V. REFERENCES….

V. REFERENCES….
1.
Abdel-Naby MA, El-Refai HA and Abdel-Fattah AF (2011) Biosynthesis of
cyclodextrin glucosyltransferase by the free and immobilized cells of Bacillus cereus
NRC7 in batch and continuous cultures. J. Appl. Microbiol. 11:1129-1137.
2.
Abelyan VA (2000) Immobilization of cells by entrapping in aubasidan. Appl.
Biochem. Microbiol. 36 (1):73-75.
3.
Aehle W and Misset O (1999) Enzymes for industrial applications in Biotechnology
(eds. Rehm HJ and Reed G) Wiley -VCH, Germany pp. 189-216.
4.
Aguilar G J, Morlon-Guyot B, Trejo-Aguilar and Guyot JP (2000) Purification and
characterization of an extracellular α-amylase produced by Lactobacillus
manihotivorans LMG 18010 T a n a m y l o l y t i c l a c t i c acid bacterium. Enz.
Microb. Technol. 27:406–413.
5.
Akher M, Leithy MA, Massafy MK and Kasim SA (1973) Optimal conditions of the
production of bacterial amylase. Zentralbl. Bakteriol. Parasitenk. Infektionskr.
Hyg. 128:483–490.
6.
Alazard D and Baldensperger JF (1982) Amylolytic enzymes from Aspergillus
hennebergi (A. niger group): purification and characterization of amylases from solid
and liquid cultures. Carbohydrate Research 107: 231-237.
7.
Albers SV and Driessen AJ (2007) Conditions for gene disruption by homologous
recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea
2:145-149.
8.
Ali MB, Mhiri S, Mezghani M and Bejar S (2001) Purification and sequence analysis of
the a typical maltohexaose-forming a-amylase of the B. stearothermophilus US100.
Enz. Microb. Technol. 28:537–554.
9.
Ali MB, Mezghani M and Bejar S (1999) A thermostable alpha amylase producing
maltohexaose from a newly isolated Bacillus sp .US100: study of activity and
molecular cloning of the corresponding gene. Enz. Microb. Technol. 24:584-589.
10.
Ali S, Yousefi F, Ghollasi M, Daneshjou S, Tavoli H, Ghobadi S and Khajeh K (2012)
Investigations on possible roles of C-terminal propeptide of a Ca-independent αamylase from Bacillus. J. Microbiol. Biotechnol. 22(8):1077–1083.
11.
Alikhajeh J, Khajeh K, Naderi-Manesh M, Ranjbar B, Sajedi RH and Naderi-Manesh H
(2007) Kinetic analysis, structural studies and prediction of pKa values of Bacillus KR8104 α-amylase: The determinants of pH-activity profile. Enz. Microbiol.
Technol.41:337-345.
12.
Amanullah A, Blair R, Nienow AW and Thomas CR (1999) Effects of agitation
intensity on mycelial morphology and protein production in chemostat cultures of
recombinant Aspergillus oryzae. Biotechnol. Bioeng. 62:434-446.
189
References
13.
Amemura A, Chakraborty R, Fujita M, Noumi T and Futai M (1988) Cloning and
nucleotide sequence of the isoamylase gene from Pseudomonas amyloderamosa SB-15.
J. Biol. Chem. 263:9271-9275.
14.
Amritkar N, Kamat M and Lali A (2004) Expanded bed affinity purification of bacterial
α-amylase and cellulose on composite substrate analogue-cellulose matrices. Proc.
Biochem. 39:565-570.
15.
Anto H, Trivedi U and Patel K (2006) Alpha Amylase Production by Bacillus cereus
MTCC 1305 Using Solid-State Fermentation. Food Technol. Biotechnol. 44(2):
241–245.
16.
Antranikian G (1992) Microbial degradation of starch in: Microbial degradation of
natural products, (ed. Winkelmann) Weinheim VCH, Germany pp. 27-56.
17.
Antranikian G, Zablowski P and Gottschalk G (1987) Conditions for the
overproduction and excretion of thermostable α-amylase and pullulanase from
Clostridium thermohydrosulfuricum DSM 567. Appl. Microbiol. Biotechnol. 27: 75-81.
18.
Archana A and Satyanarayana T (1997) Xylanase production by Bacillus licheniformis
A 99 in solid state fermentation Enz. Microb. Technol. 21:12–17.
19.
Arnesen S, Eriksen SH, Olsen J and Jensen B (1998) Increased production of α-amylase
from Thermomyces lanuginosus by the addition of Tween 80. Enz. Microb. Technol.
23:249-252.
20.
Arnold K, Herrmann A, Pratsch L and Gawrisch K (1985) The dielectric properties of
aqueous solutions of poly (ethylene glycol) and their influence on membrane structure.
Biochim. Biophys. Acta 815:515-518.
21.
Arst HN and Bailey CR (1977) The regulation of carbon metabolism in Aspergillus
nidulans, In: Genetics and physiology of Aspergillus (eds. Smith JE and Pateman JA)
Academic Press, New York pp. 131-146.
22.
Asoodeh A, Chamani J and Lagzian M (2010) A novel thermostable, acidophilic
α-amylase from a new thermophilic ‘‘Bacillus sp. Ferdowsicous’’ isolated from
Ferdows hot mineral spring in Iran: purification and biochemical characterization. Int.
J. Biol. Macromol. 46:289–297.
23.
Babu KR and Satyanarayana T (1993a) Parametric optimization of extracellular
α-amylase by thermophilic Bacillus coagulans. Folia Microbiologica 38:77-80.
24.
Babu KR and Satyanarayana T (1993b) Extracellular calcium-inhibited α-amylase of
Bacillus coagulans B 49. Enz. Microb. Technol. 15:1066-1069.
190
References
25.
Babu KR and Satyanarayana T (1995) α-Amylase production by thermophilic Bacillus
coagulans in solid state fermentation. Proc. Biochem. 30:305-309.
26.
Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W and Yao B
(2012) Identification of an acidic a-amylase from Alicyclobacillus sp. A4 and
assessment of its application in the starch industry. Food Chem. 131:1473–1478.
27.
Baig MA, Pazlarova J and Votruba J (1984) Kinetics of α-amylase production in a
batch and fed batch culture of Bacillus subtilis. Folia Microbiologica 29:359-364.
28.
Ball SG and Morell MK (2003) From bacterial glycogen to starch: understanding the
biogenesis of the plant starch granule. Ann. Rev. Plant Biol. 54:207–233.
29.
Ballschmiter M, Fütterer O and Liebl W (2006) Identification and characterization
of a novel intracellular alkaline α-amylase from the hyperthermophilic
bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 72(3):2206–2211.
30.
Beg QK, Bhushan B, Kappor M and Hoondal GS (2000) Production and
characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-113. J. Indust. Microbiol. Biotechnol. 24:396-402.
31.
Ben Ali M, Mhiri S, Mezghani M and Bejar S (2001) Purification and sequence
analysis of the atypical maltohexaose-forming α-amylase of the B. stearothermophilus
US 100. Enz. Microb. Technol. 28:537–542.
32.
Bernfeld P (1955) Amylase α and β. In: Methods in Enzymology (eds. Colowich ISP
and Kaplan NO) Academic Press, New York. pp 149-158.
33.
Bertoldo C and Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic
archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151-160.
34.
Bertoldo C, Dock C and Antranikian G (2004) Thermoacidophilic microorganisms and
their novel biocatalysts. Eng. Life. Sci. 4:521-531.
35.
Bhella RS and Altosaar I (1985) Purification and some properties of the extracellular αamylase from Aspergillus awamori. Can. J. Microbiol. 31:149-155.
36.
Binder F, Huber O, Böck A (1986) Cyclodextrin-glycosyltransferase from Klebsiella
pneumoniae M5a1: cloning, nucleotide sequence and expression. Gene 47(2-3):
269–277.
37.
Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VJ, Petersen SB,
Swift H, Thim L and Woldike HF (1990) Calcium binding in α-amylases: an X-ray
diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry
29:6244–6249.
191
References
38.
Bohdziewicz J (1996) Ultrafiltration of technical amylolytic enzymes. Proc. Biochem.
31:185-191.
39.
Bolton, D.J., Kelly, C.T. & Fogarty, W.M. (1997). Purification and characterization of
the α-amylase of Bacillus flavothermus. Enz. Microb. Technol. 20: 340-343.
40.
Boni LT, Stewart TP, Alderfer JL and Hui SW (1981) Lipid-polyethylene glycol
interactions: II. Formation of defects in bilayers. J. Membrane Biol. 62:71-77.
41.
Brayer GD, Luo Y and Wither SG (1995) The structure of human pancreatic α-amylase
at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 4:1730-1742.
42.
