The Current-Voltage Trade-Off in Organic Solar Cells and How to Get Around It Mark Thompson Department of Chemistry University of Southern California The trade-off between VOC and JSC - hn CT CS EDA - hn CT CS + EDA + JSC is related to the absorption profile, minimum energy is related to the HOMO-LUMO gap VOC is related to the energy difference between the hole and the electron, EDA HOMO-LUMO gap is smaller: collect a larger fraction of solar spectrum, increase JSC, BUT VOC will suffer Device Performance of subPC acceptors ITO/CuPc (400Å)/Acceptor (250Å)/BCP (100Å)/Al (1000Å) D/A EDA (eV) Voc (V) CuPc/FSubPc 1.0 0.13 CuPc/NO2SubPc 1.3 0.22 -2 CuPc/C60 1.5 0.46 -4 CuPc/ClSubPc 1.7 0.59 SubPc/C60 1.9 0.97 N A 2 N N Cl B N N N Current Density (mA/cm ) 4 A A 2 F-SubPc NO2-SubPc C60 Cl-SubPc 0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Voltage (V) Voc (V) FF hp (%) F-SubPc NO2-SubPc C60 Cl-SubPc Jsc (mA/cm2) 1.8 2.5 3.6 1.6 0.13 0.22 0.45 0.59 0.34 0.43 0.54 0.55 0.08 0.2 0.9 0.5 SubPc/C60 4.0 0.97 0.57 2.1 Acceptor Motivation for using Pt(TPBP) in photovoltaics V BCP buffer layer C60 Acceptor Donor hn Absorbance 1.0 Thin Film Spectra (20 nm) CuPC Pt(TPBP) Pd(TPBP) aPt = 5.9 x 105 cm-1 aPd = 6.0 x 105 cm-1 aCuPc = 2.1 x 105 cm-1 0.5 High absorption coefficient long exciton lifetime: high LD ?? 0.0 300 400 500 600 Wavelength (nm) 700 800 LD D Short Exciton Diffusion Length Drives Device Design • Very large LD for single crystals, but need amorphous films • Common OPV structure and materials vs. – Buffer or blocking layer is commonly used – Donor: Phthalocyanines/porphyrins, oligo and polythiophenes, acenes (tetracene and pentacene) – Acceptor: perylene derivatives, C60 and derivatives – Most have relatively short exciton diffusion lengths, and short measured exciton lifetimes • Most OPV materials have high ISC efficiencies LD D – CuPC: 0.55, C60: > 0.9, acenes: > 0.9 – Triplet excitons may be the active species in OPV Cpd. LD (Å) CuPC 150 C60 400 tetracene 700 PPV 120 P3HT 70 Singlet vs. Triplet Exciton S1: D* D+ + e1 - - T1: D* D+ + e2 3 4 + 1. 2. 3. 4. 5. D + hn D* S1/T1 D* + D D + D* D* + A [D+A-] [D+A-] D+ + AD+ + A- current 5 + absorption + ISC exciton migration charge transfer charge separation conduction + Motivation for using Pt(TPBP) in photovoltaics V BCP C60 Acceptor Donor hn -1 5 -1 2.0 Absorption Emission 77K Emission RT 1.5 1.0 0.8 0.6 1.0 0.4 0.5 0.2 0.0 0.0 350 400 450 500 550 600 650 700 750 800 Wavelength (nm) Emission Intensity (a.u.) Absorptivity (10 M cm ) Exciton energies S1 = 1.9 eV T1 2.5 = 1.6 eV C60 + e- C60- S1: PtP* PtP+ + eT1: PtP* PtP+ + e- D A Net: Por* + C60 Por+ + C60Driving force for exciton separation: S1 = 0.5 eV, T1 = 0.2 eV Pt(TPBP) OPV performance 6 Pt (TPBP) CuPc N 2 N N N Cu N 2 J (mA/cm ) 4 0 N N N -2 Pt(TPBP) -4 -6 -0.2 0.0 0.2 0.4 0.6 CuPC 0.8 V(volt) QE% Abs., PtTPBP Abs., C60 30 FF CuPc 5.51 