Allylic Substitution Reactions

Allylic Substitution Reactions!
Group Meeting Literature Presentation!
Alexanian Research Group!
15 May 2014!
!
Njamkou N. Noucti!
“Game Changers”!
Jiro Tsuji!
Born in 1927 in Shiga, Japan!
Kyoto University (B.S., 1951) !
Columbia University, Gilbert Stork (Ph.D, 1960)!
!
Toray Industries, Inc. (1962–1974)!
Tokyo Institute of Technology (1974–1988)!
Okayama University (1988–1996)!
Kurashiki University of Science and the Arts (1996–1999)!
Born in 1941 in Philadelphia, Pennsylvania !
Pennsylvania University (B.S. 1962)!
Massachusetts Institute of Technology, Herbert House (Ph.D, 1965)!
!
University of Wisconsin–Madison (1965–1987)!
Stanford University (1987–Present)!
Barry M. Trost!
2!
Introduction!
“Palladium–catalyzed substitution reactions involving substrates
that contain a leaving group in an allylic position”!
occur via π–allylmetal intermediates!
LG
+
Pd
Nu
Nu
Historically catalyzed by Palladium but now known with Ir, Mo, W, Ru, and Rh!
Allyl fragment in allylic substitution reactions is electrophilic !
NOT TO BE CONFUSED WITH!
Ÿ  Cross–coupling reactions!
MXn
+
M = B, Si, Sn, Mg, Zn
X
M = Cl, Br, I, OTs
Ÿ  Allylations/Crotylations!
MXn
M = Li, Mg, Sn, Si, B
Cr, Ti, Zn, Zr
+
O
R
OH
H
Nucleophilic allyl
fragments: not
allylic
substitution
reactions!
R
3!
Why Transition–Metal Catalysis?!
R
R
LG
+
Nu
R
Nu
SN2 or SN2'!
+
Nu
Uncatalyzed allylic substitution reaction!
1) Selectivity (SN2 vs SN2’) is difficult to control without a
!catalyst!
!
2)  Transition–metals allow reaction to proceed at lower
temperatures!
3)  Catalyzed reactions facilitate asymmetric variants!
4!
Outline!
!
!
!
!Outline!
!
1.  Introduction!
2.  History and early developments!
3.  Palladium–catalyzed reactions!
4.  Iridium–catalyzed reactions!
5.  Hard nucleophiles!
6.  Conclusion!
Topics not covered!
Asymmetric Allylic Alkylations!
Reactions not catalyzed by Ir or Pd!
Applications in total synthesis!
!
Further reading!
Chem Rev. 1996, 96, 395–422.!
Chem. Rev. 2003, 103, 2921–2943.!
!
5!
History!
n Wacker–Smidt (1959):!
via:
R
PdCl2, CuCl2
R
H2O, HCl
O2 or air
[Pd]
O
OH
R
H
n Jiro Tsuji (1965):!
Ÿ  Carbon nucleophiles can also attack palladium–olefin complexes!
O
Cl
O
Pd
Pd
Cl
O
Na, EtOH
+
EtO
OEt
DMSO
Smidt, J. et. al. Angew. Chem. 1959, 71, 176–182.!
Smidt, J. et. al. Angew. Chem. 1959, 71, 626.!
Smidt, J. et. al. Angew. Chem. 1962, 74, 93–102.!
Tsuji, J. et. al. Tet. Lett. 1965, 4387–4388.!
EtO
O
O
OEt
+
EtO
O
OEt
6!
History!
n Trost (1972):!
CO2Et
C2H5
C2H5
Cl
nC3H7
Pd
Cl
O
Pd
CO2Et
CO2Et
nC3H7 +
O
OEt
EtO
CO2Et
Na, PPh3
CO2Et
THF or DMF
+
CO2Et
+
23% yield
37% yield
8% yield
Ÿ  9:1 preference for the less substituted end of π–allyl system !
Ÿ  Soft anions favor attack at least substituted end of π–allyl system!
C2H5
C2H5
Cl
nC3H7
Pd
Cl
Pd
O
nC3H7 + MeO S
SO2Me
O
Na, PPh3
OEt
THF or DMF
CO2Et
80% yield
Trost, B. et. al. J. Am. Chem. Soc. 1973, 95, 292–294. !