Brodelius P and Vandamme EJ (1987) Immobilized cell systems. In: Biotechnology
(ed. Kennedy JF), VCH Publishers, FRG pp 405-464.
43.
Brzozowski AM, Lawson DM, Turkenburg JP, Bisgaard-Frantzen H, Svendsen A,
Borchert TV, Dauter Z, Wilson KS and Davies GJ (2000) Structural analysis of native
and ligand complexes. Biochemistry 39:9099-9107.
44.
Buleon A, Colonna P, Planchot V and Ball S (1998) Starch granules: structure and
biosynthesis. Int. J. Biol. Macromol. 23:85-112.
45.
Buonocore V, Caporale C, De Rosa M and Gambacorta A (1976) Stable, inducible
thermoacidophilic a-amylase from Bacillus acidocaldarius. J. Bacteriol. 128:515-521.
46.
Burhan A (2008) Highly thermostable, thermophilic, alkaline, SDS and chelator
resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Biores. Technol.
99:3071-3076.
47.
Busch JE, Porter EG and Stutzenberger FJ (1997) Induction of alpha amylase by
maltooligosaccharides in Thermomonospora curvata. Curr. Opi. Chem. Biol. 6:151160.
48.
Campbell LL (1955) Purification and properties of an α-amylase from facultative
thermophilic bacteria. Arch. Biochem. Biophys. 54:154-161.
49.
Canganella F, Andrae CM and Antranikian C (1994) Characterization of amylolytic and
pullulytic activities from thermophilic archaea and from a new Fervidobacterium
species. Appl. Microbiol. Biotechnol. 42:239-245.
50.
Carlsen M, Marcher J and Neilson J (1994) An improved FIA-method for measuring αamylase in cultivation media. Biotechnol. Techn. 8:479-482.
51.
Chary SJ and Reddy SM (1985) Starch degrading enzymes of two species of Fusarium.
Folia Microbiologica 30:452-457.
192
References
52.
Chauthaiwale J and Rao M (1994) Chemical modification of xylanase from
alkalothermophilic Bacillus species: evidence for essential carboxyl group. Biochem.
Biophys. Acta 1204:164-168.
53.
Chen HZ, Xu J and Li ZH (2005) Temperature control at different bed depths in a novel
solid state fermentation system with two dynamic changes of air. Biochemical Bioeng.
J. 23:117-122.
54.
Chevalier P and Noue JD (1987) Enhancement of α-amylase production by
immobilized Bacillus subtilis in an airlift fermentor. Enz. Microb. Technol. 9:53-56.
55.
Chi MC, Chen YH, Wu TJ, Lo HF and Lin LL (2010) Engineering of a truncated αamylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and
oxidative stabilities. J. Biosci. Bioeng. 109:531-538.
56.
Claus D and Fritze D (1989) Taxonomy of Bacillus. In: Bacillus, Biotechnology
Handbooks 2, (ed. Harwood CR) Plenum Press, New York and London.
57.
Cohn F (1872) Untersuchungen uber Bacterien. Beitrage zur Biologie der Pflanzen 1:
Heft 2, 177:127-222.
58.
Cole MS (1982) Antistaling baking composition, Patent application US 4320151.
59.
Combes D, Yoovidhya T, Girbal E, Willemot RM and Monsan P (1987) Mechanism of
enzyme stabilization. Enz. Eng. 8:59-62.
60.
Coombs J (1984) Sugarcane as an energy crop. Biotechnol. Genetic Eng. Rev. 1:311345.
61.
Coutinho PM and Reilly PJ (1997) Glucoamylase structural, functional, and
evolutionary relationships. Proteins 29:34–347.
62.
Crabb WD and Mitchinson C (1997) Enzymes involved in the processing of starch to
sugars. TIBTECH 15:349-352.
63.
Cui YQ, Van der Lans RGJM and Luyben KCAM (1997) Effect of agitation intensities
on fungal morphology of submerged fermentation. Biotechnol. Bioeng. 55:715-726.
64.
Davies G and Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases.
Structure 3:853-859.
65.
Deley J (1978) Modern molecular methods in bacterial taxonomy: evaluation,
application, prospects. Proceedings of the 4th international conference on plant
pathology and bacteriology, pp 347-357.
193
References
66.
DeMoraes LMP, Astolfi-Filho S and Ulhao CJ (1999). Purification and some properties
of an α-amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World
J. Microbiol. Biotechnol. 15:561-564.
67.
DeStefanis VA and Turner EW (1981) Modified enzyme system to inhibit bread
firming method for preparing same and use of same in bread and other bakery products,
Patent application US 4299848.
68.
Dey G, Palit S, Banerjee R and Maiti BR (2002) Purification and characterization of
maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J. Indus.
Microbiol. Biotechnol. 28:193-200.
69.
Dheeran P, Kumar S, Jaiswal YK and Adhikari DK (2010) Characterization
of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Appl. Microbiol.
Biotechnol. 86:1857–1866.
70.
Dobreva E, Ivanova V, Tonkova A and Radulova E (1996) Influence of the
immobilization conditions on the efficiency of alpha-amylase production by
Bacillus licheniformis. Proc. Biochem. 31(3):229-234.
71.
Dong G, Vieille C, Savchenko A and Zeikus JG (1997) Cloning, sequencing, and
expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and
biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol.
63:3569-3576.
72.
Eftink MR and Ghiron CA (1981) Fluorescence quenching studies with proteins.
Ann. Biochem. 114:199-227.
73.
Eratt JA, Douglas PE, Moranelli F and Seligy VL (1984) The induction of α-amylase
by starch in Aspergillus oryzae: evidence for controlled mRNA expression. Can.
J. Biochem. Cell Biol. 62:678-690.
74.
Ezeji EU, Anyanwu BN, Onyeze GOC and Ibekwe VI (2005) Studies on the utilization
of Petroleum Hydrocarbon by Micro Organism isolated from oil Contaminated Soil. Int.
J. Nat. Appl. Sci. 1(2):122-128.
75.
Ezeji TC and Bahi H (2006) Purification, characterization, and synergistic action of
phytate-resistant α-amylase and α-glucosidase from Geobacillus thermodenitrificans
HRO10. J. Biotechnol. 125:27-38.
76.
Feller G, D’Amico S, Benotmane AM, Joly F,Van Beeumen J and Gerday C (1998)
Characterization of the C-terminal propeptide involved in bacterial wall spanning of αamylase from the psychrophile Alteromonas haloplanctis. J. Biol. Chem. 273:1210912115.
194
References
77.
Feniksova RV, Tikhomirova AS and Rakhleeva BE (1960) Conditions for
forming amylase and proteinase in surface culture of Bacillus subtilis. Mikrobiologia
29:745-748.
78.
Fisher D and Goodall AH (1981) Membrane fusion by viruses and chemical agents.
Techniq. Cell Physiol. 115:1-36.
79.
Florencio J, Eiras-Stofella D, Soccol C, Raimbault M, Guyot JP and Fontana J (2000)
Lactobacillus plantarum amylase acting on crude starch granules. Appl. Biochem.
Biotechnol. 84:721–730.
80.
Fogarty WH, Griffin PJ and Joyce AM (1974) Enzymes of Bacillus sp. Proc. Biochem.
9:11-24.
81.
Fogarty WM and Kelly CT (1980) Economic Microbiology. In: Microbial enzymes and
bioconversions, (ed. Rose AH) Academic Press, London 5:115-170.
82.
Fogarty WM and Kelly CY (1990) Recent advances in microbial amylases. In:
Microbial Enzymes & Biotechnology. (eds. Fogarty WM and Kelly CT) Elsevier
Science Publishers, London pp.71-132.
83.
Fogarty WM, Bourke AC, Kelly CT and Doyle EM (1994) A constitutive
maltotetraose-producing amylase from Pseudomonas sp. IMD 353. Appl. Microbiol.
Biotechnol. 42:198–203.
84.
Fogarty WM, Collins BS, Doyle EM and Kelly CT (1993) The high maltose-forming αamylase of Saccharomonospora viridis: mechanisms of action. J. Indust. Microbiol.
11:199-204.
85.
Furusaki S and Seki M (1992) Use and engineering aspects of immobilized cells in
biotechnology. Adv. Biochem. Eng. Biotechnol. 49:161-185.
86.
Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C,
Antranikian G and Liebl W (2004) Genome sequence of Picrophilus torridus and its
implications for life around pH 0. Proc. Natl. Acad. Sci. U S A 101:9091–9096.
87.
Fuwa H (1954) A new method for micro determination of amylase activity by the use of
amylose as substrate. J. Biochem. 41:583-603.
88.