0.482 0.60 1.59 PtTPBP 4.48 0.685 0.63 1.93 0.8 QE (%) Voc 1.0 0.6 10 0.4 0.2 0 0.0 400 500 600 Wavelength (nm) 700 Absorbance (a.u.) h(%) Jsc 20 1.2 Exciton diffusion length limitation ITO/Pt(TPBP)(xÅ)/C60(400Å)/BCP(100Å)//Al -2.4 100 Å 150 Å 200 Å 300 Å 400 Å -0.5 2 0.0 1.0 Jsc at 0.5 Sun (mA/cm ) 2 0.5 -1.0 -1.5 -2.0 -2.2 0.8 -2.0 0.6 -1.8 0.4 JSC -1.6 Abs. -2.5 -0.4 -0.2 0.0 0.2 Voltage (V) 0.4 0.6 0.8 0.2 -1.4 100 200 300 PtTPBP Thickness (A) • PtTPBP is a good hole conductor – FF is not significantly affected by the thickness • Optimal thickness = 150 Å • Measured exciton diffusion length = 57 Å 400 PtTPBP Absorbance at 625 nm Current density (mA/cm ) 1.0 Exiton trapping in PtTPBP films • Film of PtTPBP emits from a excimer or aggreate PL Intensity (a.u.) Absorption Emission Crystalline Pt(tBu) 8TPBP 1.0 1.0 E = 0.34eV 1.0 exc 77K em 77K RT 0.8 0.5 0.6 0.5 0.4 0.2 0.0 0.0 0.0 400 600 800 1000 1200 Wavelength (nm) 300 400 500 600 700 800 PtTPBP doped thin film Wavelength (nm) PtTPBP thin film Normalized emission intensity, a.u. Normalized absorption, a.u. – OLED = doped film: no excimer present – Thin film exciton trapped 0.34 eV below molecular exciton, disordered solid may lead to deeper traps – Exciton/aggregate lifetimes are short PL lmax = 754 nm = 18 sec (77K) = 68 sec LD = 30 nm M.D. Perez, et. al., Adv. Mat., 2009 Pt(TPBP) OPV performance PtTPBP CuPc C60 6 Pt (TPBP) CuPc 2 2 J (mA/cm ) 4 0 300 mV -2 -4 -6 -0.2 0.0 0.2 0.4 0.6 0.8 V(volt) h(%) EDA JS Jsc Voc FF CuPc 5.51 0.482 0.60 1.59 1.7 1.1 PtTPBP 4.48 0.685 0.63 1.93 1.4 0.02 h+ e- (A/cm2) M.D. Perez, et. al., J. Am. Chem. Soc., 2009 Kinetic Control of VOC At VOC the photocurrent is cancelled out by the injected current: steady state kct D+ + A- Light D* + A e- D+ + A- krec hν D +A VOC upper = EDA limit Dark h+ + - Light + - Dark Voc Current, a.u. DONOR 15 10 5 0 -5 -10 -15 -0.5 ACCEPTOR Photocurrent 0.0 0.5 Voltage, V 1.0 1.5 Pt(TPBP) OPV performance PtTPBP CuPc C60 6 Pt (TPBP) CuPc 300 mV 2 2 J (mA/cm ) 4 0 -2 -4 h+ -6 -0.2 0.0 0.2 0.4 0.6 e- 0.8 V(volt) h(%) EDA JS Jsc Voc CuPc 5.51 0.482 1.59 1.7 1.1 PtTPBP 4.48 0.685 1.93 1.4 0.02 JS recombination rate (A/cm2) + + Pt(TPBP)/C60 CuPc/C60 M.D. Perez, et. al., J. Am. Chem. Soc., 2009 Chemical annealing of porphyrin films CN N H N N N N N N N N N N N N py pyCN dmap pyz triazine Himi N Meimi N Phimi UV vis spectra of 150Å ZnTPP film treated with ligands • Film treated with ligand vapor only • Reaction complete in mins. • Film composition: ZnTPP:Ligand = 1:1 ZnTPP coated substrate N-base – Based on NMR spectra of dissolved thin films N 1.4 t=0 10 s 20 s 40 s 1 min 2 min 4 min Absorbance 1.2 1.0 0.8 0.6 0.4 0.16 0.12 N 0.08 0.04 0.00 • Not clear isosbestic behavior • Peak sharpening - film reorganization 540 560 580 600 620 640 0.2 0.0 400 450 500 550 600 650 Wavelength (nm) C. Trinh, et al., Chem. Mater. (2012) Thin film structure – XRD measurement 300 250 N ZnTPP film 200 ZnTPP•pz film N 150 100 (1,-1,3) 50 Single crystal ZnTPP•pyz Intensity (a.u.) Intensity (a.u.) 300 0 5 10 15 2 ( ) 20 25 30 N 200 ZnTPP•triazine film N N (202) 100 Single crystal ZnTPP•triazine 0 5 10 15 20 25 30 2 (o) (1,-1,3) (202) C. Trinh, et al., Chem. Mater. (2012) Grazing Incidence XRD – relative orientation ZnTPP-pz, 50 nm (1,-1,3) • Orientation of the molecules is parallel to the substrate! • Intensity spread for the (1,-1,3) as a function of polar angle shows that the crystallites are +/- 8.2º to the surface C. Trinh, et al., Chem. Mater. (2012) Current density (mA/cm2) Device performance 3 2 D1 D2 Al 1 0 -1 Al BCP (10nm) BCP (10nm) C60(40 nm) C60(40 nm) ZnTPP 15nm ZnTPP-pz 15nm ITO ITO -2 -3 -1.0 -0.5 0.0 0.5 1.0 Voltage (V) • High leakage, low VOC • Crystalline high conductivity – High conductivity = high FF D1 D2 AFM images of 100Å films on glass substrates N N N N ZnTPP•pyz ZnTPP Section analysis 0 nm -5 0μ 1 2 ZnTPP•triazine Section analysis 5 Section analysis 20 7 0 nm -20 0 nm 3 0μ N -7 1 2 3 0μ 1 2 3 10 nm 50 nm 15 nm 5 nm 25 nm 7.5 nm 0 nm 0 nm 0 nm Aggregates are formed on chemical annealing C. Trinh, et al., Chem. Mater. (2012) Current density (mA/cm22) Device performance 3 2 Al D1 D2 D4 D5 Al BCP (10nm) BCP (10nm) C60(40 nm) C60(40 nm) -2 ZnTPP 15nm ZnTPP-pz 15nm -3 ITO ITO D1 D2 Al Al 1 0 -1 -1.0 -0.5 0.0 0.0 Voltage Voltage (V) (V) 0.5 0.5 1.0 1.0 NPD • Using NPD to prevent leakage – Recovers ½ of the VOC – NPD lmax < 400 nm • Structure at the D/A interface affects rate of recombination BCP (10nm) BCP (10nm) C60(40 nm) C60(40 nm) NPD (10nm) ZnTPP-pz 15nm NPD (10nm) ITO ITO ZnTPP 15nm D4 D5 Kinetic Control of VOC At VOC the photocurrent is cancelled out by the injected current: steady state kct D+ + A- Light D* + A e- D+ + A- krec hν D +A VOC upper = EDA limit Dark h+ + - Light + - Dark Voc Current, a.u. DONOR 15 10 5 0 -5 -10 -15 -0.5 ACCEPTOR Photocurrent 0.0 0.5 Voltage, V 1.0 1.5 Electron transfer rates for Pentacene/C60 Perpendicular 107 104 Parallel Dashed, solid = CT: pent/C60 pent+/C60Dotted = Recom.: pent+/C60- pent/C60 • Rates of forward and back electron transfer depend on orientation • Parallel orientation gives rise to a high recombination rate Y. P. Yi, V. Coropceanu and J. L. Bredas, J. A. Chem. Soc., 2009, 131, 15777-15783. CT state energy correlates with Voc - h+ e– C60 C60 C60 C60 CT + High ECT Low ECT e– h+ Plot courtesy of Koen Vandewal Current density (mA/cm2) Device performance 3 2 D1 D2 D4 D5 Al Al BCP (10nm) BCP (10nm) C60(40 nm) C60(40 nm) -1 ZnTPP 15nm -2 ZnTPP-pz 15nm ITO ITO D1 (D4) D2 (D5) 1 0 -3 -1.0 -0.5 0.0 0.5 1.0 Voltage (V) • High recombination rate high dark current low VOC • Amorphous interface is better than the wrong one C60 C60 C60 C60 C60 C60 Current density (mA/cm2) Device performance 3 Al Al D6 D7 D8 BCP (10nm) BCP (10nm) C60(40 