V. REFERENCES…. 1. Abdel-Naby MA, El-Refai HA and Abdel-Fattah AF (2011) Biosynthesis of cyclodextrin glucosyltransferase by the free and immobilized cells of Bacillus cereus NRC7 in batch and continuous cultures. J. Appl. Microbiol. 11:1129-1137. 2. Abelyan VA (2000) Immobilization of cells by entrapping in aubasidan. Appl. Biochem. Microbiol. 36 (1):73-75. 3. Aehle W and Misset O (1999) Enzymes for industrial applications in Biotechnology (eds. Rehm HJ and Reed G) Wiley -VCH, Germany pp. 189-216. 4. Aguilar G J, Morlon-Guyot B, Trejo-Aguilar and Guyot JP (2000) Purification and characterization of an extracellular α-amylase produced by Lactobacillus manihotivorans LMG 18010 T a n a m y l o l y t i c l a c t i c acid bacterium. Enz. Microb. Technol. 27:406–413. 5. Akher M, Leithy MA, Massafy MK and Kasim SA (1973) Optimal conditions of the production of bacterial amylase. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. 128:483–490. 6. Alazard D and Baldensperger JF (1982) Amylolytic enzymes from Aspergillus hennebergi (A. niger group): purification and characterization of amylases from solid and liquid cultures. Carbohydrate Research 107: 231-237. 7. Albers SV and Driessen AJ (2007) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145-149. 8. Ali MB, Mhiri S, Mezghani M and Bejar S (2001) Purification and sequence analysis of the a typical maltohexaose-forming a-amylase of the B. stearothermophilus US100. Enz. Microb. Technol. 28:537–554. 9. Ali MB, Mezghani M and Bejar S (1999) A thermostable alpha amylase producing maltohexaose from a newly isolated Bacillus sp .US100: study of activity and molecular cloning of the corresponding gene. Enz. Microb. Technol. 24:584-589. 10. Ali S, Yousefi F, Ghollasi M, Daneshjou S, Tavoli H, Ghobadi S and Khajeh K (2012) Investigations on possible roles of C-terminal propeptide of a Ca-independent αamylase from Bacillus. J. Microbiol. Biotechnol. 22(8):1077–1083. 11. Alikhajeh J, Khajeh K, Naderi-Manesh M, Ranjbar B, Sajedi RH and Naderi-Manesh H (2007) Kinetic analysis, structural studies and prediction of pKa values of Bacillus KR8104 α-amylase: The determinants of pH-activity profile. Enz. Microbiol. Technol.41:337-345. 12. Amanullah A, Blair R, Nienow AW and Thomas CR (1999) Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Biotechnol. Bioeng. 62:434-446. 189 References 13. Amemura A, Chakraborty R, Fujita M, Noumi T and Futai M (1988) Cloning and nucleotide sequence of the isoamylase gene from Pseudomonas amyloderamosa SB-15. J. Biol. Chem. 263:9271-9275. 14. Amritkar N, Kamat M and Lali A (2004) Expanded bed affinity purification of bacterial α-amylase and cellulose on composite substrate analogue-cellulose matrices. Proc. Biochem. 39:565-570. 15. Anto H, Trivedi U and Patel K (2006) Alpha Amylase Production by Bacillus cereus MTCC 1305 Using Solid-State Fermentation. Food Technol. Biotechnol. 44(2): 241–245. 16. Antranikian G (1992) Microbial degradation of starch in: Microbial degradation of natural products, (ed. Winkelmann) Weinheim VCH, Germany pp. 27-56. 17. Antranikian G, Zablowski P and Gottschalk G (1987) Conditions for the overproduction and excretion of thermostable α-amylase and pullulanase from Clostridium thermohydrosulfuricum DSM 567. Appl. Microbiol. Biotechnol. 27: 75-81. 18. Archana A and Satyanarayana T (1997) Xylanase production by Bacillus licheniformis A 99 in solid state fermentation Enz. Microb. Technol. 21:12–17. 19. Arnesen S, Eriksen SH, Olsen J and Jensen B (1998) Increased production of α-amylase from Thermomyces lanuginosus by the addition of Tween 80. Enz. Microb. Technol. 23:249-252. 20. Arnold K, Herrmann A, Pratsch L and Gawrisch K (1985) The dielectric properties of aqueous solutions of poly (ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815:515-518. 21. Arst HN and Bailey CR (1977) The regulation of carbon metabolism in Aspergillus nidulans, In: Genetics and physiology of Aspergillus (eds. Smith JE and Pateman JA) Academic Press, New York pp. 131-146. 22. Asoodeh A, Chamani J and Lagzian M (2010) A novel thermostable, acidophilic α-amylase from a new thermophilic ‘‘Bacillus sp. Ferdowsicous’’ isolated from Ferdows hot mineral spring in Iran: purification and biochemical characterization. Int. J. Biol. Macromol. 46:289–297. 23. Babu KR and Satyanarayana T (1993a) Parametric optimization of extracellular α-amylase by thermophilic Bacillus coagulans. Folia Microbiologica 38:77-80. 24. Babu KR and Satyanarayana T (1993b) Extracellular calcium-inhibited α-amylase of Bacillus coagulans B 49. Enz. Microb. Technol. 15:1066-1069. 190 References 25. Babu KR and Satyanarayana T (1995) α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Proc. Biochem. 30:305-309. 26. Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W and Yao B (2012) Identification of an acidic a-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem. 131:1473–1478. 27. Baig MA, Pazlarova J and Votruba J (1984) Kinetics of α-amylase production in a batch and fed batch culture of Bacillus subtilis. Folia Microbiologica 29:359-364. 28. Ball SG and Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Ann. Rev. Plant Biol. 54:207–233. 29. Ballschmiter M, Fütterer O and Liebl W (2006) Identification and characterization of a novel intracellular alkaline α-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 72(3):2206–2211. 30. Beg QK, Bhushan B, Kappor M and Hoondal GS (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-113. J. Indust. Microbiol. Biotechnol. 24:396-402. 31. Ben Ali M, Mhiri S, Mezghani M and Bejar S (2001) Purification and sequence analysis of the atypical maltohexaose-forming α-amylase of the B. stearothermophilus US 100. Enz. Microb. Technol. 28:537–542. 32. Bernfeld P (1955) Amylase α and β. In: Methods in Enzymology (eds. Colowich ISP and Kaplan NO) Academic Press, New York. pp 149-158. 33. Bertoldo C and Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151-160. 34. Bertoldo C, Dock C and Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng. Life. Sci. 4:521-531. 35. Bhella RS and Altosaar I (1985) Purification and some properties of the extracellular αamylase from Aspergillus awamori. Can. J. Microbiol. 31:149-155. 36. Binder F, Huber O, Böck A (1986) Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5a1: cloning, nucleotide sequence and expression. Gene 47(2-3): 269–277. 37. Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VJ, Petersen SB, Swift H, Thim L and Woldike HF (1990) Calcium binding in α-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry 29:6244–6249. 191 References 38. Bohdziewicz J (1996) Ultrafiltration of technical amylolytic enzymes. Proc. Biochem. 31:185-191. 39. Bolton, D.J., Kelly, C.T. & Fogarty, W.M. (1997). Purification and characterization of the α-amylase of Bacillus flavothermus. Enz. Microb. Technol. 20: 340-343. 40. Boni LT, Stewart TP, Alderfer JL and Hui SW (1981) Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers. J. Membrane Biol. 62:71-77. 41. Brayer GD, Luo Y and Wither SG (1995) The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 4:1730-1742. 