1 / 22 RG flows of Quantum Einstein Gravity on maximally symmetric spaces Maximilian Demmel, Frank Saueressig, Omar Zanusso THEP Uni Mainz 02.06.2014 Maximilian Demmel QEG on symmetric spaces 2 / 22 1 introduction 2 heat kernel on symmetric spaces 3 construction of fixed functions Maximilian Demmel QEG on symmetric spaces introduction 3 / 22 setup tool: k k dΓ dk = 1 2 Tr (2) Γk + Rk −1 k k dR dk R √ [gµν ] = d3 x g fk (R) truncation: Γgrav k [0705.1769, 0712.0445, 1204.3541, 1211.0955, ...] conformal reduction: hµν = d1 g¯µν φ [0801.3287, ...] maximally symmetric background: S 3 (R > 0) and H 3 (R < 0) Maximilian Demmel QEG on symmetric spaces introduction 4 / 22 type II regulator ¯ 2 + E (potential term E containing R) ¯ operator: := −D define regulator Rk () def. (2) (2) Γk () + Rk() = Γk ( + Rk ()), where Rk is the profile function (Litim’s cutoff). flow equation Z √ ¯ = 1 Tr W () d3 x g ∂t fk (R) 2 Maximilian Demmel QEG on symmetric spaces heat kernel on symmetric spaces 5 / 22 heat kernel on S 3 heat kernel of scalar Laplacian −D 2 : Tr e−s(−D 2 ) Z = √ d3 x g ∞ X 6n 2 π 2 esR/6 12π 2 n 2 e− Rs 1 − 3/2 Rs (4πs) n=−∞ n = 0: local part of the heat kernel Visible in small R expansions. n 6= 0: nonlocal/topological part of the heat kernel contains n-fold returning modes due to compactness “beyond all orders in R” Maximilian Demmel QEG on symmetric spaces heat kernel on symmetric spaces 6 / 22 heat kernel on H 3 taking into account only normalizable eigenfunctions of −D 2 Z esR/6 √ −s(−D2 ) Tr e = d3 x g , R<0 (4πs)3/2 no returning modes due to the non-compactness analytic continuation to negative R is not possible local (polynomial) analysis will be insensitive of the background topology Maximilian Demmel QEG on symmetric spaces heat kernel on symmetric spaces 7 / 22 operator trace on S 3 spectral sum ⇐⇒ local + nonlocal heat kernel X Tr W () = Di W (λi + E) i = X n 2 W (n 2 − 1)R/6 + E n≥1 local approximation: use local heat kernel only Z ∞ Z s(R/6−E) f (s) d3 x √g e Tr W () = ds W (4πs)3/2 Z0 1 √ = d3 x g Q3/2 [W (z − R/6 + E)] (4π)3/2 Maximilian Demmel QEG on symmetric spaces heat kernel on symmetric spaces 8 / 22 operator trace on H 3 using the exact heat kernel Z √ Tr W () = d3 x g 1 Q3/2 [W (z − 1R/6 + E)] (4π)3/2 now: R < 0! formally the analytic continuation to negative R of the local approximation on S 3 . Maximilian Demmel QEG on symmetric spaces heat kernel on symmetric spaces 9 / 22 dimensionless quantities definition: R =: k 2 r, E =: k 2 e, fk (R) =: k 3 ϕk (R/k 2 ) flow equation: partial differential equation for ϕk (r) fixed functions: k stationary solutions ⇐⇒ ∂t ϕk (r) = 0 third order equation: three parameter family of solutions Maximilian Demmel QEG on symmetric spaces heat kernel on symmetric spaces 10 / 22 integrating out eigenmodes optimized cutoff: Rk (z) = (k 2 − z)θ(k 2 − z) Tr W () = Nr X A(n, . . . ) θ 1 − (n 2 − 1 + α)r/6 , n≥1 finite sum for r > 0 for lowest eigenmode (n = 1) to contribute r < 6/α α = 1: trace zero for r > 6 =⇒ all fluctuations are integrated out! Maximilian Demmel QEG on symmetric spaces e = αr/6 construction of fixed functions 11 / 22 singular points and pole crossing generic ODE: y (n) (x) = f (y (n−1) , . . . , y 0 , y, x) r.h.s. f can have singular points f (y (n−1) , . . . , y 0 , y, x) = e(y (n−1) (x0 ), . . . , y 0 (x0 ), y(x0 ), x0 ) + O (x − x0 )0 x − x0 pole crossing solution ⇐⇒ e|x=x0 = 0 (regularity condition) additional boundary condition reduces number of free parameters Maximilian Demmel QEG on symmetric spaces construction of fixed functions 12 / 22 example initial value problem: y 00 (x) = − y(x) , x −1 y(0) = y0 , y 0 (0) = y1 solutions are modified Bessel functions In . For y0 , y1 generic: no global solution. add BC y(1)=0: pole crossing solution √ √ 1 − x I1 2 1 − x y(x; y0 ) = y0 I1 (2) self similarity in initial values y(x; y0 ) = λ−1 y(x; λy0 ) Maximilian Demmel QEG on symmetric spaces construction of fixed functions 13 / 22 pole structure of flow equation poles are zeros of the coefficient of ϕ000 (r). 6000 5000 4000 3000 2000 1000 r 1 2 3 4 5 6 three poles at r0 = 0, r1 ≈ 1, r2 = 6 local approximation shows only two poles! number of fixed functions could be reduce to a finite number Maximilian Demmel QEG on symmetric spaces construction of fixed functions 14 / 22 numerical shooting I expand around r = 0 ϕ(r; a0 , a1 ) = a0 + a1 r + k X an (a0 , a1 )r n n=2 1 fix a2 by using regularity condition at r = 0 2 initial conditions for numerical integration (ε > 0) (n) ϕinit (ε) = ϕ(n) (ε; a0 , a1 ), 3 n = 0, 1, 2 regularity condition at r1 e : (a0 , a1 ) 7→ R Maximilian Demmel QEG on symmetric spaces construction of fixed functions 15 / 22 pole crossing solutions a1 a0 0.2 0.4 0.6 0.8 -0.5 -1.0 -1.5 -2.0 green: e(a0 , a1 ) > 0 red: e(a0 , a1 ) < 0 black line: e(a0 , a1 ) ≈ 0 Maximilian Demmel QEG on symmetric spaces 1.0 construction of fixed functions 16 / 22 numerical shooting II algorithm for second shooting 1 parametrize regular line by a0 2 initial conditions for second numerical integration (n) ϕinit (r1,sing + ε) =ϕ(n) num (r1,sing − ε; a0 ), 3 n = 0, 1, 2 integrate up to r = 6 and check regularity condition Maximilian Demmel QEG on symmetric spaces construction of fixed functions 17 / 22 regularity at r = 6 jHrL 6 e2 0.08 5 0.06 4 0.04 3 0.02 2 1 a0 0.24 0.32 0.4 r -0.02 -6 -4 2 -2 -1 -0.04 There are two distinct zeros =⇒ two fixed functions improved stability: at most three relevant directions Maximilian Demmel QEG on symmetric spaces 4 6 construction of fixed functions 18 / 22 improved expansion: example initial value problem: y 00 (x) = − expansion: y(x) = Pk n=0 y(x) x −1 an x n fixing all coefficients at x = 0 yields only trivial solution =⇒ ai = 0 improved strategy: fix an at x = 0 for n ≥ 2 and fix a1 at x = 1 =⇒ Analytic solution can be reproduced (even self similarity) Maximilian Demmel QEG on symmetric spaces construction of fixed functions 19 / 22 improved expansion: flow equation Algorithm: fix an at r = 0 for n ≥ 2 and fix a1 at r1 Result: there are two (a0 -dependent) solutions (dashed lines)! jHrL 1.0 0.5 r 0.2 0.4 0.6 0.8 -0.5 -1.0 Maximilian Demmel QEG on symmetric spaces 1.0 construction of fixed functions 20 / 22 regular lines relation between a1 and a0 can now be computed analytically (dashed lines) a1 a0 0.2 0.4 0.6 0.8 -0.5 -1.0 -1.5 -2.0 qualitative agreement! Maximilian Demmel QEG on symmetric spaces 1.0 construction of fixed functions 21 / 22 summary influence of background topology interpretation of integrating out eigenmodes numerical and analytical techniques for pole crossing two distinct fixed functions constructed Maximilian Demmel QEG on symmetric spaces construction of fixed functions 22 / 22 Thank You! Maximilian Demmel QEG on symmetric spaces
© Copyright 2024 ExpyDoc