nm) C60(40 nm) ZnTPP 20nm ZnTPP-pz 20nm -1 ITO ITO -2 D6 D7 2 1 0 -3 -1.0 Al -0.5 0.0 0.5 1.0 Voltage (V) BCP (10nm) C60(40 nm) • Using thicker amorphous ZnTPP to recover most of VOC, improve FF/JSC ZnTPP 10nm ZnTPP-pz 10nm ITO D8 C. Trinh, et al., Chem. Mater. (2012) Device performance Al Al 1.4 t=0 10 s 20 s 40 s 1 min 2 min 4 min Absorbance 1.2 1.0 0.8 0.6 0.4 0.16 BCP (10nm) BCP (10nm) C60(40 nm) C60(40 nm) ZnTPP 20nm ZnTPP-pz 20nm ITO ITO D6 D7 0.12 0.08 0.04 0.00 540 560 580 600 620 640 0.2 Al 0.0 400 450 500 550 600 650 Wavelength (nm) BCP (10nm) C60(40 nm) • Using thicker amorphous ZnTPP to recover most of VOC, improve FF/JSC ZnTPP 10nm ZnTPP-pz 10nm ITO D8 C. Trinh, et al., Chem. Mater. (2012) Ag, 100 nm OH O HO 2 As Cast Pre-C60 Post-C60 Schottky • DPSQ: a 105 cm-1 •Solvent vapor annealing (SVA): film exposed to a saturated solvent vapor (CH2Cl2): improves molecular diffusivity (and formation of nanoXstals) •Annealing done before and after C60 deposition. 1 DPSQ 0.2 0.4 0.6 0.8 Voltage [V] ITO, 150 nm OH O HO MoO3, 8 nm N DPSQ, 16 nm + C60, 40 nm N PTCBI, 8 nm 1.2 1.4 Achieving the “ideal” morphology Morphological control through Solvent Vapor Annealing • Device Crystallinity VOC JSC As Cast Least Good Poor Pre C60 Best Poor Poor Post C60 Middle Good Good Device performance not monotonically related to crystallinity. • DPSQ crystallization in post-C60 evident from absorption spectrum, but not XRD. • Crystallized DPSQ templates C60. • • Improved bulk crystallinity LD. Highly crystalline interfaces kPPr. J. D. Zimmerman, et al. Nano Letters (2012) Solvent Vapor Annealing pre- & post-C60 deposition • SVA in DCM pre-C60: – 0.12 V in VOC. – EQE DPSQ improved exciton transport. – EQE for C60 • SVA post-C60: – DPSQ EQE by 80% , JSC by 25% . – No loss in VOC interface is the same Process JSC [mA cm-2] VOC [V] FF [%] hP [%] As Cast 6.1 0.96 74 4.3 Pre-C60 6.0 0.84 71 3.6 Post-C60 7.7 0.97 72 5.5 J. D. Zimmerman, et al. Nano Letters (2012) Solvent Vapor Annealing pre- & post-C60 deposition As Cast • SVA in DCM pre-C60: – 0.12 V in VOC. – EQE DPSQ improved exciton transport. – EQE for C60 • SVA post-C60: – DPSQ EQE by 80% , JSC by 25% . – No loss in VOC interface is the same Pre-C60 Post-C60 Process JSC [mA cm-2] VOC [V] FF [%] hP [%] As Cast 6.1 0.96 74 4.3 Pre-C60 6.0 0.84 71 3.6 Post-C60 7.7 0.97 72 5.5 J. D. Zimmerman, et al. Nano Letters (2012) VOC summary 60 • The structure at the D/A interface influences Doped C 40 VOC 30 50 Undoped C60 EQE (%) 60 – Sterics can increase spacing and thus VOC 20 – Ordering can be good or10bad • Chemical annealing ZnTPP0 orders 400 500to the 600 wrong 700 800 Wavelength (nm) structure • Disordered is better than the wrong order • Can we increase JSC without altering VOC? – Doping as seen yesterday, broaden absorbance below Eg – Singlet fission Singlet fission routes around the Shockley-Queisser limit 2.0 T1T1 