis RD4 qpcr detection M. bovis cell copies per gram/per ml 1.00E+04 qPCR 1.00E+03 1.00E+02 1.00E+01 1.00E+00 Ba8 Bu3 Bu4 Ga1 Ga3 Wo5 2.38% (1/42) of soils were positive for M. bovis 11.90% (5/42) of water samples were positive for M. bovis Data suggests water sources are a potential reservoir of M. bovis infection Human-Environment-Livestock-Interface Targeting specific groups within a metagenomic community Othergeneral generabacterium species Other Mycobacteriun Mycobacteria species Slow-grower Mycobacterium Slow growing mycobacteriaspecies Number of sequence 20000 15000 ? 10000 5000 0.3~1% 60% 0 454 Pyrosequencing Miseq Metagenome APTK primer Group specific primers Miseq 16s rRNA primer Universal 16S rRNA primers Significant challenges: 1. Depth of metagenome still a limitation 2. Plasmid/fosmid/BAC metagenomic clone libraries with PCR/expression screening enable activity studies 3. Better BACs needed for large library construction 4. Still major issues with annotation 5. More full meta-omic comparative analyses will improve understanding of biases 6. Reverse genetic tools needed for exploitation of metaproteomes 7. Amplicon seq and qPCR needed to support metagenome data ACKNOWLEDGEMENTS Co-workers Ashley Johnson-Rollings metaproteomics Helena Wright Nathan VerBerkmoes Vicky Hibberd Berg Diagnostics, Graziana Masciandaro, Greg Amos IES, Italy. Chira Borsett Paris Laskaris gene cluster analyses Nikos Kyratsous Orin Courtenay pathogen ecology Rudovick Kazwala, Goodluck Paul, Joseph Emma Travis Malakalinga (Tanzania) Woutrina Millar (UCD), Phillip Phillip James Hopewell (UCSF), Glyn Hewinson, Jason Sawyer, Will Gaze Dez Delahay (AHVLA) David Porter Frank Sweeney Archer Hung Hayley King Andrew Murphy Vicky Hibberd
© Copyright 2024 ExpyDoc