Gangadharan D, Shivaramakrishnan S, Naampoothiri MK, Sukumaran RK and Pandey
A (2008) Response surface methodology for the optimization of alpha amylase
production by Bacillus amyloliquefaciens. Biores. Technol. 99:4597-4602.
89.
Gangadharan D, Sivaramakrishnan S, Nampoothiri KM and Pandey A (2006) Solid
culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol.
Biotechnol. 44:269-274.
195
References
90.
Gao S, An J, Wu CF, Gu Y, Chen F, Yu Y, Wu QQ and Bao JK (2005) Effect of amino
acid residue and oligosaccharide chain chemical modifications on spectral and
hemagglutinating activity of Millettia dielsiana harms.ex Diels. Lectin. Acta Biochim.
Biophys. Sinica 37(1):47-54.
91.
Gashaw M and Amare G (1999) Purification and characterization of two raw-starchdigesting thermostable a-amylases from a thermophilic Bacillus. Enz. Microb. Technol.
25:433-438.
92.
Gautam P, Sabu A, Pandey A, Szakacs G and Soccol CR (2002) Microbial production
of extracellular phytase using polystyrene as inert solid support. Biores. Technol.
83:229-233.
93.
Geigenberger P, Stitt M and Fernie AR (2004) Metabolic control analysis and
regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell
Environ. 27:655–673.
94.
Geigenberger P, Tiessen A and Meurer J (2011) Use of non-aqueous fractionation and
metabolomics to study chloroplast function in Arabidopsis. Methods Mol. Biol.
775:135–160.
95.
Ghatge MS and Deshpande VV (1993) Evidence for specific interaction of guanidine
hydrochloride with carboxy groups of enzymes/proteins. Biochem. Biophys. Res.
Commun. 193:979-984.
96.
Ghosh M and Nanda G (1991) Immobilized Aspergillus sydowii produces xylanase.
Biotechnol. Lett. 13:807-808.
97.
Gigras P, Sahai V and Gupta R (2002) Statistical media optimization and production of
its ITS α-amylase from Aspergillus oryzae in a bioreactor. Curr. Microbiol. 45:203208.
98.
Giraud E and G Cuny (1997) Molecular characterization of the α-amylase genes of
Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3’ end
structure with direct tandem repeats and suggests a common evolutionary origin. Gene
198:149–157.
99.
Giri NY, Mohan AR, Rao LV and Rao CP (1990) Immobilization of α-amylase
complex in detection of higher oligosaccharides on paper. Curr. Sci. 59:1339-1340.
100. Glazer AN and Nikaido H (1995) Microbial enzymes. In: Microbial Biotechnology,
(eds.Glazer AN and Nikaido H) W.H. Freeman and Co, New York pp 241-263.
101. Glymph JL and Stutzenberger FJ (1977) Production, purification and characterization
of α-amylase from Thermomonospora curvata. Appl. Environ. Microbiol. 34:391-397.
196
References
102. Godfrey T and West S (1996) Industrial Enzymology. 2nd Edn. Macmillan Publishers
Inc. New York.
103. Gokhale DV, Patil SG and Bastawde KB (1991) Optimization of cellulase production
by Aspergillus niger NCIM 1207. App. Biochem. Biotechnol. 30:99-109.
104. Gowthaman MK and Krishnan Moo-Young M (2001) Fungal solid state fermentation An overview. In: Applied Mycology and Biotechnology, Agriculture and Food
Production (eds. Khachatourians GG and Arora DK) Elsevier Science, Netherlands pp.
305-352.
105. Gray JA and Bemiller JN (2003) Bread staling: Molecular basis and control.
Comprehensive Rev. Food Sci. Food Safety 2:1–21.
106. Gu X-B, Zheng Z-M, Yu H-Q, Wang J, Liang F-L and Liu R-L (2005) Optimization of
medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a
response surface method. Proc. Biochem. 40:3196-3201.
107. Gubern G, Canalias F, Gella FJ, Colinet E, Profilis C, Calam H, Ceriotti F, Dufaux J,
Hadjivassiliou AG, Lessinger JM, Lorentz K and Vassault A (1996) Production and
certification of an enzyme reference material for pancreatic alpha-amylase CRM 476.
Clin. Chim. Acta 252:145-162.
108. Guex N and Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An
environment for comparative protein modelling. Electrophoresis 18:2714-2723.
109. Guillen D, Santiago M, Linares L, Perez R, Morlon J, Ruiz B, Sanchez S and
Rodrıguez-Sanoja R (2006) α-Amylase starch binding domains: Cooperative effects of
binding to starch granules of multiple tandemly arranged domains. Appl. Environ.
Microbiol.73:3833–3837.
110. Gupta R, Gigras P, Mohapatra H, Goswami VK and Chauhan B (2003) Microbial αamylases: a biotechnological perspective. Proc. Biochem. 38:1599-1616.
111. Guzman-Maldonadao H and Paredes-Lopez O (1995) Amylolytic enzymes and
products derived from starch: a review. Crit. Rev. Food Sci. Nutri. 35:373-403.
112. H Pedersen and Nielsen J (2000) The influence of nitrogen sources on the alpha
amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol.
Biotechnol. 53:278–281.
113. Hamer RJ (1995) Enzymes in the baking industry. In: Enzymes in food processing
(Eds. Tucker GA and Woods LFJ) Blackie Academic and Professional, Glasgow pp.
190-222.
197
References
114. Hamilton LM, Kelly CT and Fogarty WM (1999) Purification and properties of the raw
starch-degrading α-amylase of Bacillus sp. IMD 434. Biotechnol. Lett. 21:111-115.
115. Hansen PW (1984) Determination of fungal α-amylase by flow injection analysis.
Analytical Chimica Acta. 158:375-377.
116. Haq I, Ashraf H, Iqbal J and Qadeer MA (2003) Production of α-amylase by Bacillus
licheniformis using an economical medium. Biores. Technol. 87:57-61.
117. Hashemi M, Razavi SH, Shojaosadati SA, Mousavi SM, Khajeh K and Safari M (2010)
Development of a solid-state fermentation process for production of an alpha amylase
with potentially interesting properties. J. Biosci. Bioeng. 110(3):333–337.
118. Hashim SO, Delgado OD, Martinez MA, Rajni-Hatti K, Mulaa FJ and Mattiasson
B (2005) Alkaline active maltohexaose-forming α-amylase from Bacillus
halodurans LBK 34. Enz. Microb. Technol. 36:139–146.
119. Hebeda RE, Bowles LK and Teague WM (1990) Developments in enzymes for
retarding staling of baked goods. Cereal Foods World 35(5):453-457.
120. Hebeda RE, Bowles LK and Teague WM (1991) Use of intermediate temperature
stability enzymes for retarding staling in baked goods. Cereal Foods World 36:619-624.
121. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid
sequence similarities. Biochem. J. 280:309–316.
122. Hermansson AM and Svegmark K (1996) Developments in the understanding of starch
functionality. Trends Food Sci. Technol. 7:345-353.
123. Hillier P, Wase DAJ, Emery AN and Solomons GL (1997) Instability of α-amylase
production and morphological variation in continuous culture of Bacillus
amyloliquefaciens is associated with plasmid loss. Proc. Biochem. 32:51-59.
124. Hirata A, Adachi M, Sekine A, Kang YN, Utsumi S and Mikami B (2004) Structural
and enzymatic analysis of soybean beta amylase mutants with increased pH optimum.
J. Biol. Chem. 279:7287–7295.
125. Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N and Nasri M (2008) Purification
and biochemical characterization of a novel α-amylase from Bacillus licheniformis
NH1 Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli.
Proc. Biochem. 43:499–510.
126. Hollo J and Szeitli J (1968) The reaction of starch with iodine. In: Starch and its
derivatives, 4th Edn (ed. Rodley JA) Chapman and Hall Ltd, pp 203-246.
198
References
127. Hong J (1986) Optimal substrate feeding policy for fed-batch fermentation with
substrate and product inhibition kinetics. Biotechnol. Bioeng. 28:1421-1431.
128. Huang H, Ridgway D, Gu T and Moo-Young M (2004) Enhanced amylase production
by B. subtilis using a dual exponential feeding strategy. Bioprocess Biosys. Eng. 27:
63-69.
129. Humphrey A (1998) Shake flask to fermenter: What have we learnt? Biotechnol.
Progress. 14:3-7.
130. Hung SY and Chen JC (1989) Ethanol production in simultaneous saccharification and
fermentation of cellulose with temperature profiling. J. Fermentation Technol. 66:509516.
131. Hyun HH and Zeikus JG (1985) Simultaneous and enhanced production of
thermostable amylases and ethanol from starch by cocultures of
Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum. Appl.
Environ. Microbiol. 49(5):1174-81.