42. Brodelius P and Vandamme EJ (1987) Immobilized cell systems. In: Biotechnology (ed. Kennedy JF), VCH Publishers, FRG pp 405-464. 43. Brzozowski AM, Lawson DM, Turkenburg JP, Bisgaard-Frantzen H, Svendsen A, Borchert TV, Dauter Z, Wilson KS and Davies GJ (2000) Structural analysis of native and ligand complexes. Biochemistry 39:9099-9107. 44. Buleon A, Colonna P, Planchot V and Ball S (1998) Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23:85-112. 45. Buonocore V, Caporale C, De Rosa M and Gambacorta A (1976) Stable, inducible thermoacidophilic a-amylase from Bacillus acidocaldarius. J. Bacteriol. 128:515-521. 46. Burhan A (2008) Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Biores. Technol. 99:3071-3076. 47. Busch JE, Porter EG and Stutzenberger FJ (1997) Induction of alpha amylase by maltooligosaccharides in Thermomonospora curvata. Curr. Opi. Chem. Biol. 6:151160. 48. Campbell LL (1955) Purification and properties of an α-amylase from facultative thermophilic bacteria. Arch. Biochem. Biophys. 54:154-161. 49. Canganella F, Andrae CM and Antranikian C (1994) Characterization of amylolytic and pullulytic activities from thermophilic archaea and from a new Fervidobacterium species. Appl. Microbiol. Biotechnol. 42:239-245. 50. Carlsen M, Marcher J and Neilson J (1994) An improved FIA-method for measuring αamylase in cultivation media. Biotechnol. Techn. 8:479-482. 51. Chary SJ and Reddy SM (1985) Starch degrading enzymes of two species of Fusarium. Folia Microbiologica 30:452-457. 192 References 52. Chauthaiwale J and Rao M (1994) Chemical modification of xylanase from alkalothermophilic Bacillus species: evidence for essential carboxyl group. Biochem. Biophys. Acta 1204:164-168. 53. Chen HZ, Xu J and Li ZH (2005) Temperature control at different bed depths in a novel solid state fermentation system with two dynamic changes of air. Biochemical Bioeng. J. 23:117-122. 54. Chevalier P and Noue JD (1987) Enhancement of α-amylase production by immobilized Bacillus subtilis in an airlift fermentor. Enz. Microb. Technol. 9:53-56. 55. Chi MC, Chen YH, Wu TJ, Lo HF and Lin LL (2010) Engineering of a truncated αamylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J. Biosci. Bioeng. 109:531-538. 56. Claus D and Fritze D (1989) Taxonomy of Bacillus. In: Bacillus, Biotechnology Handbooks 2, (ed. Harwood CR) Plenum Press, New York and London. 57. Cohn F (1872) Untersuchungen uber Bacterien. Beitrage zur Biologie der Pflanzen 1: Heft 2, 177:127-222. 58. Cole MS (1982) Antistaling baking composition, Patent application US 4320151. 59. Combes D, Yoovidhya T, Girbal E, Willemot RM and Monsan P (1987) Mechanism of enzyme stabilization. Enz. Eng. 8:59-62. 60. Coombs J (1984) Sugarcane as an energy crop. Biotechnol. Genetic Eng. Rev. 1:311345. 61. Coutinho PM and Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29:34–347. 62. Crabb WD and Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. TIBTECH 15:349-352. 63. Cui YQ, Van der Lans RGJM and Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol. Bioeng. 55:715-726. 64. Davies G and Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853-859. 65. Deley J (1978) Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. Proceedings of the 4th international conference on plant pathology and bacteriology, pp 347-357. 193 References 66. DeMoraes LMP, Astolfi-Filho S and Ulhao CJ (1999). Purification and some properties of an α-amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 15:561-564. 67. DeStefanis VA and Turner EW (1981) Modified enzyme system to inhibit bread firming method for preparing same and use of same in bread and other bakery products, Patent application US 4299848. 68. Dey G, Palit S, Banerjee R and Maiti BR (2002) Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J. Indus. Microbiol. Biotechnol. 28:193-200. 69. Dheeran P, Kumar S, Jaiswal YK and Adhikari DK (2010) Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Appl. Microbiol. Biotechnol. 86:1857–1866. 70. Dobreva E, Ivanova V, Tonkova A and Radulova E (1996) Influence of the immobilization conditions on the efficiency of alpha-amylase production by Bacillus licheniformis. Proc. Biochem. 31(3):229-234. 71. Dong G, Vieille C, Savchenko A and Zeikus JG (1997) Cloning, sequencing, and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63:3569-3576. 72. Eftink MR and Ghiron CA (1981) Fluorescence quenching studies with proteins. Ann. Biochem. 114:199-227. 73. Eratt JA, Douglas PE, Moranelli F and Seligy VL (1984) The induction of α-amylase by starch in Aspergillus oryzae: evidence for controlled mRNA expression. Can. J. Biochem. Cell Biol. 62:678-690. 74. Ezeji EU, Anyanwu BN, Onyeze GOC and Ibekwe VI (2005) Studies on the utilization of Petroleum Hydrocarbon by Micro Organism isolated from oil Contaminated Soil. Int. J. Nat. Appl. Sci. 1(2):122-128. 75. Ezeji TC and Bahi H (2006) Purification, characterization, and synergistic action of phytate-resistant α-amylase and α-glucosidase from Geobacillus thermodenitrificans HRO10. J. Biotechnol. 125:27-38. 76. Feller G, D’Amico S, Benotmane AM, Joly F,Van Beeumen J and Gerday C (1998) Characterization of the C-terminal propeptide involved in bacterial wall spanning of αamylase from the psychrophile Alteromonas haloplanctis. J. Biol. Chem. 273:1210912115. 194 References 77. Feniksova RV, Tikhomirova AS and Rakhleeva BE (1960) Conditions for forming amylase and proteinase in surface culture of Bacillus subtilis. Mikrobiologia 29:745-748. 78. Fisher D and Goodall AH (1981) Membrane fusion by viruses and chemical agents. Techniq. Cell Physiol. 115:1-36. 79. Florencio J, Eiras-Stofella D, Soccol C, Raimbault M, Guyot JP and Fontana J (2000) Lactobacillus plantarum amylase acting on crude starch granules. Appl. Biochem. Biotechnol. 84:721–730. 80. Fogarty WH, Griffin PJ and Joyce AM (1974) Enzymes of Bacillus sp. Proc. Biochem. 9:11-24. 81. Fogarty WM and Kelly CT (1980) Economic Microbiology. In: Microbial enzymes and bioconversions, (ed. Rose AH) Academic Press, London 5:115-170. 82. Fogarty WM and Kelly CY (1990) Recent advances in microbial amylases. In: Microbial Enzymes & Biotechnology. (eds. Fogarty WM and Kelly CT) Elsevier Science Publishers, London pp.71-132. 83. Fogarty WM, Bourke AC, Kelly CT and Doyle EM (1994) A constitutive maltotetraose-producing amylase from Pseudomonas sp. IMD 353. Appl. Microbiol. Biotechnol. 42:198–203. 84. Fogarty WM, Collins BS, Doyle EM and Kelly CT (1993) The high maltose-forming αamylase of Saccharomonospora viridis: mechanisms of action. J. Indust. Microbiol. 11:199-204. 85. Furusaki S and Seki M (1992) Use and engineering aspects of immobilized cells in biotechnology. Adv. Biochem. Eng. Biotechnol. 49:161-185. 86. Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G and Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. U S A 101:9091–9096. 87. Fuwa H (1954) A new method for micro determination of amylase activity by the use of amylose as substrate. J. Biochem. 41:583-603. 88. Gangadharan D, Shivaramakrishnan S, Naampoothiri MK, Sukumaran RK and Pandey A (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Biores. Technol. 99:4597-4602. 