7!
Synthesis of π–Allyl Intermediate!
n Olefin oxidation:!
Ÿ  Requires isolation of the
palladium–allyl intermediate!
PdCl2
Na2CO3 or
NaCl, AcOH, NaOAc
Cl
Ÿ  Not amenable to one–pot allylic
substitution reaction!
Pd
Pd
DCM
Cl
Ÿ  Stoichiometric in palladium!
n Functionalized allylic starting materials:!
Ÿ  Atkins (1970)!
OH
Pd(acac)2 (0.5 mol %)
PPh3 (0.5 mol %)
50 ºC
HNEt2
Pd
NEt2
95% yield
OH
Ÿ  Hata (1970)!
OPh
Pd(PPh3)2 (0.002 mol %)
maleic anhydride (0.004 mol %)
85 ºC
HNEt2
Pd
OPh
Atkins, K. E. et. al. Tetrahedron Lett. 1970, 3821–2824.!
Hata, G. et. al. J. Chem. Soc. D, Chem. Comm. 1970, 1932–1933. !
NEt2
quantitative yield
8!
Reaction Substrates!
LG
Pd
+
Nu
Nu
n Nucleophiles:!
Soft, carbon nucleophiles!
Heteroatom nucleophiles!
pKa < 25!
Hard, carbon nucleophiles!
pKa > 25!
EWG
EWG1
EWG2
R1
EWG = CN, NO2, SO2R,
SOR, CO2R, COR
N
H
R2
HS
R
R
HO
R
R = H, alkyl, aryl, vinyl
EWG = CN, NO2, SO2R,
SOR, CO2R, COR
n Allylic electrophile:!
OCO2Me
OSO2Me
OP(O)(OEt)2
NO2
OAc
NR2
Cl
most common OR
less common 9!
Substrate Scope!
Pd2dba3–CHCl3 (2.5 mol %)
PPh3 (8 mol %)
R2
R3
OCO2Me
+
Nu
R2
R3
THF, 30 ºC
R1
R1
CO2Et
CO2Me
CO2Me
Ph
CO2Et
O
92% yield
Nu
O
O
91% yield
CO2Et
CO2Et
90% yield
CO2Me
AcO
O
86% yield
Tsuji, J. et. al. J. Org. Chem. 1985, 1523–1529.!
77% yield
10!
Substrate Scope!
OCO2allyl
Pd2dba3–CHCl3 (2.5 mol %)
dppe (10 mol %)
+
Nu
NO2
Nu
THF, 65 ºC
CN
CN
Ph
76% yield
O
91% yield
CN
73% yield
O
THPO
29% yield
0% yield
trace yield
Ÿ  Simple ketones and unactivated carbon centers are unreactive!
Tsuji, J. et. al. J. Org. Chem. 1985, 1523–1529.!
11!
Proposed Mechanism!
Nu
OCO2R
Pd0Ln
nucleophilic attack!
oxidative addition!
Pd
OCO2R
Pd
Nu
deprotonation!
decarboxylation!
ROH
CO2
NuH
Pd
OR
Ÿ  Alkoxide base generated in–situ via decarboxylation of Pd–carbonate intermediate!
Tsuji, J. et. al. J. Org. Chem. 1985, 1523–1529.!
12!
Mechanistic Details!
n Oxidative addition occurs with inversion of configuration:!
CO2Me
CO2Me
[Pd]
OAc
[Pd]
n Soft nucleophile attacks the allyl fragment with inversion of configuration!
CO2Me
CO2Me
NaCH(CO2Me)2
[Pd]
CO2Me
+
CH(CO2Me)2
(MeO2C)2HC
Ÿ  Hard nucleophiles attack the metal center. Reductive elimination
occurs with retention of configuration!
Kobayashi, Y. et. al. J. Org. Chem. 1996, 61, 5391–5399.!
Tsuji, Y. et. al. Organometallics 1998, 17, 4835–4841.!
13!
Iridium–Catalyzed Reactions!
n Iridium–catalyzed reactions lead to substitution at the most substituted carbon center.!