132. Iftikhar T, Niaz M, Abbas SQ, Zia MA, Ashraf I, Lee KJ and Haq IU (2010) Mutation
induced enhanced biosynthesis of lipases by Rhizopus oligosporus var. microsporus.
Pak. J. Bot. 42(2):1235-1249.
133. James MG Denyer K and Myers AM (2003) Starch synthesis in the cereal endosperm.
Curr. Opin. Plant Biol. 6:215–222.
134. Jamuna R and Ramakrishna SV (1992) In: Physiology of immobilized cells, (ed Bont
De) Science Publishers Elsevier, JAM Amsterdam pp. 533-538.
135. Jansen B and Olsen J (1999) Amylases and their industrial potential. In: Thermophilic
moulds in Biotechnology (eds. Johri BN, Satyanarayana T and Olsen J) Kluwer
academic publishers, Netherlands pp 115-137.
136. Jones A, Lamsa M, Frandsen TP, Spendler T, Harris P, Sloma A, Xu F, Nielson JB and
Cherry JR (2008) Directed evolution of a maltogenic alpha-amylase from Bacillus sp.
TS-25. J. Biotechnol. 134:325–333.
137. Kammerer R, Hahn S, Singer BB, Luo JS and von Kleist S (1998) Biliary glycoprotein
(CD66a), a cell adhesion molecule of the immunoglobulin superfamily, on human
lymphocytes: structure, expression and involvement in T cell activation. Eur.
J. Immunol. 28:3664-3674.
138. Kaneko A, Sudo S, Takayasu-Sakamoto Y, Tamura G, Ishikawa T and Oba T (1996)
Molecular cloning and determination of the nucleotide sequence of a gene
encoding an acidstable α-amylase from Aspergillus kawachii. J. Ferment. Bioeng.
81:292-298.
199
References
139. Kanno M (1986) α-Amylase production by Bacillus acidocaldarius, Bacillus
stearothermophilus and their D-cycloserine resistant mutants. Agri. Biol.
Chem.50:2633-2635.
140. Katsuya Y, Mezaki Y, Kubota M, Matsuura Y (1998) Three-dimensional structure of
Pseudomonas isoamylase at 2.2 A resolution. J. Mol. Biol. 281:885-897.
141. Kaur G and Satyanarayana T (2004) Production of extracellular pectinolytic,
cellulolytic and xylanolytic enzymes by thermophilic mould Sporotrichum thermophile
Alpinis in soild state fermentation. Ind. J. Biotechnol. 3:552-557.
142. Kapoor M, Beg QK, Bhushan B, Dadhich KS and Hoondal GS (2000) Purification
and partial purification of a thermo-alkali stable polygalacturonase from Bacillus sp.
MG-cp-2. Proc. Biochem. 36:467-473.
143. Kelly CT, Bolton DJ and Fogarty WM (1997) Bi-phasic production of α-amylase of
Bacillus flavothermus in batch fermentation. Biotechnol. Lett. 19:675-677.
144. Kelly CT, Collins BS, Fogarty WM and Doyle EM (1993) High maltogenic α-amylases
from the actinomycetes. Appl. Microbiol. Biotechnol. 39:599-603.
145. Khajeh K, Naderi-Manesh H, Ranjbar B, Movahedi AAM and Gorgani MN (2001)
Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and
stability. Enz. Microb.Technol. 28:543-549.
146. Khemakhem B, Ali MB, Aghajari N, Juy M, Haser R and Bejar S (2009) Engineering
of the α-amylase from Geobacillus stearothermophilus US100 for detergent
incorporation. Biotechnol. Bioeng. 102(2):380-390.
147. Kikani BA and Singh SP (2011) Single step purification and characterization of a
thermostable and calcium independent α-amylase from Bacillus amyloliquifaciens
TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Inter. J.
Biol. Macromol. 48(4):676-81.
148. Koch R, Zablowski P and Antranikian G (1987) Highly active and thermostable
amylases and pullulanases from various anaerobic thermophiles. Appl. Microbiol.
Biotechnol. 27:192-198.
149. Kokubu T, Karube I and Suzuki S (1978) Alpha-amylase production by immobilized
whole cells of Bacillus subtilis. Eur. J. Appl. Microbiol. Biotechnol. 5:233-240.
150. Kole MM and Gerson DF (1989) Ammonium controlled fed-batch fermentation for
amylase production. J. Ferment. Bioeng. 68:423–427.
200
References
151. Komissarov AA, Romanova DV and Debabov VG (1995) Complete inactivation
of Escherichia coli uridine phosphorylase by modification of Asp with Woodward’s
reagent K. J. Biol. Chem. 270:10050-10055.
152. Kopp J and Schwede T (2004) The SWISS-MODEL Repository of annotated three
dimensional protein structure homology models. Nucleic Acids Res. 32:230-234.
153. Koshcheyenko KA, Turkina MV and Skryabin GK (1983) Immobilization of living
microbial cells and their application for steroid transformations. Enz. Microb.Technol.
5:14-21.
154. Kulp K (1993) Enzymes as dough improvers. In: Advances in baking technology (eds.
Kamel BS and Stauffer CE) Blackie academic and professional VCH Publishers, New
York pp 152-178.
155. Kulp K and Ponte JG (1981) Staling of white pan bread: fundamental causes. Crit. Rev.
Food Sci. Nutri. 15:1-48.
156. Kumar P and Satyanarayana T (2004) Biotechnological aspects of thermophilic fungal
glucoamylases. In: Emerging trends in mycology, plant pathology and microbial
biotechnology, (eds. Bagyanarayana G, Bhadraiah B and Kunwar IK) B.S. publications,
Hyderabad pp. 539-563.
157. Kumar P and Satyanarayana T (2008) Optimization of culture variables for improving
glucoamylase production by alginate-trapped Thermomucor indicae-seudaticae using
statistical methods. Biores. Technol. 98:1252-1259.
158. Kumar S, Kumar P and Satyanarayana T (2007) Production of raw starch-saccharifying
thermostable and neutral glucoamylase by the thermophilic mold Thermomucor
indicae-seudaticae in submerged fermentation. Appl. Biochem. Biotechnol. 142:
221-230.
159. Kumar V and Satyanarayana T (2011) Applicability of thermo-alkali-stable and
cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in
producing xylooligosaccharides. Biotechnol. Lett. 33:2279-2285.
160. Kundu AK and Das S (1970) Production of amylase in liquid culture by a strain of
Aspergillus oryzae. Appl. Microbiol. 19:598-603.
161. Kuriki T, Takata H, Yanase M, Ohdan K, Fujii K, Terada Y, Takaha T, Hondoh H,
Matsuura Y and Imanaka T (2006) The concept of the a-amylase family: a rational tool
for interconverting glucanohydrolases/glucanotransferases, and their specificities.
J. Appl. Glycosci. 53:155–161.
201
References
162. Kyte J. Mechanism in protein chemistry. New York : Garland Publishing; 1995. p.258283.
163. Lachmund A, Urmann U, Minol K, Wirsel S and Ruttkowski E (1993) Regulation of α
amylase formation in Aspergillus oryzae and Aspergillus nidulans transformants. Curr.
Microbiol. 26:47-51.
164. Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL and
Anfinsen CB (1993)
The purification and characterization of an extremely
thermostable α-amylase from hypothermophilic archaebacterium Pyrococcus furiosus.
J Biol. Chem. 268:24394-24401.
165. Larson SB, Greenwood A, Cascio D and McPherson DJ (1994) Refined molecular
structure of pig pancreatic α-amylase at 2.1 Å resolution. J. Mol. Biol. 235:1560-1584.
166. Le DT, Yoon MY, Kim YT and Choi JD (2004) Homology modeling of the structure of
tobacco acetohydroxy acid synthase and examination of the active site by site-directed
mutagenesis. Biochem. Biophys. Res. Commun. 317:930-938.
167. Lee J and Parulekar SJ (1993) Enhanced production of α-amylase in fed-batch cultures
of Bacillus subtilis TN 106. Biotechnol. Bioeng. 42:1142-1150.
168. Lin LL, Hsu WH and Chu WS (1997) A gene encoding for an α-amylase from
thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coli. J. Appl.
Microbiol. 82:325-334.
169. Lin LL, Tsau MR and Chu WS (1996) Purification and properties of a 140 kDa
amylopullulanase from thermophilic and alkaliphilic Bacillus sp. strain TS-23.
Biotechnol. App. Biochem.24:101-107.
170. Liping Z, Yan X and Jianzhong J (2002) The Application and Study of Acid ALFAAmylase. Liquor Making 29(3):19-22.
171. Liu B, Wang Y and Zhang X (2006) Characterization of a recombinant maltogenic
amylase from deep sea thermophilic Bacillus sp. WPD616. Enz. Microb. Technol.