89. Gangadharan D, Sivaramakrishnan S, Nampoothiri KM and Pandey A (2006) Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol. Biotechnol. 44:269-274. 195 References 90. Gao S, An J, Wu CF, Gu Y, Chen F, Yu Y, Wu QQ and Bao JK (2005) Effect of amino acid residue and oligosaccharide chain chemical modifications on spectral and hemagglutinating activity of Millettia dielsiana harms.ex Diels. Lectin. Acta Biochim. Biophys. Sinica 37(1):47-54. 91. Gashaw M and Amare G (1999) Purification and characterization of two raw-starchdigesting thermostable a-amylases from a thermophilic Bacillus. Enz. Microb. Technol. 25:433-438. 92. Gautam P, Sabu A, Pandey A, Szakacs G and Soccol CR (2002) Microbial production of extracellular phytase using polystyrene as inert solid support. Biores. Technol. 83:229-233. 93. Geigenberger P, Stitt M and Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ. 27:655–673. 94. Geigenberger P, Tiessen A and Meurer J (2011) Use of non-aqueous fractionation and metabolomics to study chloroplast function in Arabidopsis. Methods Mol. Biol. 775:135–160. 95. Ghatge MS and Deshpande VV (1993) Evidence for specific interaction of guanidine hydrochloride with carboxy groups of enzymes/proteins. Biochem. Biophys. Res. Commun. 193:979-984. 96. Ghosh M and Nanda G (1991) Immobilized Aspergillus sydowii produces xylanase. Biotechnol. Lett. 13:807-808. 97. Gigras P, Sahai V and Gupta R (2002) Statistical media optimization and production of its ITS α-amylase from Aspergillus oryzae in a bioreactor. Curr. Microbiol. 45:203208. 98. Giraud E and G Cuny (1997) Molecular characterization of the α-amylase genes of Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3’ end structure with direct tandem repeats and suggests a common evolutionary origin. Gene 198:149–157. 99. Giri NY, Mohan AR, Rao LV and Rao CP (1990) Immobilization of α-amylase complex in detection of higher oligosaccharides on paper. Curr. Sci. 59:1339-1340. 100. Glazer AN and Nikaido H (1995) Microbial enzymes. In: Microbial Biotechnology, (eds.Glazer AN and Nikaido H) W.H. Freeman and Co, New York pp 241-263. 101. Glymph JL and Stutzenberger FJ (1977) Production, purification and characterization of α-amylase from Thermomonospora curvata. Appl. Environ. Microbiol. 34:391-397. 196 References 102. Godfrey T and West S (1996) Industrial Enzymology. 2nd Edn. Macmillan Publishers Inc. New York. 103. Gokhale DV, Patil SG and Bastawde KB (1991) Optimization of cellulase production by Aspergillus niger NCIM 1207. App. Biochem. Biotechnol. 30:99-109. 104. Gowthaman MK and Krishnan Moo-Young M (2001) Fungal solid state fermentation An overview. In: Applied Mycology and Biotechnology, Agriculture and Food Production (eds. Khachatourians GG and Arora DK) Elsevier Science, Netherlands pp. 305-352. 105. Gray JA and Bemiller JN (2003) Bread staling: Molecular basis and control. Comprehensive Rev. Food Sci. Food Safety 2:1–21. 106. Gu X-B, Zheng Z-M, Yu H-Q, Wang J, Liang F-L and Liu R-L (2005) Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Proc. Biochem. 40:3196-3201. 107. Gubern G, Canalias F, Gella FJ, Colinet E, Profilis C, Calam H, Ceriotti F, Dufaux J, Hadjivassiliou AG, Lessinger JM, Lorentz K and Vassault A (1996) Production and certification of an enzyme reference material for pancreatic alpha-amylase CRM 476. Clin. Chim. Acta 252:145-162. 108. Guex N and Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18:2714-2723. 109. Guillen D, Santiago M, Linares L, Perez R, Morlon J, Ruiz B, Sanchez S and Rodrıguez-Sanoja R (2006) α-Amylase starch binding domains: Cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl. Environ. Microbiol.73:3833–3837. 110. Gupta R, Gigras P, Mohapatra H, Goswami VK and Chauhan B (2003) Microbial αamylases: a biotechnological perspective. Proc. Biochem. 38:1599-1616. 111. Guzman-Maldonadao H and Paredes-Lopez O (1995) Amylolytic enzymes and products derived from starch: a review. Crit. Rev. Food Sci. Nutri. 35:373-403. 112. H Pedersen and Nielsen J (2000) The influence of nitrogen sources on the alpha amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 53:278–281. 113. Hamer RJ (1995) Enzymes in the baking industry. In: Enzymes in food processing (Eds. Tucker GA and Woods LFJ) Blackie Academic and Professional, Glasgow pp. 190-222. 197 References 114. Hamilton LM, Kelly CT and Fogarty WM (1999) Purification and properties of the raw starch-degrading α-amylase of Bacillus sp. IMD 434. Biotechnol. Lett. 21:111-115. 115. Hansen PW (1984) Determination of fungal α-amylase by flow injection analysis. Analytical Chimica Acta. 158:375-377. 116. Haq I, Ashraf H, Iqbal J and Qadeer MA (2003) Production of α-amylase by Bacillus licheniformis using an economical medium. Biores. Technol. 87:57-61. 117. Hashemi M, Razavi SH, Shojaosadati SA, Mousavi SM, Khajeh K and Safari M (2010) Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. J. Biosci. Bioeng. 110(3):333–337. 118. Hashim SO, Delgado OD, Martinez MA, Rajni-Hatti K, Mulaa FJ and Mattiasson B (2005) Alkaline active maltohexaose-forming α-amylase from Bacillus halodurans LBK 34. Enz. Microb. Technol. 36:139–146. 119. Hebeda RE, Bowles LK and Teague WM (1990) Developments in enzymes for retarding staling of baked goods. Cereal Foods World 35(5):453-457. 120. Hebeda RE, Bowles LK and Teague WM (1991) Use of intermediate temperature stability enzymes for retarding staling in baked goods. Cereal Foods World 36:619-624. 121. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309–316. 122. Hermansson AM and Svegmark K (1996) Developments in the understanding of starch functionality. Trends Food Sci. Technol. 7:345-353. 123. Hillier P, Wase DAJ, Emery AN and Solomons GL (1997) Instability of α-amylase production and morphological variation in continuous culture of Bacillus amyloliquefaciens is associated with plasmid loss. Proc. Biochem. 32:51-59. 124. Hirata A, Adachi M, Sekine A, Kang YN, Utsumi S and Mikami B (2004) Structural and enzymatic analysis of soybean beta amylase mutants with increased pH optimum. J. Biol. Chem. 279:7287–7295. 125. Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N and Nasri M (2008) Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1 Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Proc. Biochem. 43:499–510. 126. Hollo J and Szeitli J (1968) The reaction of starch with iodine. In: Starch and its derivatives, 4th Edn (ed. Rodley JA) Chapman and Hall Ltd, pp 203-246. 198 References 127. Hong J (1986) Optimal substrate feeding policy for fed-batch fermentation with substrate and product inhibition kinetics. Biotechnol. Bioeng. 28:1421-1431. 128. Huang H, Ridgway D, Gu T and Moo-Young M (2004) Enhanced amylase production by B. subtilis using a dual exponential feeding strategy. Bioprocess Biosys. Eng. 27: 63-69. 129. Humphrey A (1998) Shake flask to fermenter: What have we learnt? Biotechnol. Progress. 14:3-7. 130. Hung SY and Chen JC (1989) Ethanol production in simultaneous saccharification and fermentation of cellulose with temperature profiling. J. Fermentation Technol. 66:509516. 131. Hyun HH and Zeikus JG (1985) Simultaneous and enhanced production of thermostable amylases and ethanol from starch by cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 49(5):1174-81. 