O
nPr
OAc +
O
EtO
[Ir(COD)Cl]2 (2 mol %)
Ligand (16 mol %)
OEt
THF, Temperature
Na H
nPr
CO2Et
+ nPr
EtO2C
2 equiv
CO2Et
CO2Et
B
A
Entry
Ligand
Temperature
Reaction Time
% yield
A:B
1
PnBu3
reflux
16 h
0
--
2
PPh3
reflux
16 h
6
24:76
3
P(OiPr)3
reflux
9h
44
53:47
4
P(OEt)3
reflux
3h
81
59:41
5
P(OPh)3
rt
3h
89
96:4
Ÿ  Electron–poor phosphine ligands give selective reactions!
Takeuchi, R. et. al. Angew. Chem. Int. Ed. Engl. 1997, 263–265.!
14!
Regiochemical Explanation!
n  Regioselectivity of allylic substitution reaction controlled by three factors:!
!
!
!1. Steric Interactions between incoming nucleophile and allylic terminus!
!
!2. Charge distribution of π–allyl ligand on metal center!
!
!3. Stability of the resulting alkene–metal complex!
!
!
nPr
[Ir]
A!
vs.!
Most influential
with iridium!
nPr
nPr
[Ir]
vs.!
Nu [Ir]
B!
A is the more stable cation; SN2 attack positions
nucleophile on most substituted carbon!
nPr
A!
Nu
[Ir]
B!
A is the more stable transition–metal complex!
Takeuchi, R. et. al. Angew. Chem. Int. Ed. Engl. 1997, 263–265.!
Cramer, R. et. al. J. Am. Chem. Soc. 1967, 89, 4621–4626.!
Åkermark, B. et. al. Organometallics 1984, 3, 679–682.!
15!
Substrate Scope!
nPr
OR + NaCH(CO2Et)2
[Ir(COD)Cl]2 (2 mol %)
P(OPh)3 (16 mol %)
nPr
CO2Et
EtO2C
THF, rt
2 equiv
+ nPr
CO2Et
CO2Et
A
B
Entry
R
Reaction Time
% yield
A:B
1
Ac
3h
89
96:4
2
CO2Me
1h
94
97:3
3
H
2h
100
96:4
4
C(O)CF3
5h
70
95:5
n Quaternary centers can also be synthesized:!
OAc
+
Me
nBu
NaCH(CO2Et)2
2 equiv
THF, rt
Me +
CO2Et
EtO2C
A
Takeuchi, R. et. al. Angew. Chem. Int. Ed. Engl. 1997, 263–265.!
CO2Et
nBu
[Ir(COD)Cl]2 (2 mol %)
P(OPh)3 (16 mol %)
80 % yield
A:B = 0:100
CO2Et
Me
nBu
B
16!
Nitrogen Nucleophiles!
Ph
OCO2Me
+
NHR1R2
L=
[Ir(COD)Cl]2 (1 mol %)
L (2 mol %)
Ph
THF, rt
Me
O
P N
O
Me
NR1R2
Ph
Ph
OMe
HN
HN
Ph
HN
Ph
84% yield
95% ee
O
88% yield
96% ee
N
75% yield
97% ee
Ph
Ph
80% yield
94% ee
Ph
N
N
Ph
91% yield
96% ee
Hartwig, J. et. al. J. Am. Chem. Soc. 2002, 124, 15164–15165.!
83% yield
97% ee
(run at 50 ºC)
N
Ph
92% yield
97% ee
17!
Unactivated Alkene Substrates!
L1 = O
+ BzO2tBu
R
PhNH2
K3PO4
OBz
L2 (5 mol %)
Pd(OAc)2 (5 mol %)
L1 (5.5 mol %)
Solvent, 65 ºC
NHPh
N
R
R
temporary
functional group
N
L2 =
O O
P
N
(COD)Ir
Ph
Ph
NHPh
NHPh
O
O
NHPh
NHPh
Cl
C7H15
53% yield
89% ee
68% yield
92% ee
68% yield
95% ee
60% yield
88% ee
NHPh
NHPh
O
TBSO
65% yield
97% ee
a oxidation
NHPh
NHPh
Tol
MeO2C
S
O
53% yield
89% ee a
F
58% yield
88% ee
77% yield
95% ee
run at 80 ºC.!
Hartwig, J. et. al. J. Am. Chem. Soc. 2013, 135, 17983–17989.!
18!
