M GIS - Sylvain Bouveret

M GIS
A Short Introduction to Volunteered Geographic Information
Presentation of the OpenStreetMap Project
Sylvain Bouveret – LIG-STeamer / Universit´
e Grenoble-Alpes
´
Quatri`
eme Ecole
Th´
ematique du GDR Magis. S`
ete, September 29 – October 3, 2014
Sources
I
Part of the presentation dedicated to OSM inspired from:
I
I
I
An old joint presentation with N. Petersen and Ph. Genoud
Nicolas Moyroud: Several talks from 3rd MAGIS summer school 2012
Released under licence CC-BY-SA and downloadable here:
http://libreavous.teledetection.fr.
Guillaume All`
egre: Cartographie libre du monde: OpenStreetMap
Released under licence CC-BY-SA.
I
Reference book about VGI [Sui et al., 2013]
I
Other references cited throughout the presentation
Sui, D. Z., Elwood, S., and Goodchild, M., editors (2013).
Crowdsourcing geographic knowledge: Volunteered Geographic Information (VGI) in
Theory and Practice.
Springer.
M GIS
2 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Outline
1. Introduction to Volunteered Geographic Information
2. Presentation of the OpenStreetMap Project
3. Using OpenStreetMap Data
4. Using Volunteered Geographic Information
M GIS
3 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Outline
1. Introduction
Introduction to
to Volunteered
VolunteeredGeographic
GeographicInformation
Information
2. Presentation of the OpenStreetMap Project
3. Using OpenStreetMap Data
4. Using Volunteered Geographic Information
M GIS
3 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Outline
1. Introduction to Volunteered Geographic Information
2. Presentation
Presentation of
of the
theOpenStreetMap
OpenStreetMapProject
Project
3. Using OpenStreetMap Data
4. Using Volunteered Geographic Information
M GIS
3 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Outline
1. Introduction to Volunteered Geographic Information
2. Presentation of the OpenStreetMap Project
3. Using
Using OpenStreetMap
OpenStreetMapData
Data
4. Using Volunteered Geographic Information
M GIS
3 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Outline
1. Introduction to Volunteered Geographic Information
2. Presentation of the OpenStreetMap Project
3. Using OpenStreetMap Data
4. Using
Using Volunteered
VolunteeredGeographic
GeographicInformation
Information
M GIS
3 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
1
First part
Introduction to Volunteered Geographic Information
Beyond traditional GIS
A new trend
Some examples
Features of participative datasets
Volunteered vs Contributed
Open vs Closed
Sensing vs Thinking
Volunteered Geographic Information
Introduction to Volunteered Geographic Information
Beyond traditional GIS
A new trend
Some examples
Features of participative datasets
Volunteered vs Contributed
Open vs Closed
Sensing vs Thinking
Volunteered Geographic Information
M GIS
5 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
A very brief history of GIS
First users of GIS (at least in France): local authorities, department of defense
M GIS
I
Early 90’s: paper maps (unprecise, to be regularly updated...)
I
1990 → 2010: Digital transposition of data
I
2000: Integration to enterprise IS (first spatial extensions to Oracle and
Postgres)
I
2002: Geospatial webservers + OGC standards
I
2005: Mobility
6 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
A very brief history of GIS
First users of GIS (at least in France): local authorities, department of defense
M GIS
I
Early 90’s: paper maps (unprecise, to be regularly updated...)
I
1990 → 2010: Digital transposition of data
I
2000: Integration to enterprise IS (first spatial extensions to Oracle and
Postgres)
I
2002: Geospatial webservers + OGC standards
I
2005: Mobility
I
2004: Participative data, geographic crowdsourcing, volunteered
geographic information, neogeographic datasets...
6 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OpenStreetMap
http://www.openstreetmap.org/
I
Project started on 2004
I
Open and collaborative geographical database of the world
I
Content generated by users (about 1.8M registered users)
I
Free license (initially CC-by-sa; ODbL since 2012)
More about OpenStreetMap later
M GIS
7 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Wikimapia
http://wikimapia.org/
M GIS
I
Project started on 2006
I
Aims at “marking all geographical objects in the world and providing a
useful description of them”
I
Mostly provides a way for users to give annotations about places in the
world, (initially) using Google Maps as a base layer.
I
Free license since 2010 (CC-by-SA).
8 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Google Map Maker
http://www.google.com/mapmaker/
M GIS
I
Project started on 2008
I
Equips Google Maps with a map edition interface
I
Every registered user can submit modifications
I
Modifications have to be approved before being published in Google Maps
I
Data released under proprietary license
9 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Ushahidi
http://www.ushahidi.com/
M GIS
I
Free Software and platform for crisis management
I
Crowdsourcing-based mapping
I
Focuses on information flow (smartphones, SMS,...)
I
Web platform Based on OpenStreetMap and Google Maps for Geocoding
(source: Wikipedia).