5 S1 + S0 T1 + T1 2 1 Global tilt incident power (W/m nm ) S0S1 1.6 4 1.2 3 0.8 2 0.4 1 0.0 500 1000 1500 Wavelength (nm) 2000 0 2500 Photon Energy in eV Area corrected for exciton energy drop to bandgap Photons not absorbed S0 • Incomplete absorption and thermolysis to band gap energy limit h < 31% Shockley and Queisser, J. Appl. Phys. (1961) Singlet fission routes around the Shockley-Queisser limit 1 photon in 2 excitons out 1 2 T1 5 1.6 1.6 Area corrected for exciton energy drop to bandgap 1.2 1.2 4 3 0.8 0.8 2 0.40.4 1 0.00.0 500400 1000 600 8001500 1000 2000 1200 0 14002500 Wavelength (nm)(nm) Wavelength Theoretical efficiency > 45%! A. Nozik, Appl. Phys. Lett. (2006) Photon Energy in eV Global tilt incident power (W/m nm ) 2 1 Global tilt incident power (W/m nm ) 2.0 x2 Photons not absorbed S0 • Incomplete absorption and thermolysis to band gap energy limit h < 31% Shockley and Queisser, J. Appl. Phys. (1961) • Singlet Fission solution: 45% • You MUST absorb ALL photons • Efficient Singlet Fission materials are largely limited to crystalline/polycrystalline materials Singlet Fission Materials • Several materials systems have SF = 200% (triplet yield) • High efficiencies only observed for crystalline materials • Tetracene – M. Pope, J.Chem.Phys (1965), A.J. Taylor, et. al., Phys.Rev.Lett.(2009); Damrauer, ibid. (2010); Bardeen, J.Chem.Phys. (2011) • Pentacene – R.H. Friend, et. al., J. Am. Chem. Soc. (2010); A.A. Villaeys et. al. Chem. Phys. Lett. (1995) • Diphenyl-benzofuran – J. Michl, et. al., J. Am. Chem. Soc. (2010) • Carotenoids – M.J. Tauber, et. al., J. Am. Chem. Soc. (2010) Absorption/Emission of Acenes Tetracene 1000 Å Amorphous thin film by X-ray and e- diffraction DPT 1000 Å Transient Absorption Spectroscopy Abs AbsON AbsOFF Singlet Fission in DPT SnS1 S.T. Roberts et. al. JACS 134 (2012) C. Burgdorff et. al. Spectrochim. Acta. 44A (1988)6388. 1137. Singlet Fission in amorphous DPT films QT = 122% fast = 1.3 ps slow = 105 ps Crystalline Tetracene: SF = 40-80 ps A.J. Taylor, et. al., Phys.Rev.Lett.(2009); Damrauer, ibid. Bardeen, J.Chem.Phys. (2011)6388. S.T.(2010); Roberts et. al. JACS 134 (2012) DPT Crystal Structure 3.68 Å Pair 4.00 Å 4.00 Å Pair 3.68 Å NAQMD: Kinetic Monte Carlo Simulations • Utilize Surface Hopping for State Transitions • Wavefunctions from TD-DFT • Fermi’s Golden Rule for Transition Probabilities • 5000 individual trajectories Weiwei Mou & Aiichiro Nakano, Appl. Phys. Lett. (2013) NAQMD: Preferred Fission Sites Simulations suggest 3.9% of molecules give 91% of fission events! NAQMD: Preferred Fission Sites Experiment NAQMD-KMC Simulations suggest 3.9% of molecules give 91% of fission events! Singlet fission routes around the Shockley-Queisser limit 1.6 2 1 Global tilt incident power (W/m nm ) x2 S1/T1 1.2 T1 0.8 S0 0.4 0.0 400 600 800 1000 1200 1400 Wavelength (nm) • Incomplete absorption and thermolysis