Modeling & Simulation, TSRT62 Lecture 11. DAE models Claudio Altafini Automatic Control, ISY, Linköping University Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Summary of lecture 10 2(19) Bond graphs: systematic construction Bond graphs: state space models An object-oriented modeling language: Modelica Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Lecture 11: DAE models 3(19) Summary of today Differentiability Index Linear DAE-models, standard form Nonlinear DAE-models In the book: chapter 7 Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET DAE models 4(19) Differential Algebraic Equations, DAE x˙ 1 = f (x1 , x2 , u) 0 = g(x1 , x2 ) y = h(x1 , x2 , u) or, more generally, F(z˙ , z, u) = 0, y = h(z, u) u = input, y = output, z = generalized state space, or internal variables Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Bond graphs and DAE models 5(19) A bond graph leads to a DAE once we plug in 1. ODEs for the I- and C-elements 2. static relationships for R elements 3. expressions for sources 4. Kirchhoff laws for s- and p- junctions if the bond graph has conflict-free causality and has no causal loops, then the DAE can be mapped to a state space model Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET RC-circuit with nonlinear R 6(19) v i u C Linear resistor v = R1 i Cx˙ = i u = x+v Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET RC-circuit with nonlinear R 6(19) v i u C Linear resistor v = R1 i Cx˙ = i u = x+v Nonlinear resistor v = R1 i + R2 i5 Cx˙ = i u = x+v It is not possible to solve explicitly for i as a function of u, x =⇒DAE Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Definition of index 7(19) Index for a DAE F(z˙ , z, u) = 0 is the number of differentiations needed to achieve a state space form ˙ . . . , u(k ) ) z˙ = φ(z, u, u, Number of times that the equations must be derived in order for z˙ to be computable (from the rest) Called sometimes differentiation index It constitute a measure of the difficulty to simulate a system Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Index for a DAE 8(19) Index for a DAE 1. special case: state space z˙ = f (z, u) =⇒ index = 0 2. otherwise: differentiate ∂F ∂F ∂F z¨ + z˙ + u˙ = 0 ∂z˙ ∂z ∂u If z˙ can be computed =⇒ index = 1 3. otherwise: keep differentiating Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET ODE vs. DAE: comparison 9(19) DAEs are more complicated than ODEs The solution is less continuous than the input signal (need to differentiate the input if index > 0) Initial values must satisfy all equations (including algebraic ones) Index can be seen as a measure of how far a DAE is from an ODE In practice: • if index = 1 it is possible to solve numerically • If index > 1 it is more difficult to solve a DAE numerically Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Linear DAE model 10(19) general form of a linear DAE E˙z + Fz = Gu If E is invertible, then z˙ = −E−1 Fz + E−1 Gu which is the usual state space description. If E is singular, then one gets a genuine DAE description =⇒ index is nontrivial Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Index for linear systems. Computation 1. Order rows so that 11(19) E1 F1 G1 z˙ + z= u E2 F2 G2 where E1 full rank, and E2 linear combination of E1 2. Eliminate E2 through row operations E1 F1 G z˙ + ˜ z = ˜ 1 u 0 F2 G2 3. Differentiate the bottom part E1 F1 G1 0 ˜F2 z˙ + 0 z = 0 u + G ˜ 2 u˙ E1 4. If ˜ invertible =⇒ Index = 1 F2 5. If not, repeat procedure. Index=number of differentiations Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Solvability for DAE models 12(19) E˙z + Fz = Gu Laplace transform: (sE + F)Z(s) = GU (s) Exist a unique solution if sE + F is invertible for some s Z(s) = (sE − F)−1 GU (s) =⇒ DAE is solvable uniquely in the Laplace variable Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Transformation for DAE systems 13(19) E˙z + Fz = Gu change variable z = Qw where Q non-singular matrix left multiply with P PEQw˙ + PFQw = PGu where P nonsingular matrix Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Standard form for DAE systems 14(19) If (sE + F) invertible =⇒ P and Q can be chosen so that the system take the standard form I 0 0 N B −A 0 w1 w˙ 1 = u + D w˙ 2 0 I w2 where the matrix N obeys to Nk = 0, for some k w1 = state variable obeying normal state space ODE w˙ 1 = Aw1 + Bu equation for w2 : Nw˙ 2 + w2 = Du Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Index for standard form 15(19) Nw˙ 2 + w2 = Du if N = 0 then w2 = Du =⇒ index = 1 if N 6= 0 but N2 = 0 w2 = Du − NDu˙ =⇒ index = 2 Notice that u˙ is needed. index = k : u must be differentiated k − 1 times w2 = Du − NDu˙ + . . . + (−N )k−1 Du(k−1) Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Index for nonlinear DAEs 16(19) Index for a DAE = number of differentiations needed to express z˙ as ˙ . . . , u(k ) a function of z, u, u, F(z˙ , z, u) = 0 state space case z˙ = f (z, u) =⇒ index = 0 otherwise: differentiate ∂F ∂F ∂F z¨ + z˙ + u˙ = 0 ∂z˙ ∂z ∂u If z˙ can be computed =⇒ index = 1 otherwise: keep differentiating Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Implicit function theorem 17(19) Nonlinear DAE systems lead to nonlinear equation solving For a nonlinear equation g(x, y) = 0 the implicit function theorem holds If g(xo , yo ) = 0 and gy (xo , yo ) is invertible then the equation g(x, y) = 0 can be solved in a neighborhood of xo , yo , i.e., there exist a function φ such that y = φ(x) satisfies g(x, y) = g(x, φ(x)) = 0 Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Example: index = 1 18(19) System of index = 1 x˙ = f (x, y) 0 = g(x, y), gy invertible use differentiation use implicit function theorem to eliminate y y = φ (x) =⇒ x˙ = f (x, φ(x)) state space in x only Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Example: index=2 19(19) System of index = 2 x˙ = f (x, y) 0 = g(x), gx fy invertible use differentiation Claudio Altafini Modeling & Simulation 2014, Fö 11 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
© Copyright 2025 ExpyDoc