10 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Ligue de Protection des Oiseaux
http://www.ornitho.fr/
M GIS
I
A network of “participatory science websites” dedicated to wildlife inventory
I
Anyone can participate by adding observations to the database
I
Requires some basic knowledge about different species
I
In general, no verification is made, except for outliers
I
Search engine and visualization tool (map) on the website
11 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Other examples
M GIS
I
Geolabeled Flickr Images (
I
Foursquare (
I
UCrime (
I
...
http://www.flickr.com/
http://foursquare.com/
http://ucrime.com/
)
)
)
12 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Introduction to Volunteered Geographic Information
Beyond traditional GIS
A new trend
Some examples
Features of participative datasets
Volunteered vs Contributed
Open vs Closed
Sensing vs Thinking
Volunteered Geographic Information
M GIS
13 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Features
All these applications are examples of geographical crowdsourcing approaches
M GIS
14 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Features
All these applications are examples of geographical crowdsourcing approaches
Some strong common points...
I
Data contributed on a voluntary basis by users
I
Geospatial nature of data (or at list a part of it)
...But very different features as well:
M GIS
I
Aims
I
Geospatial as a first-class citizen or not
I
Skills required
I
Process for quality assessment (data verification)
I
Data license
14 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To volunteer or to contribute?
In all these examples, data is jointly produced by users volunteering to
contribute (geographical crowdsourcing)
M GIS
15 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To volunteer or to contribute?
In all these examples, data is jointly produced by users volunteering to
contribute (geographical crowdsourcing)
But... What about geolocalized data transmitted by a smartphone, (more or
less) unbeknownst to its user?
M GIS
15 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To volunteer or to contribute?
In all these examples, data is jointly produced by users volunteering to
contribute (geographical crowdsourcing)
But... What about geolocalized data transmitted by a smartphone, (more or
less) unbeknownst to its user?
; An example of crowdsourced geospatial data,
assuredly not volunteered!
M GIS
15 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Opt-in vs opt-out
Two approaches to crowdsourced geographic data [Harvey, 2013]:
I
Volunteered Geographic Information (opt-in):
I
I
I
I
Clarity about purposes
Control over data collection
Some guarantees about data reuse
Contributed Geographic Information (opt-out):
I
I
I
Unclear purposes
No (or little) control over data collection
No control over data reuse
Harvey, F. (2013).
To volunteer or to contribute locational information? Towards truth in labelling for
crowdsourced geographic information.
In Crowdsourcing Geographic Knowledge [...], chapter 3. Springer.
M GIS
16 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data reuse – licenses
A key distinction between opt-in and opt-out: control over data reuse
...raises the following crucial questions:
M GIS
I
Who owns the data jointly produced by users?
I
Under which license this data can be used?
17 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data reuse – licenses
A key distinction between opt-in and opt-out: control over data reuse
...raises the following crucial questions:
I
Who owns the data jointly produced by users?
I
Under which license this data can be used?
Two antagonistic examples:
M GIS
I
Google Map Maker: Google owns the data, releases it under proprietary
license, whose conditions can change whenever it wants (cf April 2011)
irrespective of whether the user is a regular contributor or not
I
OpenStreetMap: Data belongs to the contributors, and is released under
a free license
17 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Geomatics and open (free) licenses
I
In geomatics, most datasets are released under proprietary licenses, even
those who are funded by public money – IGN, Ordnance Survey,...
I
Even if it is free (cost-less), cannot be freely exploited (e.g for scientific
projects).
I
M GIS
; Some VGI projects like OSM explicitly aim at providing free and open
geospatial data.
18 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Geomatics and open (free) licenses
I
In geomatics, most datasets are released under proprietary licenses, even
those who are funded by public money – IGN, Ordnance Survey,...
I
Even if it is free (cost-less), cannot be freely exploited (e.g for scientific
projects).
I
; Some VGI projects like OSM explicitly aim at providing free and open
geospatial data.
But... How to do it while still being compatible with author’s right → freely
release data while protecting it and its authors?
M GIS
18 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Geomatics and open (free) licenses
I
In geomatics, most datasets are released under proprietary licenses, even
those who are funded by public money – IGN, Ordnance Survey,...
I
Even if it is free (cost-less), cannot be freely exploited (e.g for scientific
projects).
I
; Some VGI projects like OSM explicitly aim at providing free and open
geospatial data.
But... How to do it while still being compatible with author’s right → freely
release data while protecting it and its authors?
M GIS
I
The software community has a solution: use Free licenses
I
Initially dedicated to software (like GNU/GPL) → ill-suited for other kinds
of intellectual stuff (music, books, pictures, information. . . )
18 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data and open licenses: Creative Commons
First option for geomatics: Creative Commons licenses (artworks)
http://creativecommons.org/
M GIS
19 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data and open licenses: Creative Commons
First option for geomatics: Creative Commons licenses (artworks)
http://creativecommons.org/
4 options
Attribution (BY)
the original author has to be credited
Non Commercial (NC)
no commercial profit allowed
No Derivatives (ND)
no derived work allowed
Share Alike (SA)
derivatives must be licensed under identical terms
Six possible combinations
CC-by, CC-by-sa, CC-by-nc, CC-by-nc-nd, CC-by-nc-sa, CC-by-nd
M GIS
19 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data and open licenses: ODbL
I
Initial OSM data was released under the terms of the CC-by-sa license.
