Presentation

Kinetic parameters for gas phase
photocatalysis: analytic versus
multiphysics approach
Siegfried Denys, Sammy Verbruggen & Silvia Lenaerts
TiO2 gas phase
Research goals
photocatalysis
Intrinic kinetic
parameters
Analytic model
Comsol model
Photocatalysis
Catalyst: increases reaction rate without being consumed
Photo-catalyst: catalyst activated by (UV-)light
Most often titanium dioxide (TiO2)
-1.0
TiO2
Conduction band
P o te n tia l (vs. SH E ) [V ]
-0.5
0.0
0.5
H2/H2O (-0.413)
O2/O2-• (-0.28)
Red
VOC’s
Ox
hn ≥ Eg
O2/H2O (+0.83)
1.0
1.5
Red
2.0
h+ (+2.53)
2.5
3.0
2
e- (-0.52)
Valence band
•OH/H O (+2.27)
2
Ox
H2O, CO2
TiO2 gas phase
photocatalysis
Research goals
Intrinic kinetic
parameters
Analytic model
Comsol model
Photocatalysis: application fields
Water purification/desinfection
Air purification
Self-cleaning materials
3
TiO2 gas phase
photocatalysis
Research goals
Intrinic kinetic
parameters
Analytic model
Comsol model
Research goals
Main goal: development of suitable photoreactors for air
purification
Sub goal: determination and exploitation of the main catalyst
characteristics driving photocatalytic activity in the gas phase
4
TiO2 gas phase
photocatalysis
Research goals
Intrinic kinetic
parameters
Analytic model
Comsol model
Intrinsic kinetic parameters
Slit covered by quartz plate
UVA lamp
Inlet
Sealing
rubber
Outlet
Flat bed photoreactor
HVAC photoreactor
Tubular photoreactor (glass fibre)
5
TiO2 gas phase
photocatalysis
Intrinic kinetic
parameters
Research goals
Analytic model
Comsol model
Intrinsic kinetic parameters
VOCbulk
kads
VOCs
kdes
Langmuir adsorption:
fractional coverage of VOC on
an illuminated TiO2 surface
θ VOC 
K L C VOC
1  K L C VOC
kLH
Unimolecular LangmuirHinshelwood mechanism:
r  k LH θ VOC 
Intrinsic kinetic
parameters
6
H2O, CO2
k LH K L C VOC
1  K L C VOC
 k app C VOC
TiO2 gas phase
Research goals
photocatalysis
Intrinic kinetic
parameters
Analytic model
Comsol model
Analytic model
r  k LH θ VOC 
1
k app

1
K Lk

k LH K L C VOC
1  K L C VOC
1
k
 k app C VOC
C VOC
Plot of kapp-1 ()and h () versus the average surface concentration CVOC for a) 1.1 mW
cm-2, b) 1.8 mW cm-2 and c) 2.6 mW cm-2 incident UVA intensity
7
TiO2 gas phase
Intrinic kinetic
parameters
Research goals
photocatalysis
Analytic model
Comsol model
Analytic model: mass transfer
Mass conservation:
Slit covered by quartz plate
UVA lamp
G
 C VOC
,
(x)
x
dx   j ( x ) pdx
Mass convection at the boundary:
Inlet
j( x ) 
Sealing
rubber
Outlet
C VOC
,
(x)
1 h mass ( x )  1 k app ( x )
Solution:
Cout
p
L
Cin
x
8
dx
C VOC
Kt 
,  , out
 C VOC
,  , in e
1
1 h mass  1 k app
KtA G
TiO2 gas phase
Research goals
photocatalysis
Intrinic kinetic
parameters
Analytic model
Comsol model
Slit covered by quartz plate
UVA lamp
Inlet
•
•
•
•
Sealing
rubber
Outlet
b)
inlet
250,000 cells
Laminar flow
catalyst
surface
Transport of diluted species
outlet
Surface reaction
r
9
a)
k LH K L C VOC
1  K L C VOC
c)
Comsol model
TiO2 gas phase
photocatalysis
Research goals
Intrinic kinetic
parameters
Analytic model
Comsol model
Comsol model: optimization
•
•
•
•
•
10
Step 1: Stationary solver: laminar flow
Step 2: transport of diluted species and optimization
Nelder-mead
Optimization variables: KL and kLH
objective function:
Obj  C VOC ,  , out , e xp  C VOC ,  , out ,CFD
TiO2 gas phase
photocatalysis
Research goals
Intrinic kinetic
parameters
Analytic model
Comsol model
Comsol model: results
Acetaldehyde concentrations in steady state condition. The acetaldehyde inlet concentration
was 43 ppmv (0.00179 mol m-3), at an effective total inlet gas flow rate of: a) 300 cm3 min-1,
b) 375 cm3 min-1, c) 450 cm3 min-1, d) 525 cm3 min-1 and e) 600 cm3 min-1
11
TiO2 gas phase
photocatalysis
Intrinic kinetic
parameters
Research goals
Analytic model
Comsol model
Comsol model: results
Summary of the kinetic parameters calculated in accordance with the analytic mass transfer
based method and the Comsol method after an optimization procedure
-1
Intensity
-2
[mW cm ]
12
-2
3
kLH [mol s m ]
Mass transfer
based (analytic)
-1
KL [m mol ]
Optimized
numeric (CFD)
Mass transfer
based (analytic)
1.1
1.38 x 10
-6
(1.58 ± 0.13) x 10
-6
1.45 x 10
1.8
2.11 x 10
-6
(2.40 ± 0.20) x 10
-6
1.47 x 10
2.6
5.35 x 10
-6
(6.23 ± 0.47) x 10
-6
1.02 x 10
Optimized
numeric (CFD)
4
(1.78 ± 0.15) x 10
4
4
(1.65 ± 0.11) x 10
4
4
(1.16 ± 0.08) x 10
4