132. Iftikhar T, Niaz M, Abbas SQ, Zia MA, Ashraf I, Lee KJ and Haq IU (2010) Mutation induced enhanced biosynthesis of lipases by Rhizopus oligosporus var. microsporus. Pak. J. Bot. 42(2):1235-1249. 133. James MG Denyer K and Myers AM (2003) Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6:215–222. 134. Jamuna R and Ramakrishna SV (1992) In: Physiology of immobilized cells, (ed Bont De) Science Publishers Elsevier, JAM Amsterdam pp. 533-538. 135. Jansen B and Olsen J (1999) Amylases and their industrial potential. In: Thermophilic moulds in Biotechnology (eds. Johri BN, Satyanarayana T and Olsen J) Kluwer academic publishers, Netherlands pp 115-137. 136. Jones A, Lamsa M, Frandsen TP, Spendler T, Harris P, Sloma A, Xu F, Nielson JB and Cherry JR (2008) Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J. Biotechnol. 134:325–333. 137. Kammerer R, Hahn S, Singer BB, Luo JS and von Kleist S (1998) Biliary glycoprotein (CD66a), a cell adhesion molecule of the immunoglobulin superfamily, on human lymphocytes: structure, expression and involvement in T cell activation. Eur. J. Immunol. 28:3664-3674. 138. Kaneko A, Sudo S, Takayasu-Sakamoto Y, Tamura G, Ishikawa T and Oba T (1996) Molecular cloning and determination of the nucleotide sequence of a gene encoding an acidstable α-amylase from Aspergillus kawachii. J. Ferment. Bioeng. 81:292-298. 199 References 139. Kanno M (1986) α-Amylase production by Bacillus acidocaldarius, Bacillus stearothermophilus and their D-cycloserine resistant mutants. Agri. Biol. Chem.50:2633-2635. 140. Katsuya Y, Mezaki Y, Kubota M, Matsuura Y (1998) Three-dimensional structure of Pseudomonas isoamylase at 2.2 A resolution. J. Mol. Biol. 281:885-897. 141. Kaur G and Satyanarayana T (2004) Production of extracellular pectinolytic, cellulolytic and xylanolytic enzymes by thermophilic mould Sporotrichum thermophile Alpinis in soild state fermentation. Ind. J. Biotechnol. 3:552-557. 142. Kapoor M, Beg QK, Bhushan B, Dadhich KS and Hoondal GS (2000) Purification and partial purification of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Proc. Biochem. 36:467-473. 143. Kelly CT, Bolton DJ and Fogarty WM (1997) Bi-phasic production of α-amylase of Bacillus flavothermus in batch fermentation. Biotechnol. Lett. 19:675-677. 144. Kelly CT, Collins BS, Fogarty WM and Doyle EM (1993) High maltogenic α-amylases from the actinomycetes. Appl. Microbiol. Biotechnol. 39:599-603. 145. Khajeh K, Naderi-Manesh H, Ranjbar B, Movahedi AAM and Gorgani MN (2001) Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enz. Microb.Technol. 28:543-549. 146. Khemakhem B, Ali MB, Aghajari N, Juy M, Haser R and Bejar S (2009) Engineering of the α-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Biotechnol. Bioeng. 102(2):380-390. 147. Kikani BA and Singh SP (2011) Single step purification and characterization of a thermostable and calcium independent α-amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Inter. J. Biol. Macromol. 48(4):676-81. 148. Koch R, Zablowski P and Antranikian G (1987) Highly active and thermostable amylases and pullulanases from various anaerobic thermophiles. Appl. Microbiol. Biotechnol. 27:192-198. 149. Kokubu T, Karube I and Suzuki S (1978) Alpha-amylase production by immobilized whole cells of Bacillus subtilis. Eur. J. Appl. Microbiol. Biotechnol. 5:233-240. 150. Kole MM and Gerson DF (1989) Ammonium controlled fed-batch fermentation for amylase production. J. Ferment. Bioeng. 68:423–427. 200 References 151. Komissarov AA, Romanova DV and Debabov VG (1995) Complete inactivation of Escherichia coli uridine phosphorylase by modification of Asp with Woodward’s reagent K. J. Biol. Chem. 270:10050-10055. 152. Kopp J and Schwede T (2004) The SWISS-MODEL Repository of annotated three dimensional protein structure homology models. Nucleic Acids Res. 32:230-234. 153. Koshcheyenko KA, Turkina MV and Skryabin GK (1983) Immobilization of living microbial cells and their application for steroid transformations. Enz. Microb.Technol. 5:14-21. 154. Kulp K (1993) Enzymes as dough improvers. In: Advances in baking technology (eds. Kamel BS and Stauffer CE) Blackie academic and professional VCH Publishers, New York pp 152-178. 155. Kulp K and Ponte JG (1981) Staling of white pan bread: fundamental causes. Crit. Rev. Food Sci. Nutri. 15:1-48. 156. Kumar P and Satyanarayana T (2004) Biotechnological aspects of thermophilic fungal glucoamylases. In: Emerging trends in mycology, plant pathology and microbial biotechnology, (eds. Bagyanarayana G, Bhadraiah B and Kunwar IK) B.S. publications, Hyderabad pp. 539-563. 157. Kumar P and Satyanarayana T (2008) Optimization of culture variables for improving glucoamylase production by alginate-trapped Thermomucor indicae-seudaticae using statistical methods. Biores. Technol. 98:1252-1259. 158. Kumar S, Kumar P and Satyanarayana T (2007) Production of raw starch-saccharifying thermostable and neutral glucoamylase by the thermophilic mold Thermomucor indicae-seudaticae in submerged fermentation. Appl. Biochem. Biotechnol. 142: 221-230. 159. Kumar V and Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol. Lett. 33:2279-2285. 160. Kundu AK and Das S (1970) Production of amylase in liquid culture by a strain of Aspergillus oryzae. Appl. Microbiol. 19:598-603. 161. Kuriki T, Takata H, Yanase M, Ohdan K, Fujii K, Terada Y, Takaha T, Hondoh H, Matsuura Y and Imanaka T (2006) The concept of the a-amylase family: a rational tool for interconverting glucanohydrolases/glucanotransferases, and their specificities. J. Appl. Glycosci. 53:155–161. 201 References 162. Kyte J. Mechanism in protein chemistry. New York : Garland Publishing; 1995. p.258283. 163. Lachmund A, Urmann U, Minol K, Wirsel S and Ruttkowski E (1993) Regulation of α amylase formation in Aspergillus oryzae and Aspergillus nidulans transformants. Curr. Microbiol. 26:47-51. 164. Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL and Anfinsen CB (1993) The purification and characterization of an extremely thermostable α-amylase from hypothermophilic archaebacterium Pyrococcus furiosus. J Biol. Chem. 268:24394-24401. 165. Larson SB, Greenwood A, Cascio D and McPherson DJ (1994) Refined molecular structure of pig pancreatic α-amylase at 2.1 Å resolution. J. Mol. Biol. 235:1560-1584. 166. Le DT, Yoon MY, Kim YT and Choi JD (2004) Homology modeling of the structure of tobacco acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 317:930-938. 167. Lee J and Parulekar SJ (1993) Enhanced production of α-amylase in fed-batch cultures of Bacillus subtilis TN 106. Biotechnol. Bioeng. 42:1142-1150. 168. Lin LL, Hsu WH and Chu WS (1997) A gene encoding for an α-amylase from thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coli. J. Appl. Microbiol. 82:325-334. 169. Lin LL, Tsau MR and Chu WS (1996) Purification and properties of a 140 kDa amylopullulanase from thermophilic and alkaliphilic Bacillus sp. strain TS-23. Biotechnol. App. Biochem.24:101-107. 170. Liping Z, Yan X and Jianzhong J (2002) The Application and Study of Acid ALFAAmylase. Liquor Making 29(3):19-22. 