39:805-810.
172. Liu W, Shi P, Chen Q, yang P, wang G, Wang Y, Luo H and Yao B (2010) Gene
cloning, overexpression, and characterization of a xylanase from Penicillium sp.
CGMCC 1699. Appl. Biochem. Biotechnol. 162:1-12.
173. Liu XD and Xu Y (2008) A novel raw starch digesting α-amylase from a newly isolated
Bacillus sp. YX-1: Purification and characterization. Biores. Technol. 99:4315-4320.
202
References
174. Lo HF, Lin Long-L, Li CC, Hsu WH and Chang CT (2001) The N-terminal signal
sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp.
TS-23 α-amylase in Escherichia coli. Curr. Microbiol. 43:170-175.
175. Lonsane BK and Ramesh MV (1990) Production of bacterial thermostable α-amylase
by solid state fermentation: A potential tool for achieving economy in enzyme
production and starch hydrolysis. Adv. Appl. Microbiol. 35:1-56.
176. Lonsane BK, Ghildyal NP, Budiatman S and Ramakrishna SV (1985) Engineering
aspects of solid state fermentation. Enz. Microb. Technol. 7:258-265.
177. Macarron R, Henrissat B, van Beeuman J, Dominguez JM and Claeyssens M (1995)
Identification of two tryptophan residues in endoglucanase III from Trichoderma reesei
essential for cellulose binding and catalytic activity. In:Enzymatic degradation of
insoluble carbohydrates. (eds. Saddler N and Penner MH) American Chemical Society
Washington, DC Pp. 164–173.
178. MacGregor EA, Janecek S and Svensson B (2001) Relationship of sequence and
structure to specificity in the a-amylase family of enzymes. Biochim. Biophys. Acta
1546:1–20.
179. Machius M, Declerck N, Humber R and Wiegand G (1998) Activation of Bacillus
licheniformis α-amylase through a disorder order transition of the substrate binding site
mediated by a calcium-sodium-calcium metal traid. Structure 6:281-292.
180. Machius M, Wiegand G and Huber R (1995) Crystal structure of calcium-depleted
Bacilus licheniformis alpha-amylase 2.2-A resolution. J. Mol. Biol. 246:545–559.
181. Malhotra R, Noorwez SM and Satyanarayana T (2000) Production and Partial
characterization of thermostable and calcium–independent α-amylase of an extreme
thermophile Bacillus thermoleovorans NP 54. Lett. Appl. Microbiol. 31:378-384.
182. Mamo G and Gessesse A (1999) Purification and characterization of two raw-starch–
digesting thermostable α-amylase from a thermophilic Bacillus. Enz. Microb.Technol.
25:433-438.
183. Manning GB and Campbell LL (1961) Thermostable α-amylase of B.
stearothermophilus. I. Crystallization and some general properties. J. Biol. Chem.
236:2952-2957.
184. Manonmani HK and Kunhi AAM (1999a) Interference of thiol compounds with
dextrinizing activity assay of α-amylase by starch-iodine color reaction: Modification of
the method to eliminate this interference. World J. Microbiol. Biotechnol. 15:485-487.
203
References
185. Marco JL, Bataus LA, Valencia FF, Ulhoa CJ, Astolfi-Filho S and Felix CR (1996)
Purification and characterization of a truncated Bacillus subtilis α-amylase produced by
Escherichia coli. Appl. Microbiol. Biotechnol. 44: 746-752.
186. Martinez-Anaya MA and Jimenez T (1998) Physical properties of enzyme
supplemented doughs and relationship with bread quality parameters. Zeitschrift fur
Lebensmittel Untersuchung und Forschung A 206:134–142.
187. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F and Sali A (2000)
Comparative protein structure modeling of genes and genomes. Ann. Rev. Biophys.
Biomol. Struc. 29:291-325.
188. Matsumoto M and Ohashi K (2003) Effect of immobilization on thermostability of
lipase from Candida rugosa. Biochem. Eng. J. 14:75-77.
189. Matsumura M, Signor G and Matthews BW (1989) Substantial increase of protein
stability by multiple disulphide bonds. Nature 342:291–293.
190. Matsumura M, Yasumura S and Aiba S (1986) Cumulative effect of intragenic aminoacid replacements on the thermostability of a protein. Nature 323:356–358.
191. Matsuura Y, Kusunoki M, Harada W and Kakudo M (1984) Structure of possible
catalytic residues of Taka-amylase. American J. Biochem. 95:697-702.
192. Matzke J, Schwermann B and Baker EP (1997) Acidstable and acidophilic proteins: the
example of the α-amylase from Alicyclobacillus acidocaldarius. Comp. Biochem.
Physiol. 118A:475-479.
193. McMahon HEM, Kelly CT and Fogarty WM (1999) High maltose–producing
amylolytic system of a Streptomyces sp. Biotechnol. Lett. 21:23-26.
194. McMahon, HEM, Kelly CT and Fogarty WM (1997) Effect of growth rate on αamylase production by Streptomyces sp, IMD 2679. Appl. Microbiol. Biotechnol.
48:504-509.
195. Mehta M, Satyanarayana T (2012) Biochemical and molecular characterization of
recombinant acidic and thermostable raw-starch hydrolyzing α-amylase from an
extreme thermophile Geobacillus thermoleovorans. J. Mol. Catalysis B. Enzymatic 8586: 229-238.
196. Michelena VV and Castillo FJ (1984) Production of amylase by Aspergillus foetidus on
rice flour medium and characterization of the enzyme. J. Appl. Bacteriol. 56:395- 400.
197. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing
sugar. Anal. Chem. 31:426-428.
204
References
198. Mishra RS and Maheshwari R (1996) Amylases of the thermophilic fungus
Thermomyces lanuginosus their purification properties action on starch and response to
heat. J. Biosci.21:653-672.
199. Mitsuiki S, Utsnomiya H, Nakama Y, Sakai M, Mukae K, Moriyama Y, Goto M and
FuruKawa K (2005) Purification and characterization of maltotriose-producing amylase
from an alkaliphilic Nocardiopsis sp. TO1. J. Appl. Glycosci. 52:95-99.
200. Mohapatra BR, Banerjee UC and Bapuji M (1998) Characterization of a fungal amylase
from Mucor sp. associated with the marine sponge Spirastrella sp. J. Biotechnol.
60:113- 117.
201. Mollania N, Khajeh K, Hosseinkhani S and Dabirmanesh B (2010) Purification and
characterization of a thermostable phytate resistant alpha-amylase from Geobacillus sp.
LH8. Int. J. Biol. Macromol. 46:27-36.
202. Monera OD, Kay CM and Hodges RS (1994) Protein denaturation with guanidine
hydrochloride or urea provides a different estimate of stability depending on the
contributions of electrostatic interactions. Protein Sci. 3:1984–1991.
203. Moradian F (2005) A calcium independent α-amylase that is active and stable at low pH
from the Bacillus sp. KR-8104. Enz. Microb. Technol. 36:666-671.
204. Morell MK and Myers AM (2005) Towards the rational design of cereal starches. Curr.
Opin. Plant Biol. 8:204-210.
205. Morgan FJ and Priest FG (1981) Characterization of a thermostable α-amylase from
Bacillus licheniformis NCIB 6346. J. Appl. Bacteriol. 50:107-114.
206. Morlon-Guyot J, Mucciolo-Roux F, Rodrıguez-Sanoja R and Guyot JP (2001)
Characterization of the L. manihotivorans α-amylase gene. DNA Seq. 12:27–37.
207. Morrison WR (1993) Cereal starch granule development and composition. In: Seed
storage compounds: Biosynthesis, interactions and manipulation (eds. Shewry PR and
Stobart K) Oxford Science Publications, Oxford pp 175-190.
208. Murakami S, Nagasaki K, Nishimoto H, Shigematu R, Umesaki J, Takenaka
S, Kaulpiboon J, Prousoontorn M, Limpaseni T, Pongsawasdi P and Aoki K (2008)
Purification and characterization of five alkaline, thermotolerant, and maltotetraoseproducing α-amylases from Bacillus halodurans M-2-5,and production of recombinant
enzymes in E. coli. Enz. Microb. Technol. 43:321–328.
209. Nagamine K, Murashima K, Kato T, Shimoi H and Ito K (2003) Mode of α-amylase
production by the shochu koji mold Aspergillus kawachii. Biosci. Biotechnol. Biochem.
67:2194–2202.
205
References
210. Najafi MF, Deobagkar DN and Deobagkar DD (2005) Purification and characterization
of an extracellular alpha-amylase from Bacillus subtilis AX20. Protein Expr. Purif.
41(2):349-354.