to band gap energy limit h < 31% Shockley and Queisser, J. Appl. Phys. (1961) • You MUST absorb ALL photons Theoretical efficiency > 45%! A. Nozik, Appl. Phys. Lett. (2006) Red Dye to Fill the SF Gap Spectra in THF solution Materials studied as co-deposited films 2.0 1.5 0.8 PtTPBP S1-T1 DPT Triplet 1.0 0.5 0.0 1.2 DPT S1-T1 0.4 0.0 400 600 800 Wavelength (nm) Wavelength (nm) 1000 Emission (arb. units) Absorbance (arb. units) DPT DPT PtTPBP PtTPBP phosphorescence Sensitizing to the red in SF materials SS = 4.6 ps ISC = 400 fs TT = 35 ps Singlet Fission 1 + 105 ps S1 + S0 2 T1 < 50% SF comes from prompt ANODE Acceptor SF + Sensitizer CATHODE S1,Pt(TPBP) T1,DPT: 85% Efficient S1,DPT T1,DPT: 80% Efficient Singlet fission: 61% Need to eliminate delayed SF to make this structure work. S. Roberts, et. al., J. Phys. Chem. Lett. (2011) Combining SF with mid-band absorption S1 • Problems: – We did not shut off S11 S12. – Low doping level for PtTPBP • Spatially separating the SF material from all singlet traps will eliminate transfer (layered rather than mixed structure) S1 T1 T1 Donor 2 (PtTPBP) CATHODE Acceptor SF + Sensitizer T1 SF Donor (DPT) CATHODE Acceptor SF material Sensitizer LUMO Acceptor Singlet Fission Conclusions • Singlet fission can be observed for both crystalline and amorphous materials – DPT shows SF in both thin films and NP • SF takes place at specific dimer sites – Prompt and diffusive SF • What is the preferred dimer structure?? Is efficient “unimolecular” singlet fission possible? Can we create systems with only prompt SF? Acknowledgements Kristen Mutolo, M. Dolores Perez, Cong Trinh, Steve Bradfoth, Sean Roberts, Eric McAnally Department of Chemistry University of Southern California Stephen Forrest, Jeramy Zimmerma Departments of Physics and Electrical Engineering University of Michigan Michael Toney, Christopher Tassone, Materials Science Department and Stanford Synchrotron Radiation Lightsource Funding: CAMP Center for Advanced Molecular Photovoltaics STAN FORD UN IVERSITY King Abdulla University of Science and Technology + Acceptor Donor P0 (1 sun, AM1.5) 8 Light Dark 4 0 Photocurrent -4 -8 Jsc -12 -0.4 0.0 6 5 4 3 2 Voc1 0 -1 -2 -3 -4 -5 -6 2 2 Current Density (mA/cm ) 12 Power Density (mW/cm ) Solar Cell Efficiency 0.4 Applied Test Voltage (V) Pmax J sc Voc FF Cell Efficiency =h p Po Po Solar Cell Efficiency + Acceptor Donor P0 (1 sun, AM1.5) 8 -4 -2 4 Voc 0 0 -4 Pmax = VmJm 2 4 -8 Jsc -12 -0.4 0.0 2 - -6 Light Dark Power Density (mW/cm ) 2 Current Density (mA/cm ) 12 6 0.4 Applied Test Voltage (V) Pmax J sc Voc FF hp Po Po Solar Cell Efficiency + Acceptor Donor P0 (1 sun, AM1.5) 8 Light Dark -4 -2 4 Voc 0 0 -4 2 -8 4 Jsc -12 -0.4 0.0 2 - -6 Power Density (mW/cm ) 2 Current Density (mA/cm ) 12 6 0.4 Applied Test Voltage (V) Pmax J mVm FF Pmax J scVoc FF J scVoc J scVoc Pmax J sc Voc FF hp Po Po
© Copyright 2024 ExpyDoc