Unactivated Alkene Substrates!
L1 = O
+ BzO2tBu
R
PhNH2
K3PO4
OBz
L2 (5 mol %)
Pd(OAc)2 (5 mol %)
L1 (5.5 mol %)
R
R
temporary
functional group
Solvent, 65 ºC
NHPh
N
N
L2 =
O O
P
N
(COD)Ir
Ph
Ph
NHPh
N
NHBn
N
TBSO
C7H15
TBSO
53% yield
89% ee
51% yield
89% ee
Tol
S O
TBSO
55% yield
90% ee
OPh
TBSO
50% yield
90% ee
N
O
TBSO
55% yield
90% ee
O
a oxidation
O
EtO2C
CO2Et
51% yield
89% ee
TBSO
50% yield
88% ee
carried out at 80 ºC.!
Hartwig, J. et. al. J. Am. Chem. Soc. 2013, 135, 17983–17989.!
19!
Oxygen Nucleophiles!
R
OCO2tBu
+
TESOK
2 equiv
[Ir(COD)Cl]2 (3 mol %)
L (6 mol %)
30 % aq. NaOH in MeOH or
TBAF
DCM, rt
L=
Me
O
P N
O
Me
R
OH
Ph
Ph
OH
OH
R
R=H
88% yield 97% ee
= CF3 78% yield 98% ee
= OMe 75% yield 95% ee
OH
X
X
X=S
=O
62% yield
50% yield
99% ee
97% ee
OH
Ph
65% yield
X=S
=O
67% yield
60% yield
98% ee
99% ee
OTES
Me
97% ee
Carreira, E. et. al. Angew. Chem. Int. Ed. 2006, 45, 6204–6207.!
65% yield
95% ee
20!
Oxygen Nucleophiles!
OTf
R
Ph
C2 or C3 (1 mol %)
OCO2Me + KHCO3
DMF/H2O 10:1
O
P O
Ir
OH
H3C
N
H2C
Ar
CH3
Ar
C2: diene = dbcot, Ar = Ph
C3: diene = dbcot, Ar = 2–MeOC6H4
Ph
Ph
Ph3CO
OH
C3
86% yield
95% ee
OH
C2
92% yield
95% ee
C7H15
OH
C3
90% yield
93% ee
Helmchen, G. et. al. J. Am. Chem. Soc. 2011, 133, 2072–2075.!
OH
C3
74% yield
89% ee
OH
C3
77% yield
95% ee
21!
Mechanistic Details!
L1
L1
Ir
[(COD)IrCl]2
+ 2 L1
O
P O
H3C
Ph
+ Base
CH3
N
Ir
O
P O
H2C
HBase
N
Ph
Ph
Ir
– L1
CH3
H2C
+ L1
not catalytically active!
does not react with allylic reagents!
CH3
N
Ph
Ph
B
A
O
P O
Ph
C
e–!
18
Active species!
16 e–!
CH3COCO2
R
OCO2Me
R
Ir
O
P O
H2C
N
Ph
Ir
Nu
H2C
CH3
Ph
Nu
D
Ÿ  Silver salts lead directly to complex D!
Ÿ  Nucleophile attacks more substituted carbon atom!
Hartwig, J. et. al. J. Am. Chem. Soc. 2003, 125, 14272–14273.!
Helmchen, G. et. al. Chem. Eur. J. 2009, 15, 11087–11090.!
O
P O
N
Ph
R
CH3
Ph
E
L1 =
Me
O
P N
O
Me
Ph
Ph
22!
Regiochemical Explanation!
K4b–K4e: R’ = OMe!
!a: R = C6H5, X = ClO4!
!b: R = C6H5, X = SbF6!
!c: R = CH3, X = ClO4!
!d: R = CH3, X = SbF6!
!e: R = CH3, X = CF3SO3!
!
K4f: R’ = H!
!f: R = CH3, X = CF3SO3!
Ÿ  Ir bond to C1A is longer than Ir bond to C3A!
Ÿ  Preferred attack of a nucleophile at weaker (longer) Ir–C bond!
Helmchen, G. et. al. Chem. Eur. J. 2010, 16, 6601–6615.!
23!
Hard Nucleophiles!
n Few examples of hard nucleophiles in allylic substitution reactions:!