211. Nakada T, Kubota M, Sakai S, Tsujisaka Y (1990) Purification and characterization of
two forms of maltotetraose forming amylase from Pseudomonas stutzeri. J. Agric. Biol.
Chem. 54:737-743.
212. Nakajima R, Imanaka T and Aiba S (1986) Comparison of amino acid sequences of
eleven different α-amylases. Appl. Microbiol. Biotechnol. 23:355-360.
213. Narang S and Satyanarayana T (2001) Thermostable α-amylase production by an
extreme thermophile Bacillus thermooleovorans. Lett. Appl. Microbiol. 32:31-35.
214. Narayanan AS and Shanmugasundaram ERB (1967) Studies on amylase of Fusarium
vasinfectum. Arch. Biochem. Biophys. 118:317.
215. Ne’eman Z, Kahane I and Razin S (1971) Characterization of the Mycoplasma
membrane proteins. II. Solubilization and enzymic activities of Acholeplasma laidlawii
membrane proteins. Biochim. Biophys. Acta 249:169-179.
216. Neilsen JE, Borchert TV and Vriend G (2001) The determinants of α-amylase pHactivity profiles. Protein Eng. 14:505-512.
217. Nevalainen H and Te’o VSJ (2003) Enzyme Production in Industrial Fungi―Role of
Molecular Genetics. In: Applied Mycology and Biotechnology, Vol. 3, Fungal
Genomics (ed Arora DK) Elsevier Science.
218. Nguyen QD, Judit M, Szabo R, Claeyssens M, Stals I and Hoschke A (2002)
Purification and characterization of amylolytic enzymes from thermophilic fungus
Thermomyces lanuginosus strain ATCC 34626. Enz. Microb. Technol. 31:345-352.
219. Nielsen JE and Borchert TV (2000) Protein engineering of bacterial α-amylases.
Biochim. Biophys. Acta 1543:253-274.
220. Nielsen JE, Beier L, Otzen D, Borchert TV., Frantzen HB, Andersen KV and Svendsen
A (1999) Electrostatics in the active site of an alpha-amylase. Eur. J. Biochem.
264:816-824.
221. Nigam P and Singh D (1995) Enzyme and microbial systems involved in starch
processing. Enz. Microb. Technol. 17:770-778.
222. Nishio N, Tai K and Nagai S (1979) Hydrolase production by Aspergillus niger in
solid-state cultivation. Eur. J. Appl. Microbio1. Biotechnol. 8:263-270.
206
References
223. Oates CG (1997) Towards an understanding of starch granule structure and hydrolysis.
Trends Food Sci. Technol. 8:375–382.
224. Ohdan K, Kuriki T, Kaneko H, Shimada J, Takada T, Fujimoto Z, Mizuno H, Okada S
(1999) Characteristics of two forms of α-amylases and structural implication. Appl.
Environ. Microbiol. 65: 4652-4658.
225. Oikawa A and Maeda A (1957) The role of calcium in Taka amylase A II, The
exchange reaction. Can. J. Biochem. 46:463-4668.
226. Olutiola PO (1982) α-Amylolytic activity of Aspergillus chevalieri from mouldy maize
seeds. Indian Phytopathology 35:428-433.
227. Pandey A and Ramachandran S (2005) General Introduction. In: Enzyme Technology
(eds. Pandey A, Webb C, Soccol CR and Larroche C) Asiatech Publishers, Inc. New
Delhi pp 1-10.
228. Oort MV (2010) In Enzymes in Food Technology (eds. RJ Whitehurst and Oort MV)
USA: Wiley-Blackwell pp.103-143.
229. Pace CN (1990) Measuring and increasing protein stability. Trends Biotechnol.
8:93–98.
230. Pancha I, Jain D, Shrivastav A, Mishra SK, Shethia B, Mishra S, Mohandas VP and Jha
B (2010) A thermoactive α-amylase from a Bacillus sp. isolated from CSMCRI salt
farm. Int. J. Biol. Macromol. 47:288–291.
231. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D and Mohan R (2000) Advances in
microbial amylases. Biotechnol. Appl. Biochem. 31:135-152.
232. Pandey A, Selvakumar P, Soccol CR and Nigam P (1994) Solid state fermentation for
the production of industrial enzymes. Wiley Eastern Publishers, New Delhi pp. 33–37.
233. Pantoliano MW, Whitlow M, Wood JF, Dodd SW, Hardman KD, Rollence ML and
Bryan PN (1989) Large increases in general stability for subtilisin BPN’ through
incremental changes in the free energy of unfolding. Biochemistry 28:7205–7213.
234. Paoli P, Fiaschi T, Cirri P, Camici G, Manao G, Cappugi G, Raugei G, Moneti G and
Ramponi G (1997) Mechanism of acylphosphatase inactivation by Woodward’s reagent
K. Biochem. J. 328:855-861.
235. Park YS, Kang SW, Lee JS, Hong SI and Kim SW (2002) Xylanase production in solid
state fermentation by Aspergillus niger mutant using statistical experimental designs.
Appl. Microbiol. Biotechnol. 58:761-766.
207
References
236. Perez-Pomares F, Bautista V, Ferrer J, Pir C, Marhuendra-Egea FC and Bonete MJ
(2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei.
Extremophiles 7:299-306.
237. Perkins DN, Pappin DJC, Creasy DM and Cottrell JS (1999) Probability-based protein
identification by searching sequence databases using mass spectrometry data.
Electrophoresis 20: 3551-3567.
238. Pham PL, Taillandier P, Delmas M and Strehaiano P (1998) Optimization of the culture
medium for xylanase production by Bacillus sp. using statistical experimental designs.
World J. Microbiol. Biotechnol. 14:185-190.
239. Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of
cereal foods. Trends Food Sci. Technol. 8:300–306.
240. Prakash B, Vidyasagar M, Madhukumar MS, Muralikrishna G and Sreeramulu
K (2009) Production, purification, and characterization of two extremely halotolerant,
thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101.
Proc. Biochem. 44:210-215.
241. Prakasham RS, Rao S, Rao S and Sarma PN (2007) Enhancement of acid amylase
production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102:204–211.
242. Preiss J (1988) Biosynthesis of starch and its regulation in The Biochemistry of Plants
(ed. J Preiss) Academic Press, San Diego pp 181–254.
243. Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev.
41:711-753.
244. Priest FG (1989) Isolation and identification of aerobic, endospore-forming bacteria. In:
Biotechnology Handbooks 2: Bacillus (ed. Harwood C.R.) Plenum press, New YorkLondon pp. 27-56.
245. Prieto JA, Bort BR, Martinez J, Randez-Gil F, Buesa C and Sanz P (1995) Purification
and characterization of a new α-amylase of intermediate thermal stability from the
yeast Lipomyces kononenkoae. Biochem. Cell Biol. 73:41-49.
246. Pritchard PA (1992) Studies on the bread improving mechanisms of fungal α-amylase.
J. Biol. Educ. 26:12-18.
247. Pujadas G, Ramirez FM, Valero R and Palau J (1996) Evolution of b-amylase: patterns
of variation and conservation in subfamily sequences in relation to parsimony
mechanisms. Proteins 25:456-472.
248. Qi Si J (1998) Novamyl-A true anti-staling enzyme. Novo Nordisk Novamyl product
information sheet A-06565.
208
References
249. Ramasubbu N, Paloth V, Luo Y, Barayer GD and Levine MJ (1996) Structure of human
salivary α-amylase at 1.6 A resolution: Implications for its role in the cavity. Acta
Crystallography 52:435-446.
250. Ramesh MV and Lonsane BK (1990) Critical importance of moisture content of the
medium in α-amylase by Bacillus licheniformis M27 in a solid-state fermentation
system. Appl. Microbiol. Biotechnol. 33:501-505.
251. Ramgren M, Andersson E and Hahn-Hagerdal B (1988) α-Amylase production with
Bacillus subtilis in the presence of PEG & surfactants. Appl. Microbiol. Biotechnol.
29:337-340.
252. Rao JLUM and Satyanarayana T (2003) Statistical optimization of a high maltose
forming hyperthermostable and Ca2+-independent amylase production by an extreme
thermophile Geobacillus thermoleovorans using response surface methodology. J. App.
Microbiol. 95:712-718.
253. Rao JLUM and T Satyanarayana (2004) Amelioration in secretion of hyperthermostable
and Ca2+-independent a-amylase of Geobacillus thermoleovorans by some polyamines
and their biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone. J. Appl. Microbiol.
97:1015–1020.
254. Rao JLUM, Satyanarayana T (2007) Improving production of hyperthermostable and
high maltose-forming α-amylase by an extreme thermophile Geobacillus
thermoleovorans using response surface methodology and its applications. Biores.
Technol. 98:345-352.