171. Liu B, Wang Y and Zhang X (2006) Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enz. Microb. Technol. 39:805-810. 172. Liu W, Shi P, Chen Q, yang P, wang G, Wang Y, Luo H and Yao B (2010) Gene cloning, overexpression, and characterization of a xylanase from Penicillium sp. CGMCC 1699. Appl. Biochem. Biotechnol. 162:1-12. 173. Liu XD and Xu Y (2008) A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Biores. Technol. 99:4315-4320. 202 References 174. Lo HF, Lin Long-L, Li CC, Hsu WH and Chang CT (2001) The N-terminal signal sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp. TS-23 α-amylase in Escherichia coli. Curr. Microbiol. 43:170-175. 175. Lonsane BK and Ramesh MV (1990) Production of bacterial thermostable α-amylase by solid state fermentation: A potential tool for achieving economy in enzyme production and starch hydrolysis. Adv. Appl. Microbiol. 35:1-56. 176. Lonsane BK, Ghildyal NP, Budiatman S and Ramakrishna SV (1985) Engineering aspects of solid state fermentation. Enz. Microb. Technol. 7:258-265. 177. Macarron R, Henrissat B, van Beeuman J, Dominguez JM and Claeyssens M (1995) Identification of two tryptophan residues in endoglucanase III from Trichoderma reesei essential for cellulose binding and catalytic activity. In:Enzymatic degradation of insoluble carbohydrates. (eds. Saddler N and Penner MH) American Chemical Society Washington, DC Pp. 164–173. 178. MacGregor EA, Janecek S and Svensson B (2001) Relationship of sequence and structure to specificity in the a-amylase family of enzymes. Biochim. Biophys. Acta 1546:1–20. 179. Machius M, Declerck N, Humber R and Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder order transition of the substrate binding site mediated by a calcium-sodium-calcium metal traid. Structure 6:281-292. 180. Machius M, Wiegand G and Huber R (1995) Crystal structure of calcium-depleted Bacilus licheniformis alpha-amylase 2.2-A resolution. J. Mol. Biol. 246:545–559. 181. Malhotra R, Noorwez SM and Satyanarayana T (2000) Production and Partial characterization of thermostable and calcium–independent α-amylase of an extreme thermophile Bacillus thermoleovorans NP 54. Lett. Appl. Microbiol. 31:378-384. 182. Mamo G and Gessesse A (1999) Purification and characterization of two raw-starch– digesting thermostable α-amylase from a thermophilic Bacillus. Enz. Microb.Technol. 25:433-438. 183. Manning GB and Campbell LL (1961) Thermostable α-amylase of B. stearothermophilus. I. Crystallization and some general properties. J. Biol. Chem. 236:2952-2957. 184. Manonmani HK and Kunhi AAM (1999a) Interference of thiol compounds with dextrinizing activity assay of α-amylase by starch-iodine color reaction: Modification of the method to eliminate this interference. World J. Microbiol. Biotechnol. 15:485-487. 203 References 185. Marco JL, Bataus LA, Valencia FF, Ulhoa CJ, Astolfi-Filho S and Felix CR (1996) Purification and characterization of a truncated Bacillus subtilis α-amylase produced by Escherichia coli. Appl. Microbiol. Biotechnol. 44: 746-752. 186. Martinez-Anaya MA and Jimenez T (1998) Physical properties of enzyme supplemented doughs and relationship with bread quality parameters. Zeitschrift fur Lebensmittel Untersuchung und Forschung A 206:134–142. 187. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F and Sali A (2000) Comparative protein structure modeling of genes and genomes. Ann. Rev. Biophys. Biomol. Struc. 29:291-325. 188. Matsumoto M and Ohashi K (2003) Effect of immobilization on thermostability of lipase from Candida rugosa. Biochem. Eng. J. 14:75-77. 189. Matsumura M, Signor G and Matthews BW (1989) Substantial increase of protein stability by multiple disulphide bonds. Nature 342:291–293. 190. Matsumura M, Yasumura S and Aiba S (1986) Cumulative effect of intragenic aminoacid replacements on the thermostability of a protein. Nature 323:356–358. 191. Matsuura Y, Kusunoki M, Harada W and Kakudo M (1984) Structure of possible catalytic residues of Taka-amylase. American J. Biochem. 95:697-702. 192. Matzke J, Schwermann B and Baker EP (1997) Acidstable and acidophilic proteins: the example of the α-amylase from Alicyclobacillus acidocaldarius. Comp. Biochem. Physiol. 118A:475-479. 193. McMahon HEM, Kelly CT and Fogarty WM (1999) High maltose–producing amylolytic system of a Streptomyces sp. Biotechnol. Lett. 21:23-26. 194. McMahon, HEM, Kelly CT and Fogarty WM (1997) Effect of growth rate on αamylase production by Streptomyces sp, IMD 2679. Appl. Microbiol. Biotechnol. 48:504-509. 195. Mehta M, Satyanarayana T (2012) Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolyzing α-amylase from an extreme thermophile Geobacillus thermoleovorans. J. Mol. Catalysis B. Enzymatic 8586: 229-238. 196. Michelena VV and Castillo FJ (1984) Production of amylase by Aspergillus foetidus on rice flour medium and characterization of the enzyme. J. Appl. Bacteriol. 56:395- 400. 197. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428. 204 References 198. Mishra RS and Maheshwari R (1996) Amylases of the thermophilic fungus Thermomyces lanuginosus their purification properties action on starch and response to heat. J. Biosci.21:653-672. 199. Mitsuiki S, Utsnomiya H, Nakama Y, Sakai M, Mukae K, Moriyama Y, Goto M and FuruKawa K (2005) Purification and characterization of maltotriose-producing amylase from an alkaliphilic Nocardiopsis sp. TO1. J. Appl. Glycosci. 52:95-99. 200. Mohapatra BR, Banerjee UC and Bapuji M (1998) Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol. 60:113- 117. 201. Mollania N, Khajeh K, Hosseinkhani S and Dabirmanesh B (2010) Purification and characterization of a thermostable phytate resistant alpha-amylase from Geobacillus sp. LH8. Int. J. Biol. Macromol. 46:27-36. 202. Monera OD, Kay CM and Hodges RS (1994) Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 3:1984–1991. 203. Moradian F (2005) A calcium independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enz. Microb. Technol. 36:666-671. 204. Morell MK and Myers AM (2005) Towards the rational design of cereal starches. Curr. Opin. Plant Biol. 8:204-210. 205. Morgan FJ and Priest FG (1981) Characterization of a thermostable α-amylase from Bacillus licheniformis NCIB 6346. J. Appl. Bacteriol. 50:107-114. 206. Morlon-Guyot J, Mucciolo-Roux F, Rodrıguez-Sanoja R and Guyot JP (2001) Characterization of the L. manihotivorans α-amylase gene. DNA Seq. 12:27–37. 207. Morrison WR (1993) Cereal starch granule development and composition. In: Seed storage compounds: Biosynthesis, interactions and manipulation (eds. Shewry PR and Stobart K) Oxford Science Publications, Oxford pp 175-190. 208. Murakami S, Nagasaki K, Nishimoto H, Shigematu R, Umesaki J, Takenaka S, Kaulpiboon J, Prousoontorn M, Limpaseni T, Pongsawasdi P and Aoki K (2008) Purification and characterization of five alkaline, thermotolerant, and maltotetraoseproducing α-amylases from Bacillus halodurans M-2-5,and production of recombinant enzymes in E. coli. Enz. Microb. Technol. 43:321–328. 209. Nagamine K, Murashima K, Kato T, Shimoi H and Ito K (2003) Mode of α-amylase production by the shochu koji mold Aspergillus kawachii. Biosci. Biotechnol. Biochem. 