Ÿ  Hard nucleophiles can react with ester functionality of allylic substrate!
R
O
O
+
OH
Nu
+
Nu
R
O
unwanted reactivity with hard nucleophiles!
n Rare example with vinyl Grignard:!
+
OAc
ProliNOP:
PdCl2(ProliNOP) (5 mol %)
BrMg
TMS
THF, 10 ºC
TMS
85% yield
30% ee
N
Ph2P
O
PPh2
Ÿ  Poor enantioselectivities typically obtained with hard nucleophiles.!
Buono, G. et. al. Tetrahedron Lett. 1990, 31, 77–80.!
24!
Proposed Mechanism!
Nu
Pd0Ln
OAc
reductive elimination!
oxidative addition!
[Pd]
[Pd]
OAc
Nu
M OAc
M Nu
ligand exchange!
n Hard nucleophiles attack the metal center and not the allyl fragment!
25!
“Softening” Hard Nucleophiles!
n Traditionally hard nucleophiles can be “softened” with activating agents:!
X
X=N
X=C
Toluene and 2–methyl pyridine (pKa > 25) traditionally!
considered hard nucleophiles!
CH3
pKa = 34
pKa = ~44
Ÿ  Trost (2008)!
OPG
n
+
N
R
Catalyst
N
BF3•OEt2
n
R
H
Ÿ  Walsh (2011)!
CH3
OPG
R2
+
n
R2
Catalyst
[Cr]
R1
Trost, B. et. al. J. Am. Chem. Soc. 2008, 130, 14092–14093.!
Walsh, P. J. et. al. J. Am. Chem. Soc. 2011, 133, 20552–20560.!
n
R1
26!
Boron Activating Agent!
OPG
N
1.5 equiv R
+
LiHMDS (3.5 equiv)
BF3•OEt2 (1.3 equiv)
[(η3–C3H5)PdCl]2 (2.5 mol %)
L (6.0 mol %)
O
N
Dioxane, rt
R
H
PPh2Ph2P
L
Ph
N
N
94% yield
92% ee
N
N
Me
H
85% yield, >19:1 d.r.
94% ee a
a LiHMDS
Ph
N
>99% yield
96% ee
N
>99% yield
95% ee
N
H
98% yield
98% ee
H
N
Me
Me
99% yield, >19:1 d.r.
94% ee a
O
NH HN
Br
80% yield, 4:1 d.r.
98% ee a
H
NMeBoc
70% yield, 13:1 d.r.
98% ee a
(3.0 equiv), 1.0 equiv BuLi, BF3ŸOEt2 (1.0 equiv), [(η3–C3H5)PdCl]2 (2.5 mol %), L (6 mol %), dioxane, rt.!
Trost, B. et. al. J. Am. Chem. Soc. 2008, 130, 14092–14093.!
Trost, B. et. al. J. Am. Chem. Soc. 2009, 131, 12056–12057.!
27!
Chromium Activating Agent!
OPiv
CH3
R
+
Pd(COD)Cl2 (5 mol %)
Xantphos (7.5 mol %)
LiN(SiMe3)2 (3 equiv)
NEt3 (1 equiv)
THF, rt
Cr(CO)3
R
Cr(CO)3
Cl
MeO
MeO
Cr(CO)3
96% yield
Cr(CO)3
Cr(CO)3
45% yield
80% yield
Cr(CO)3
no reaction
n Chromium activating agent easily removed with sunlight and air:!
OPiv
CH3
Cr(CO)3
+
same as
above
hν, air
R
Cr(CO)3
Walsh, P. J. et. al. J. Am. Chem. Soc. 2011, 133, 20552–20560.!
R
R=H
92% yield
R = OMe 73% yield
28!
Conclusion!
“Palladium–catalyzed substitution reactions involving substrates
that contain a leaving group in an allylic position”!
occur via π–allylmetal intermediates!
LG
+
Pd
Nu
Nu
Ÿ  Mild reaction conditions!
Ÿ  Tolerates a variety of nucleophiles !
Ÿ  Compatible with many leaving groups !
Ÿ  Regio–, diastereo–, and enantioselective!
Early development: Mechanis5c contribu5ons: Jiro Tsuji Barry M. Trost John F. Hartwig Günter Helmchen 29!