An effective hyper-resolution pseudo

An effective hyper-resolution pseudo-3D
implementation of small scale
hydrological features to improve regional
and global climate studies
P. Hazenberg1 , P. Broxton1 , M. Brunke1 , D. Gochis2 , G.-Y. Niu1 ,
J. Pelletier1 , P.A. Troch1 , X. Zeng1
1
University of Arizona, Tucson, AZ.
2
NCAR, Boulder, CO.
25 February 2014
Introduction: Current hydrology in CLM
Lateral subsurface flow
Subsurface-river network flow
No lateral subsurface flow taken into account!
Model resolution increases due to computational
developments
Lateral subsurface flow
Increase in resolution
Decrease importance of river flow
Subsurface-river network flow
Importance of:
I river network decreases,
I
lateral subsurface flow
increases,
I
elevation differences
increase.
Question: How to improve the
CLM’s hydrology while still
making use of vertical column
information and focus?
Develop a new hybrid 3-D hydrological model
Separating the vertical and lateral hydrological response (pseudo
3-D):
I Vertical response:
I
I
I
Use CLM soil column,
Extend depth of column to bedrock,
Lateral response:
I
I
I
I
Design a new model (no linear reservoir),
Defining a generic approach resolution independent,
Differentiating different hydrological response units,
Here: 1 km pixel resolution (hyperresolution),
I
Using different resolutions for vertical and lateral hydrological
response,
I
Making use of high resolution datasets.
Make use of high resolution datasets
Barren
Snow/Ice
Cropland/Natural
Urban
Croplands
Permanent Wetlands
Grasslands
Savannas
Woody Savannas
Open Shrublands
Closed Shrublands
Mixed Forests
Deciduous Broadleaf Forests
Deciduous Needleaf Forests
Evergreen Broadleaf Forests
Evergreen Needleleaf Forests
Water
Broxton et al., 2014
I
Vegetation data
I
Digital elevation
model (DEM)
I
Soil databases
Make use of high resolution datasets
Pelletier & Rasmussen, 2009
I
Vegetation data
I
Digital elevation
model (DEM)
I
Soil databases
Make use of high resolution datasets
Drainable porosity
30 m DEM
I
Vegetation data
I
Digital elevation
model (DEM)
I
Soil databases
Differentiation between different hydrological units
1st order, head water hillslopes
Riparian zone
D1
2nd order side slopes
QCH
Channel
D2
α1
Dch
st
1 order
hillslope
QHS,GW
α2
Drpz
Riparian zone
or
Wetland
QGW
QHS,CH
Hillslope
Flat region
Channel
Lake
nd
2 order
side slope
QGW
QCH
QGW
Make use of high resolution DEM to differentiate
between hydrological units
30 m DEM
QCH
QHS,GW
QGW
QHS,CH
Hillslope
Flat region
Channel
Lake
QGW
QCH
QGW
Fraction of the different lateral hydrological components for each 1 km pixel.
A hybrid 3-D approach for the hillslope type
w
P Eact
D1
Channel
dx
D2
θ
α1
Dch
1st order
hillslope
Tact
D QOF,IE
Roots
D
α2
Drpz
Riparian zone
or
Wetland
QOF,SE
2nd order
side slope
α
QGW +
QOF,SE
QGW
The 1-D Richards equation:
∂θ
∂
∂Ψ
=
Kv (Ψ)
+ 1 − G(h)
∂t
∂z
∂z
The 1-D hillslope storage Boussinesq equation (Troch et al., 2003)
∂h
∂
1 ∂
(f (h) h) =
w Kl h sin α +
cos α
+ cos α Rgw
∂t
w ∂x
∂x
hgwl
Comparison of hsB and CLM at the hillslope scale
UNIFORM
CONVERGENT
DIVERGENT
wtop = 50 m
wtop = 90 m
wtop = 10 m
Distance to
bottom (m)
100
80
L = 50 m
60
40
20
dy = 5 m
0
dx = 2 m
Distance (m)
0
20 40 60 80 100
0
Distance (m)
20 40 60 80 100
Distance (m)
Uniform
Convergent
Divergent
CLM
0
−50
−100
−150
−200
−250
−300
−350
Theta
(−)
Sandy Loam
20 40 60 80 100
80
60
40
20
0
0.435
0.400
0.350
0.300
0.250
0.200
0
−50
−100
Clay loam
0
wbottom = 90 m
whs (m)
whs (m)
wbottom = 10 m
80
60
40
20
0
Vertical depth, z (cm)
whs (m)
wbottom = 50 m
80
60
40
20
0
−150
−200
−250
−300
−350
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Time (days)
Theta
(−)
0.476
0.400
0.350
0.300
0.250
0.200
A hybrid 3-D approach for lateral interaction
between pixels
P
Tact
Eact
QOF
QCH
Roots
QHS,GW
QGW
QHS,CH
Hillslope
Flat region
Channel
Lake
QGW
QCH
D
QCH
QCH
θ
QGW
hgwl
QGW
QGW,CH
QGW
The 1-D Richards equation:
∂θ
∂
∂Ψ
=
Kv (Ψ)
+ 1 − G(h)
∂t
∂z
∂z
The 2-D subsurface Boussinesq equations (Darcy)
A
∂(h f )
∂h ∂E
∂h ∂E
= −∂ wx h kL
+
−∂ wy h kL
+
+Rgw A
∂t
∂x
∂x
∂y
∂y
x
y
Computational scheme for hybrid 3-D hydrological
model
• Atmospheric input
fluxes
• Neighboring grid cell
states
• Ocean information
Setup
and
parameters
Hybrid 3D grid cell
Vertical response
Lateral
recharge/
drainage
flux
For each
time step
•
•
•
•
•
•
Dimensions
Number of columns
Soil parameters
Bedrock, lake depth
Width functions
Etc.