67:2194–2202. 205 References 210. Najafi MF, Deobagkar DN and Deobagkar DD (2005) Purification and characterization of an extracellular alpha-amylase from Bacillus subtilis AX20. Protein Expr. Purif. 41(2):349-354. 211. Nakada T, Kubota M, Sakai S, Tsujisaka Y (1990) Purification and characterization of two forms of maltotetraose forming amylase from Pseudomonas stutzeri. J. Agric. Biol. Chem. 54:737-743. 212. Nakajima R, Imanaka T and Aiba S (1986) Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23:355-360. 213. Narang S and Satyanarayana T (2001) Thermostable α-amylase production by an extreme thermophile Bacillus thermooleovorans. Lett. Appl. Microbiol. 32:31-35. 214. Narayanan AS and Shanmugasundaram ERB (1967) Studies on amylase of Fusarium vasinfectum. Arch. Biochem. Biophys. 118:317. 215. Ne’eman Z, Kahane I and Razin S (1971) Characterization of the Mycoplasma membrane proteins. II. Solubilization and enzymic activities of Acholeplasma laidlawii membrane proteins. Biochim. Biophys. Acta 249:169-179. 216. Neilsen JE, Borchert TV and Vriend G (2001) The determinants of α-amylase pHactivity profiles. Protein Eng. 14:505-512. 217. Nevalainen H and Te’o VSJ (2003) Enzyme Production in Industrial Fungi―Role of Molecular Genetics. In: Applied Mycology and Biotechnology, Vol. 3, Fungal Genomics (ed Arora DK) Elsevier Science. 218. Nguyen QD, Judit M, Szabo R, Claeyssens M, Stals I and Hoschke A (2002) Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enz. Microb. Technol. 31:345-352. 219. Nielsen JE and Borchert TV (2000) Protein engineering of bacterial α-amylases. Biochim. Biophys. Acta 1543:253-274. 220. Nielsen JE, Beier L, Otzen D, Borchert TV., Frantzen HB, Andersen KV and Svendsen A (1999) Electrostatics in the active site of an alpha-amylase. Eur. J. Biochem. 264:816-824. 221. Nigam P and Singh D (1995) Enzyme and microbial systems involved in starch processing. Enz. Microb. Technol. 17:770-778. 222. Nishio N, Tai K and Nagai S (1979) Hydrolase production by Aspergillus niger in solid-state cultivation. Eur. J. Appl. Microbio1. Biotechnol. 8:263-270. 206 References 223. Oates CG (1997) Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Technol. 8:375–382. 224. Ohdan K, Kuriki T, Kaneko H, Shimada J, Takada T, Fujimoto Z, Mizuno H, Okada S (1999) Characteristics of two forms of α-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658. 225. Oikawa A and Maeda A (1957) The role of calcium in Taka amylase A II, The exchange reaction. Can. J. Biochem. 46:463-4668. 226. Olutiola PO (1982) α-Amylolytic activity of Aspergillus chevalieri from mouldy maize seeds. Indian Phytopathology 35:428-433. 227. Pandey A and Ramachandran S (2005) General Introduction. In: Enzyme Technology (eds. Pandey A, Webb C, Soccol CR and Larroche C) Asiatech Publishers, Inc. New Delhi pp 1-10. 228. Oort MV (2010) In Enzymes in Food Technology (eds. RJ Whitehurst and Oort MV) USA: Wiley-Blackwell pp.103-143. 229. Pace CN (1990) Measuring and increasing protein stability. Trends Biotechnol. 8:93–98. 230. Pancha I, Jain D, Shrivastav A, Mishra SK, Shethia B, Mishra S, Mohandas VP and Jha B (2010) A thermoactive α-amylase from a Bacillus sp. isolated from CSMCRI salt farm. Int. J. Biol. Macromol. 47:288–291. 231. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D and Mohan R (2000) Advances in microbial amylases. Biotechnol. Appl. Biochem. 31:135-152. 232. Pandey A, Selvakumar P, Soccol CR and Nigam P (1994) Solid state fermentation for the production of industrial enzymes. Wiley Eastern Publishers, New Delhi pp. 33–37. 233. Pantoliano MW, Whitlow M, Wood JF, Dodd SW, Hardman KD, Rollence ML and Bryan PN (1989) Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding. Biochemistry 28:7205–7213. 234. Paoli P, Fiaschi T, Cirri P, Camici G, Manao G, Cappugi G, Raugei G, Moneti G and Ramponi G (1997) Mechanism of acylphosphatase inactivation by Woodward’s reagent K. Biochem. J. 328:855-861. 235. Park YS, Kang SW, Lee JS, Hong SI and Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol. 58:761-766. 207 References 236. Perez-Pomares F, Bautista V, Ferrer J, Pir C, Marhuendra-Egea FC and Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7:299-306. 237. Perkins DN, Pappin DJC, Creasy DM and Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567. 238. Pham PL, Taillandier P, Delmas M and Strehaiano P (1998) Optimization of the culture medium for xylanase production by Bacillus sp. using statistical experimental designs. World J. Microbiol. Biotechnol. 14:185-190. 239. Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci. Technol. 8:300–306. 240. Prakash B, Vidyasagar M, Madhukumar MS, Muralikrishna G and Sreeramulu K (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Proc. Biochem. 44:210-215. 241. Prakasham RS, Rao S, Rao S and Sarma PN (2007) Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102:204–211. 242. Preiss J (1988) Biosynthesis of starch and its regulation in The Biochemistry of Plants (ed. J Preiss) Academic Press, San Diego pp 181–254. 243. Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41:711-753. 244. Priest FG (1989) Isolation and identification of aerobic, endospore-forming bacteria. In: Biotechnology Handbooks 2: Bacillus (ed. Harwood C.R.) Plenum press, New YorkLondon pp. 27-56. 245. Prieto JA, Bort BR, Martinez J, Randez-Gil F, Buesa C and Sanz P (1995) Purification and characterization of a new α-amylase of intermediate thermal stability from the yeast Lipomyces kononenkoae. Biochem. Cell Biol. 73:41-49. 246. Pritchard PA (1992) Studies on the bread improving mechanisms of fungal α-amylase. J. Biol. Educ. 26:12-18. 247. Pujadas G, Ramirez FM, Valero R and Palau J (1996) Evolution of b-amylase: patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms. Proteins 25:456-472. 248. Qi Si J (1998) Novamyl-A true anti-staling enzyme. Novo Nordisk Novamyl product information sheet A-06565. 208 References 249. Ramasubbu N, Paloth V, Luo Y, Barayer GD and Levine MJ (1996) Structure of human salivary α-amylase at 1.6 A resolution: Implications for its role in the cavity. Acta Crystallography 52:435-446. 250. Ramesh MV and Lonsane BK (1990) Critical importance of moisture content of the medium in α-amylase by Bacillus licheniformis M27 in a solid-state fermentation system. Appl. Microbiol. Biotechnol. 33:501-505. 251. Ramgren M, Andersson E and Hahn-Hagerdal B (1988) α-Amylase production with Bacillus subtilis in the presence of PEG & surfactants. Appl. Microbiol. Biotechnol. 29:337-340. 252. Rao JLUM and Satyanarayana T (2003) Statistical optimization of a high maltose forming hyperthermostable and Ca2+-independent amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. App. Microbiol. 95:712-718. 253. Rao JLUM and T Satyanarayana (2004) Amelioration in secretion of hyperthermostable and Ca2+-independent a-amylase of Geobacillus thermoleovorans by some polyamines and their biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone. J. Appl. Microbiol. 97:1015–1020. 254. Rao JLUM, Satyanarayana T (2007) Improving production of hyperthermostable and high maltose-forming α-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Biores. Technol. 