255. Rega AF, Weed RI., Reed CF, Berg EG and Rothsteen H (1967) Changes in the
properties of human erythrocyte membrane protein after solubilization by butanol
extraction. Biochim. Biophys. Acta 147:297-312.
256. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM,
Robertson DE and Miller C (2002) A novel, high performance enzyme for starch
liquefaction. Discovery and optimization of a low pH, thermostable alpha amylase. J.
Biol. Chem. 277:26501–26507.
257. Robyt J and Ackerman RJ (1971) Isolation, purification and characterization of a
maltotetraose producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys.
145: 105-114.
258. Rodrı´guez-Sanoja R, Morlon-Guyot J, Jore J, Pintado J, Juge N and Guyot JP (2000)
Comparative characterization of complete and truncated forms of Lactobacillus
amylovorus α-amylase and role of the C-terminal direct repeats in raw-starch binding.
Appl. Environ. Microbiol. 66(8):3350-3356.
259. Rodrı´guez-Sanoja R, Ruiz B, Guyot JP and Sa´nchez S (2005) Starch binding domain
affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol.71:
297–302.
209
References
260. Rubin-Pitel SB and Zhao H (2006) Recent advances in biocatalysis by directed enzyme
evolution. Combinatorial Chem. High Throughput Screening 9:247-257.
261. Saha BC and Zeikus JG (1989) Novel highly thermostable pullulanase from
thermophile. TIBTECH 7:234-238.
262. Sajedi RH, Naderi-Mahesh H, Khajeh K, Ahmadvand R, Ranjbar BA, Asoodeh A and
Moradian F (2005) A calcium independent α-amylase that is active and stable at low pH
from the Bacillus sp. KR-8104. Enz. Microb. Technol. 36:666-671.
263. Sajedi RH, Taghdir M, Naderi-Manesh H Khajeh K and Ranjbar B (2007) Nucleotide
sequence, structural investigation and homology modeling studies of a Ca2+independent α-amylase with acidic pH-profile. J. Biochem. Mol. Biol. 40:315-324.
264. Salimi A, Yousefi F, Ghollasi M, Daneshjou S, Tavoli H, Ghobadi S, Khajeh K (2012)
Investigations on possible roles of C-terminal propeptide of a Ca-independent αamylase from Bacillus. J. Microbiol. Biotechnol. 22(8):1077-83.
265. Sanchez R and Sali A (1997) Advances in comparative protein-structure modeling.
Curr. Opin. Struc. Biol. 7:206-214.
266. Sandstedt RM, Kneen E and Blish MJ (1939) A standardized Wohlgemuth procedure
for α-amylase activity. Cereal Chem. 16:712-723.
267. Satyanarayana T, Noorwez SM, Kumar S, Rao JLUM, Ezhilvannan M and Kaur P
(2004) Development of an ideal starch saccharification process using amylolytic
enzymes from thermophiles. Biochemical Society Transitions 32(2):276-278.
268. Satyanarayana T, Rao JLUM, and Ezhilvannan M (2005) α-Amylases in Enzyme
Technology (eds. Pandey A, Webb C, Soccol CA and Larroche C)Asiatech Publishers
Inc, New-Delhi pp 189-220.
269. Savchenko A, Vieille C, Kang S and Zeikus G (2002) Pyrococcus furiosus α-amylase
is stabilized by calcium and zinc. Biochemistry 41:6193-6201.
270. Saxena RK, Dutt K, Agarwal L and Nayyar P (2007) A highly thermostable and
alkaline amylase from a Bacillus sp. PN5. Biores. Technol. 98:260–265.
271. Schallmey M, Singh A and Ward OP (2004) Developments in the use of Bacillus
species for industrial production. Can. J. Microbial. 50: 1-17.
272. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M and Blum P (2004) Occurence
and characterizaton of mercury resistance in the hyperthermophilic archaeon Sulfolobus
solfataricus by use of gene disruption. J. Bacteriol. 186:427-437.
210
References
273. Schellart JA, Visser FMW, Zandstva T and Middlehover WJ (1976) Starch degradation
by the mold Trichoderma viride. The mechanism of degradation. Antonie Van
Leeuwenhock J. Microbiol. Serol. 42:229.
274. Schwab K, Bader J, Brokamp C, Popovic MK, Bajpai R and Berovic M (2009) Dual
feeding strategy for the production of α-amylase by Bacillus caldolyticus using
complex media. New Biotechnol. 26:68-74.
275. Schwede T, Kopp J, Guex N and Peitsch MC (2003) SWISS-MODEL: an automated
protein homology-modeling server. Nucleic Acids Res. 31:3381-3385.
276. Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T and Bakker EP (1994)
Purification, properties and structural aspects of a thermoacidophilic α-amylase from
Alicyclobacillus acidocaldarius ATCC 27009 insight into acid stability of proteins. Eur.
J. Biochemi. 226:981-991.
277. Sen S, Dasu VV and Mandal B (2007) Development in directed evolution for
improving enzyme functions. Appl. Biochem. Biotechnol. 143:212–223.
278. Serrano L, Day AG and Fersht AR (1993) Step-wise mutation of barnase to binase.
A procedure for engineering increased stability of proteins and an experimental analysis
of the evolution of protein stability. J. Mol. Biol. 233:305–312.
279. Shafiei M, Ziaee AA and Amoozegar MA (2010) Purification and biochemical
characterization of a novel SDS and surfactant stable, raw starch digesting, and
halophilic a-amylase from a moderately halophilic bacterium Nesterenkonia sp. strain
F. Proc. Biochem. 45:694–699.
280. Shah NK, Upadhyay CM, Nehete PN, Kothari RM and Hegde MV (1990)
An economical, upgraded, stabilized and efficient preparation of α-amylase. J.
Biotechnol. 16:97-108.
281. Shah SH, Wainwright SJ and Merrett MJ (1990) The interaction of sodium and calcium
chloride and light on growth potassium nutrition and proline accumulation in callus
cultures of Medicago sativa L. New Phytol. 116:37-45.
282. Sharma DC and Satyanarayana T (2006) A marked enhancement in the production of a
highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged
fermentation by using statistical methods. Biores. Technol. 97:727-733.
283. Shibuya I, Honda H and Maruo B (1968) Stepwise solubilization of chloroplast
lamellae by a non-ionic detergent P-40. J. Biochem. 64:571-576.
211
References
284. Shinmyo A, Kimura H and Okada H (1982) Physiology of α-amylase production by
immobilized Bacillus amyloliquefaciens. Eur. J. Appl. Microbiol. Biotechnol. 14:7-12.
285. Shirokane Y, Tokutake S, Tobe K and Suzuki M (1996) Simple measurement of
α-amylase activity I rice koji. J. Brew. Soc. Jpn. 91:889–894.
286. Shivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR and Pandey A
(2006) α-Amylases from microbial sources–an overview on recent developments. Food
Technol. Biotechnol. 44:173-184.
287. Si JQ (1999) Enzymes, baking, bread making. In: Encyclopedia of bioprocess
technology: Fermentation, biocatalysis and bioseparation. (eds. Flickinger MC and
Drew SW) John Wiley & Sons Inc, 2:947-958.
288. Silman RW Conway MF Anderson RA and Bagley EB (1979) Production of aflatoxin
in corn by large scale solid state fermentation process. Biotechnol. Bioeng. 21:17991808.
289. Singh B and Satyanarayana T (2008) Phytase production by Sporotrichum thermophile
in solid state fermentation and its applications. Biores. Technol. 99:2824–2830.
290. Sinnott ML (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem.
Rev. 90:1171–1202.
291. Spencer-Martins I, and van Uden N (1979) Extracellular amylolytic system of the
yeast Lipomyces kononenkoae. Eur. J. Appl. Microbiol. Biotechnol. 6:241–250.
292. Spendler T and Jorgensen O (1997) Use of a branching enzyme in baking. Patent
application WO97/41736.
293. Stitt M, Lunn J and Usadel B (2010) Arabidopsis and primary photosynthetic
metabolism: more than the icing on the cake. Plant J. 61:1067–1091.
294. Suganuma T, Fujita K and Kitahara K (2007) Some Distinguishable Properties between
Acid-Stable and Neutral Types of α-Amylases from Acid-Producing Koji. J. Biosci.
Bioeng. 104:(5)353–362.
295. Suganuma T, Noda N, Honbo H and Kitahara K (1997) Distiguishable action between
acid-stable and neutral α-amylases from shochu koji (Aspergillus kawachii). Biosci.
Biotechnol. Biochem. 61:1617–1619.
296. Suganuma T, Tahara N, Kitahara K, Nagahama T and Inuzuka K (1996) N-terminal
sequence of amino acids and some properties of an acid stable α-amylase from citric
acid Koji (Aspergillus usamiivar). Biosci. Biotechnol. Biochem. 60:177-179.