Vertical
Vertical
Vertical
Vertical
Vertical
soil
soil
soil
soil
soil
column
column
column
column
column
Lateral response
River
River
River
River
River
network
network
network
network
network
column
column
column
column
column
• Water content
• Pressure head
• Drainage/recharge rate
Vertical
recharge/
drainage
flux
Hillslope
Hillslope
Hillslope
Hillslope
Hillslope
Hillslope
Order of implementation
Temporal
input
Lake
Lake
Lake
Lake
Lake
column
column
column
column
column
• Water level
• Drainage/recharge rate
• Saturated
subsurface states
• Saturated
outflow flux
Flatland
River network
• River levels
• Discharge rates
Lake
• Lake levels
• Discharge rates
Testing the hybrid 3-D hillslope response in LEO
I
Landscape Evolution
Observatory (LEO) in
Biosphere 2
I
Convergent hillslope
(11x30 m)
Recharge and drainage
experiment
I
I
Compare to 3D Richards
model CATHY (Niu et al.,
2013)
Atm BC (mm h−1)
Testing the hybrid 3-D hillslope response in LEO
12
10
8
6
4
2
0
−2
a)
Storage (m3)
350
1D−hsB: 0.996
CATHY : 0.993
300
b)
250
200
Observed
1D−B
CATHY
150
100
I
I
Convergent hillslope
(11x30 m)
Recharge and drainage
experiment
Compare to 3D Richards
model CATHY (Niu et al.,
2013)
0.8
Qgw(m3 h−1)
I
Landscape Evolution
Observatory (LEO) in
Biosphere 2
1D−B: 0.984
CATHY : 0.977
0.6
c)
0.4
Opt. param. range:
min−max
0.10−0.90
0.25−0.75
0.2
0.0
5
1D−B: 0.106
CATHY : −1.078
4
Qof(m3 h−1)
I
d)
3
2
1
0
0
10
20
30
Time (h)
40
50
10
Atm BC (mm h−1)
10
3
2
12
10
8
6
4
2
0
−2
a)
350
Storage (m3)
10
4
1.00 NS, range
0.99
0.98
0.97
LEO obs.
LEO soil
1D−B opt.
min−max
0.10−0.90
0.25−0.75
1D−hsB: 0.996
CATHY : 0.993
300
b)
250
200
Observed
1D−B
CATHY
150
100
0.8
Qgw(m3 h−1)
10
5
101
1D−B: 0.984
CATHY : 0.977
0.6
c)
0.4
Opt. param. range:
min−max
0.10−0.90
0.25−0.75
0.2
0.0
0.0
0.1 0.2 0.3 0.4
Soil moisture, θ [−]
Good correspondence with
observations!
5
1D−B: 0.106
CATHY : −1.078
4
Qof(m3 h−1)
Matric potential, Ψ [−cm]
Testing the hybrid 3-D hillslope response in LEO
d)
3
2
1
0
0
10
20
30
Time (h)
40
50
Atm BC (mm h−1)
Testing the hybrid 3-D hillslope response in LEO
12
10
8
6
4
2
0
−2
a)
0.33 0.36 0.39 0.42 0.45
0.45
0.42
0.39
0.99
0.33
40 60 80 100 120 140 160
−1
θs [−]
NS
0.36
Storage (m3)
−10
−20
−30
−40
−50
−60
−70
−80
θs [−]
Ψae [cm]
Ψae [cm]
350
−10
−20
−30
−40
−50
−60
−70
−80
0.98
40 60 80 100 120 140 160
0.95
Kv,s [cm h ]
0.90
−1
Kv,s [cm h ]
0.5
1.0
0.5
0.33 0.36 0.39 0.42 0.45
θs [−]
−1
Kv,s [cm h ]
200
Observed
1D−B
CATHY
150
1D−B: 0.984
CATHY : 0.977
0.00
−1.0
0.5
40 60 80 100 120
250
0.8
0.50
1.0
−80
−60
−40
Ψae [cm]
−20
Qgw(m3 h−1)
1.0
2.0
b [−]
b [−]
0.6
c)
0.4
Opt. param. range:
min−max
0.10−0.90
0.25−0.75
0.2
0.0
Improved understanding on
parameter sensitivity!
5
1D−B: 0.106
CATHY : −1.078
4
Qof(m3 h−1)
b [−]
2.0
b)
100
0.80
2.0
1D−hsB: 0.996
CATHY : 0.993
300
d)
3
2
1
0
0
10
20
30
Time (h)
40
50
Conclusions
We are developing a new hybrid 3-D hydrological scheme for CLM:
I
Keep the current vertical column framework of CLM,
I
Differentiate between lateral and vertical response,
I
Extending the depth of the vertical column to the bedrock,
I
Identifying the response of different hydrological units (e.g.
hillslope, flatland, river network and lake).
For next period:
I
Finish implementation of shallow water equations for river
network and lake,
I
Couple to vertical column structure of CLM,
I
Test the possibilities of this model at different scales (catchment,
continental, global).
I
For longer run: Add possibility of using multiple vertical columns.
Thanks for your attention!!!
Questions?
Email: [email protected]
Acknowledgements: Department of Energy research grant
(DE-SC0006773)