98:345-352. 255. Rega AF, Weed RI., Reed CF, Berg EG and Rothsteen H (1967) Changes in the properties of human erythrocyte membrane protein after solubilization by butanol extraction. Biochim. Biophys. Acta 147:297-312. 256. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE and Miller C (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha amylase. J. Biol. Chem. 277:26501–26507. 257. Robyt J and Ackerman RJ (1971) Isolation, purification and characterization of a maltotetraose producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145: 105-114. 258. Rodrı´guez-Sanoja R, Morlon-Guyot J, Jore J, Pintado J, Juge N and Guyot JP (2000) Comparative characterization of complete and truncated forms of Lactobacillus amylovorus α-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66(8):3350-3356. 259. Rodrı´guez-Sanoja R, Ruiz B, Guyot JP and Sa´nchez S (2005) Starch binding domain affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol.71: 297–302. 209 References 260. Rubin-Pitel SB and Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Combinatorial Chem. High Throughput Screening 9:247-257. 261. Saha BC and Zeikus JG (1989) Novel highly thermostable pullulanase from thermophile. TIBTECH 7:234-238. 262. Sajedi RH, Naderi-Mahesh H, Khajeh K, Ahmadvand R, Ranjbar BA, Asoodeh A and Moradian F (2005) A calcium independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enz. Microb. Technol. 36:666-671. 263. Sajedi RH, Taghdir M, Naderi-Manesh H Khajeh K and Ranjbar B (2007) Nucleotide sequence, structural investigation and homology modeling studies of a Ca2+independent α-amylase with acidic pH-profile. J. Biochem. Mol. Biol. 40:315-324. 264. Salimi A, Yousefi F, Ghollasi M, Daneshjou S, Tavoli H, Ghobadi S, Khajeh K (2012) Investigations on possible roles of C-terminal propeptide of a Ca-independent αamylase from Bacillus. J. Microbiol. Biotechnol. 22(8):1077-83. 265. Sanchez R and Sali A (1997) Advances in comparative protein-structure modeling. Curr. Opin. Struc. Biol. 7:206-214. 266. Sandstedt RM, Kneen E and Blish MJ (1939) A standardized Wohlgemuth procedure for α-amylase activity. Cereal Chem. 16:712-723. 267. Satyanarayana T, Noorwez SM, Kumar S, Rao JLUM, Ezhilvannan M and Kaur P (2004) Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochemical Society Transitions 32(2):276-278. 268. Satyanarayana T, Rao JLUM, and Ezhilvannan M (2005) α-Amylases in Enzyme Technology (eds. Pandey A, Webb C, Soccol CA and Larroche C)Asiatech Publishers Inc, New-Delhi pp 189-220. 269. Savchenko A, Vieille C, Kang S and Zeikus G (2002) Pyrococcus furiosus α-amylase is stabilized by calcium and zinc. Biochemistry 41:6193-6201. 270. Saxena RK, Dutt K, Agarwal L and Nayyar P (2007) A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Biores. Technol. 98:260–265. 271. Schallmey M, Singh A and Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can. J. Microbial. 50: 1-17. 272. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M and Blum P (2004) Occurence and characterizaton of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J. Bacteriol. 186:427-437. 210 References 273. Schellart JA, Visser FMW, Zandstva T and Middlehover WJ (1976) Starch degradation by the mold Trichoderma viride. The mechanism of degradation. Antonie Van Leeuwenhock J. Microbiol. Serol. 42:229. 274. Schwab K, Bader J, Brokamp C, Popovic MK, Bajpai R and Berovic M (2009) Dual feeding strategy for the production of α-amylase by Bacillus caldolyticus using complex media. New Biotechnol. 26:68-74. 275. Schwede T, Kopp J, Guex N and Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31:3381-3385. 276. Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T and Bakker EP (1994) Purification, properties and structural aspects of a thermoacidophilic α-amylase from Alicyclobacillus acidocaldarius ATCC 27009 insight into acid stability of proteins. Eur. J. Biochemi. 226:981-991. 277. Sen S, Dasu VV and Mandal B (2007) Development in directed evolution for improving enzyme functions. Appl. Biochem. Biotechnol. 143:212–223. 278. Serrano L, Day AG and Fersht AR (1993) Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. J. Mol. Biol. 233:305–312. 279. Shafiei M, Ziaee AA and Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic a-amylase from a moderately halophilic bacterium Nesterenkonia sp. strain F. Proc. Biochem. 45:694–699. 280. Shah NK, Upadhyay CM, Nehete PN, Kothari RM and Hegde MV (1990) An economical, upgraded, stabilized and efficient preparation of α-amylase. J. Biotechnol. 16:97-108. 281. Shah SH, Wainwright SJ and Merrett MJ (1990) The interaction of sodium and calcium chloride and light on growth potassium nutrition and proline accumulation in callus cultures of Medicago sativa L. New Phytol. 116:37-45. 282. Sharma DC and Satyanarayana T (2006) A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Biores. Technol. 97:727-733. 283. Shibuya I, Honda H and Maruo B (1968) Stepwise solubilization of chloroplast lamellae by a non-ionic detergent P-40. J. Biochem. 64:571-576. 211 References 284. Shinmyo A, Kimura H and Okada H (1982) Physiology of α-amylase production by immobilized Bacillus amyloliquefaciens. Eur. J. Appl. Microbiol. Biotechnol. 14:7-12. 285. Shirokane Y, Tokutake S, Tobe K and Suzuki M (1996) Simple measurement of α-amylase activity I rice koji. J. Brew. Soc. Jpn. 91:889–894. 286. Shivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR and Pandey A (2006) α-Amylases from microbial sources–an overview on recent developments. Food Technol. Biotechnol. 44:173-184. 287. Si JQ (1999) Enzymes, baking, bread making. In: Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. (eds. Flickinger MC and Drew SW) John Wiley & Sons Inc, 2:947-958. 288. Silman RW Conway MF Anderson RA and Bagley EB (1979) Production of aflatoxin in corn by large scale solid state fermentation process. Biotechnol. Bioeng. 21:17991808. 289. Singh B and Satyanarayana T (2008) Phytase production by Sporotrichum thermophile in solid state fermentation and its applications. Biores. Technol. 99:2824–2830. 290. Sinnott ML (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90:1171–1202. 291. Spencer-Martins I, and van Uden N (1979) Extracellular amylolytic system of the yeast Lipomyces kononenkoae. Eur. J. Appl. Microbiol. Biotechnol. 6:241–250. 292. Spendler T and Jorgensen O (1997) Use of a branching enzyme in baking. Patent application WO97/41736. 293. Stitt M, Lunn J and Usadel B (2010) Arabidopsis and primary photosynthetic metabolism: more than the icing on the cake. Plant J. 61:1067–1091. 294. Suganuma T, Fujita K and Kitahara K (2007) Some Distinguishable Properties between Acid-Stable and Neutral Types of α-Amylases from Acid-Producing Koji. J. Biosci. Bioeng. 104:(5)353–362. 295. Suganuma T, Noda N, Honbo H and Kitahara K (1997) Distiguishable action between acid-stable and neutral α-amylases from shochu koji (Aspergillus kawachii). Biosci. Biotechnol. Biochem. 61:1617–1619. 296. Suganuma T, Tahara N, Kitahara K, Nagahama T and Inuzuka K (1996) N-terminal sequence of amino acids and some properties of an acid stable α-amylase from citric acid Koji (Aspergillus usamiivar). Biosci. Biotechnol. Biochem. 