212
References
297. Sugden C and Bhat MK (1994) Cereal straw and pure cellulose as carbon sources for
growth and production of plant cell-wall degrading enzymes by Sporotrichum
thermophile. World J. Microbiol. Biotechnol. 10:444–451.
298. Sujatha MS and Balaji PV (2006) Fold-recognition and comparative modeling of
human α-2, 3-sialyltransferases reveal their sequence and structural similarities to CstII
from Campylobacter jejuni. BMC Struc. Biol. 6:9.
299. Suvd D, Fujimoto Z, Takase K, Matsumura M and Mizuno H (2001) Crystal
structure of Bacillus stearothermophilus α-amylase: possible factors determining the
thermostability. J. Biochem. 129:461-468.
300. Suzuki Y, Nagayama T, Nakano H and Oishi K (1987) Purification and characterization
of maltogenic α-amylaseI, and a maltogenic α-amylase II capable of cleaving α-1,6glucosidases. Appl. Microbiol. Biotechnol. 26:546-551.
301. Swain MR and Ray RC (2007) Alpha-amylase production by Bacillus subtilis CM3 in
solid state fermentation using cassava fibrous residue. J. Basic Microbiol. 47: 417-425.
302. Szczodark J and Tagonski Z (1989) Simultaneous saccharification and fermentation
of cellulose: effect of ethanol and cellulases on particular stages. Acta Biotechnol.
9:555-564.
303. Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldán I, Montero M (2009) Starch
granule initiation in Arabidopsis requires the presence of either Class IV or Class III
strach synthase. Plant Cell. 21:2443–2457.
304. Takase K, Matsumoto T, Mizuno H, Yamane K (1992) Site-directed mutagenesis of
active site residuesin Bacillus subtilis α-amylase. Biochim. Biophys. Acta 1120:281288.
305. Tester RF and Karkalas J (2002) Starch. In: Biopolymers vol. 6 Polysaccharides.
II Polysaccharides from Eukaryotes (series ed. Steinbuchel A), (vol eds. Vandamme
EJ De baets S, and Steinbuchel A) Wiley-VCH, Weinheim pp 381-438.
306. Tester RF, Karkalas J and Qi X (2004) Starch structure and digestibility, Enzymesubstrate relationship. World’s Poultry Sci. J. 60:186-195.
307. Tripathi P, Leggio LL, Mansfeld J, Ulbrich-Hofmann R, Kayastha AM (2007)
α-Amylase from mung beans (Vigna radiata) – Correlation of biochemical properties
and tertiary structure by homology modeling. Phytochem. 68:1623-1631.
308. Ueno S, Miyama M, Ohashi Y, Izumiya M and Kusaka I (1987) Secretary enzyme
production and conidiation of Aspergillus oryzae in submerged liquid culture. Appl.
Microbiol. Biotechnol. 26:273-276.
213
References
309. Uma Maheswar Rao JL (2006) Production, characterization and applications of
hyperthermostable α-amylase of Geobacillus thermoleovorans. Ph.D. Thesis,
University of Delhi South Campus, New Delhi, India.
310. Uma Maheswar Rao JL and Satyanarayana T (2003) Statistical optimization of a high
maltose-forming, hyperthermostable and Ca2+-independent α-amylase production by
an extreme thermophile Geobacillus thermoleovorans using response surface
methodology. J. Appl. Microbiol. 95(4):712-718.
311. Uma Maheswar Rao JL and Satyanarayana T (2007a) Improving production of
hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile
Geobacillus thermoleovorans using response surface methodology and its applications.
Biores. Technol. 98(2):345-352.
312. Uma Maheswar Rao JL and Satyanarayana T(2007b). Purification and characterization
of a hyperthermostable and high maltogenic alpha-amylase of an extreme thermophile
Geobacillus thermoleovorans. Appl. Biochem. Biotechnol. 142(2):179-193.
313. Van Dam HW and Hille JDR (1992) Yeast and enzymes in bread making. Cereal Foods
World 37(2):245-252.
314. Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H and Dijhuizen L
(2002) Properties and applications of starch-converting enzymes of the α-amylase
family. J. Biotechnol. 94:137-155.
315. Van der Veen BA, Van Alebeek GJWM, Uitdehaag JCM, Dijkstra BW and Dijkhuizen
L (2000b) The three transglycosylation radiations catalyzed by cyclodextrin
glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic
mechanisms. European J. Biochem. 267:658-665.
316. Verhaert RM, Beekwilder J, Olsthoorn R, Van DJ and Quax WJ (2002) Phage display
selects for amylases with improved low pH starch binding. J. Biotechnol. 96:103–118.
317. Vielle C and Zeikus GJ (2001) Hyperthermophilic Enzymes: sources, uses and
molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65:1-43.
318. Vihinen M and Mantsala P (1989) Microbial amylolytic enzymes. Critical Rev.
Biochem. Mol. Biol. 24:329-418.
319. Vihinen M, Ollikka P, Niskanen J, Meyer P, Suominen I, Karp M, Holm L, Knowles J,
Mantsala P (1990) Site-directed mutagenesis of a thermostable α-amylase from Bacillus
stearothermophilus: putative role of three conserved residues. J. Biochem. 107, 267272.
214
References
320. Vihinen M, Peltonen T, Iitia A, Suominen I and Mantsala P (1994) C-terminal
truncations of a thermostable Bacillus stearothermophilus alpha-amylase. Protein Eng.
7(10):1255-1259.
321. Vriet C, Welham T, Brachmann A, Pike M, Pike J, Perry J, Parniske M, Sato S, Tabata
S, Smith AM, et al. (2010) A suite of Lotus japonicus starch mutants reveals both
conserved and novel features of starch metabolism. Plant Physiol. 154:643–655.
322. Zeeman SC, Kossmann J and Smith AM (2010) Starch: its metabolism, evolution, and
biotechnological modification in plants. Ann. Rev. Plant Biol. 61:209–234.
323. Webster DM (2000) Protein structure prediction: methods and protocols, Humana Press
Totowa, New Jersey.
324. Wenster-Botz D (2000) Experimental design for fermentation of media development:
Statistical design or global random search? J. Biosci. Bioeng. 90:473-483.
325. Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51:221-271.
326. Wolfenden R, Lu X and Young G (1998) Spontaneous hydrolysis of glycosides.
J. American Chemical Society 120:6814-6815.
327. Worthington P, Hoang V, Perez-Pomares F and Blum P (2003) Targeted disruption
of the α amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus.
J. Bacteriol. 185:482-488.
328. Yabuki M, Ono N, Hoshino K and Fukui S (1977) Rapid induction of α-amylase by
non-growing mycelia of Aspergillus oryzae. Appl. Environ. Microbiol. 34:1-6.
329. Yamane K, Hirata Y, Furusato T, Yamazaki H, Nakayama A (1984) Changes in the
properties and molecular weights of Bacillus subtilis M-type and N-type α-amylases
resulting from a spontaneous deletion. J. Biochem. 96:1849-1858.
330. Yoon MY, Yoo YJ and Cadman TW (1989) Phosphate effects in the fermentation of αamylase by Bacillus amyloliquefaciens. Biotechnol. Lett. 11:57-60.
331. Yoshigi N, Chikano T and Kamimura M (1985) Characterisation of maltopentaose
producing bacterium and its cultural conditions. Agric. Biol. Chem. 49:2379-2384.
332. Zadrazil F and H Brunnert (1981) Investigation of physical parameters important for
the solid-state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol.
Biotechnol. 11:183-188.
333. Zeng Q, Wei C, Jin J, Wu C and Huang B (2011) Cloning of the gene encoding acidstable alpha-amylase from Aspergillus niger and its expression in Pichia pastoris. Afri.
J. Food Science 5:668-675.
215
References
334. Zenin CT and Park YK (1983) Purification and characterization of acid α-amylase from
Paecilomyces sp. J. Ferment. Technol. 61:109.
335. Zhang GM, Huang J, Huang GR, Ma LX and Zhang XE (2007) Molecular cloning and
heterologous expression of a new xylanase gene from Plectosphaerella cucumerina.
Appl. Microbiol. Biotechnol. 74:339-346.
336. Zhang Q, Tsukagoshi N, Miyashiro S and Udaka S (1983) Increased production of αamylase by Bacillus amyloliquefaciens in the presence of glycine. Appl. Environ.
Microbiol. 46:293-295.
337. Zobel HF and Stephan AM (1995) Starch: structure, analysis and application. In: Food
polysaccharide and their applications (ed. Stephan AM) Marcel Dekker Inc., New York
Basel, Hongkong pp. 1560-1584.
216