60:177-179. 212 References 297. Sugden C and Bhat MK (1994) Cereal straw and pure cellulose as carbon sources for growth and production of plant cell-wall degrading enzymes by Sporotrichum thermophile. World J. Microbiol. Biotechnol. 10:444–451. 298. Sujatha MS and Balaji PV (2006) Fold-recognition and comparative modeling of human α-2, 3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni. BMC Struc. Biol. 6:9. 299. Suvd D, Fujimoto Z, Takase K, Matsumura M and Mizuno H (2001) Crystal structure of Bacillus stearothermophilus α-amylase: possible factors determining the thermostability. J. Biochem. 129:461-468. 300. Suzuki Y, Nagayama T, Nakano H and Oishi K (1987) Purification and characterization of maltogenic α-amylaseI, and a maltogenic α-amylase II capable of cleaving α-1,6glucosidases. Appl. Microbiol. Biotechnol. 26:546-551. 301. Swain MR and Ray RC (2007) Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. J. Basic Microbiol. 47: 417-425. 302. Szczodark J and Tagonski Z (1989) Simultaneous saccharification and fermentation of cellulose: effect of ethanol and cellulases on particular stages. Acta Biotechnol. 9:555-564. 303. Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldán I, Montero M (2009) Starch granule initiation in Arabidopsis requires the presence of either Class IV or Class III strach synthase. Plant Cell. 21:2443–2457. 304. Takase K, Matsumoto T, Mizuno H, Yamane K (1992) Site-directed mutagenesis of active site residuesin Bacillus subtilis α-amylase. Biochim. Biophys. Acta 1120:281288. 305. Tester RF and Karkalas J (2002) Starch. In: Biopolymers vol. 6 Polysaccharides. II Polysaccharides from Eukaryotes (series ed. Steinbuchel A), (vol eds. Vandamme EJ De baets S, and Steinbuchel A) Wiley-VCH, Weinheim pp 381-438. 306. Tester RF, Karkalas J and Qi X (2004) Starch structure and digestibility, Enzymesubstrate relationship. World’s Poultry Sci. J. 60:186-195. 307. Tripathi P, Leggio LL, Mansfeld J, Ulbrich-Hofmann R, Kayastha AM (2007) α-Amylase from mung beans (Vigna radiata) – Correlation of biochemical properties and tertiary structure by homology modeling. Phytochem. 68:1623-1631. 308. Ueno S, Miyama M, Ohashi Y, Izumiya M and Kusaka I (1987) Secretary enzyme production and conidiation of Aspergillus oryzae in submerged liquid culture. Appl. Microbiol. Biotechnol. 26:273-276. 213 References 309. Uma Maheswar Rao JL (2006) Production, characterization and applications of hyperthermostable α-amylase of Geobacillus thermoleovorans. Ph.D. Thesis, University of Delhi South Campus, New Delhi, India. 310. Uma Maheswar Rao JL and Satyanarayana T (2003) Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent α-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95(4):712-718. 311. Uma Maheswar Rao JL and Satyanarayana T (2007a) Improving production of hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Biores. Technol. 98(2):345-352. 312. Uma Maheswar Rao JL and Satyanarayana T(2007b). Purification and characterization of a hyperthermostable and high maltogenic alpha-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl. Biochem. Biotechnol. 142(2):179-193. 313. Van Dam HW and Hille JDR (1992) Yeast and enzymes in bread making. Cereal Foods World 37(2):245-252. 314. Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H and Dijhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94:137-155. 315. Van der Veen BA, Van Alebeek GJWM, Uitdehaag JCM, Dijkstra BW and Dijkhuizen L (2000b) The three transglycosylation radiations catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. European J. Biochem. 267:658-665. 316. Verhaert RM, Beekwilder J, Olsthoorn R, Van DJ and Quax WJ (2002) Phage display selects for amylases with improved low pH starch binding. J. Biotechnol. 96:103–118. 317. Vielle C and Zeikus GJ (2001) Hyperthermophilic Enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65:1-43. 318. Vihinen M and Mantsala P (1989) Microbial amylolytic enzymes. Critical Rev. Biochem. Mol. Biol. 24:329-418. 319. Vihinen M, Ollikka P, Niskanen J, Meyer P, Suominen I, Karp M, Holm L, Knowles J, Mantsala P (1990) Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearothermophilus: putative role of three conserved residues. J. Biochem. 107, 267272. 214 References 320. Vihinen M, Peltonen T, Iitia A, Suominen I and Mantsala P (1994) C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase. Protein Eng. 7(10):1255-1259. 321. Vriet C, Welham T, Brachmann A, Pike M, Pike J, Perry J, Parniske M, Sato S, Tabata S, Smith AM, et al. (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol. 154:643–655. 322. Zeeman SC, Kossmann J and Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Ann. Rev. Plant Biol. 61:209–234. 323. Webster DM (2000) Protein structure prediction: methods and protocols, Humana Press Totowa, New Jersey. 324. Wenster-Botz D (2000) Experimental design for fermentation of media development: Statistical design or global random search? J. Biosci. Bioeng. 90:473-483. 325. Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51:221-271. 326. Wolfenden R, Lu X and Young G (1998) Spontaneous hydrolysis of glycosides. J. American Chemical Society 120:6814-6815. 327. Worthington P, Hoang V, Perez-Pomares F and Blum P (2003) Targeted disruption of the α amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 185:482-488. 328. Yabuki M, Ono N, Hoshino K and Fukui S (1977) Rapid induction of α-amylase by non-growing mycelia of Aspergillus oryzae. Appl. Environ. Microbiol. 34:1-6. 329. Yamane K, Hirata Y, Furusato T, Yamazaki H, Nakayama A (1984) Changes in the properties and molecular weights of Bacillus subtilis M-type and N-type α-amylases resulting from a spontaneous deletion. J. Biochem. 96:1849-1858. 330. Yoon MY, Yoo YJ and Cadman TW (1989) Phosphate effects in the fermentation of αamylase by Bacillus amyloliquefaciens. Biotechnol. Lett. 11:57-60. 331. Yoshigi N, Chikano T and Kamimura M (1985) Characterisation of maltopentaose producing bacterium and its cultural conditions. Agric. Biol. Chem. 49:2379-2384. 332. Zadrazil F and H Brunnert (1981) Investigation of physical parameters important for the solid-state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 11:183-188. 333. Zeng Q, Wei C, Jin J, Wu C and Huang B (2011) Cloning of the gene encoding acidstable alpha-amylase from Aspergillus niger and its expression in Pichia pastoris. Afri. J. Food Science 5:668-675. 215 References 334. Zenin CT and Park YK (1983) Purification and characterization of acid α-amylase from Paecilomyces sp. J. Ferment. Technol. 61:109. 335. Zhang GM, Huang J, Huang GR, Ma LX and Zhang XE (2007) Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl. Microbiol. Biotechnol. 74:339-346. 336. Zhang Q, Tsukagoshi N, Miyashiro S and Udaka S (1983) Increased production of αamylase by Bacillus amyloliquefaciens in the presence of glycine. Appl. Environ. Microbiol. 46:293-295. 337. Zobel HF and Stephan AM (1995) Starch: structure, analysis and application. In: Food polysaccharide and their applications (ed. Stephan AM) Marcel Dekker Inc., New York Basel, Hongkong pp. 1560-1584. 216
© Copyright 2024 ExpyDoc