I
However: it turned out that it was not very adapted...
I
I
I
I
Combining OSM data with other datasets
Share-Alike only applies to rendered maps (tiles), not to data itself
Attribution ; too many contributors!
Uncertainty about derived work
I
After two years of effort, OSM switched to ODbL in September 2012:
Attribution, Share Alike, Redistribution (as long as one of the redistributed
versions is kept open).
I
All the past contributors have been contacted...
I
I
I
most of them agreed with the new terms
some of them explicitly disagreed (→ data erased)
some of them did not answer (→ data erased)
http://opendatacommons.org/licenses/odbl/
M GIS
20 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Sensing vs Thinking
I
Different applications ; different skills and levels of implication required
from the users
Haklay, M. (2013).
Citizen science and volunteered geographic information: Overview and typology of
participation.
In Crowdsourcing Geographic Knowledge [...], chapter 7. Springer.
M GIS
21 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Sensing vs Thinking
I
I
Different applications ; different skills and levels of implication required
from the users
VGI as geographic citizen science (even if not every VGI application falls
into this category)
Haklay, M. (2013).
Citizen science and volunteered geographic information: Overview and typology of
participation.
In Crowdsourcing Geographic Knowledge [...], chapter 7. Springer.
M GIS
21 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Sensing vs Thinking
I
Different applications ; different skills and levels of implication required
from the users
I
VGI as geographic citizen science (even if not every VGI application falls
into this category)
I
The ladder of implication according to Haklay [2013]
I
I
I
I
Level 1: Crowdsourcing (citizens as sensors, volunteered computing)
Level 2: Distributed intelligence (basic interpreters, volunteered thinking)
Level 3: Participatory science (implication in problem definition and data
collection)
Level 4: Extreme citizen science (problem definition, data collection and
analysis)
Haklay, M. (2013).
Citizen science and volunteered geographic information: Overview and typology of
participation.
In Crowdsourcing Geographic Knowledge [...], chapter 7. Springer.
M GIS
21 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Introduction to Volunteered Geographic Information
Beyond traditional GIS
A new trend
Some examples
Features of participative datasets
Volunteered vs Contributed
Open vs Closed
Sensing vs Thinking
Volunteered Geographic Information
M GIS
22 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
What is VGI?
As we have seen, crowdsourcing is just one feature of VGI
M GIS
23 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
What is VGI?
As we have seen, crowdsourcing is just one feature of VGI
Volunteered Geographic Information [Goodchild, 2007]
Volunteered geographic information is the harnessing of tools to create, assemble, and disseminate geographic data provided voluntarily by individuals.
Goodchild, M. F. (2007).
Citizens as sensors: the world of volunteered geography.
GeoJournal, 69(4):211–221.
M GIS
23 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Neogeographic datasets
Coote and Rackham [2008] propose the following (complementary)
characterization of neogeographic datasets:
I
Creation stimulated by lack of available data or restrictions, costs,
limitations of conventional data sources
I
Involve geographic information provided voluntarily by individuals
I
Creation and management are not necessarily ruled by accepted standards
I
Data licensed using open-source approach
Coote, A. and Rackham, L. (2008).
Neogeographic data quality — is it an issue?
In AGI Geocommunity conference, ConsultingWhere Ltd.
M GIS
24 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The big picture?
M GIS
25 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The big picture?
Participative
M GIS
25 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The big picture?
Participative
Geospatial
M GIS
25 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The big picture?
Participative
Citizen science
Geospatial
M GIS
25 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The big picture?
Participative
Open data
Citizen science
Geospatial
M GIS
25 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The big picture?
Participative
Citizen science
VGI?
Open data
Geospatial
M GIS
25 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
2
Second part
Presentation of the OpenStreetMap project
OSM: History and principles
What is OSM?
History
Technical considerations
Data model
The OSM ontology
Contributing
Presentation of the OpenStreetMap project
OSM: History and principles
What is OSM?
History
Technical considerations
Data model
The OSM ontology
Contributing
M GIS
27 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OpenStreetMap: Genesis
OpenStreetMap was created in July 2004 by Steve Coast, which
was then studying at the University College of London.
I
He did not understand why the Ordnance Survey created massive
geographical datasets but did not freely distribute them to those who had
paid to create them (i.e happy tax payers).
I
NB: the same thing happens in almost every country in the world (except
USA and the Netherlands)
He then decided to start a mapping project whose aim would be
to freely provide data to the users.
M GIS
28 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OpenStreetMap: principles
I
Collaborative:
I
I
I
Open: data freely usable without restriction (ODbL).
I
Data: OpenStreetMap is not a map, it is a database.
I
I
M GIS
mainly individual contributions
the more contributors, the more complete the world coverage
Online “map” only provided for visualization purposes
No airborne or satellite view
29 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
One dataset, several maps
Mapnik standard style
M GIS
30 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
One dataset, several maps
Transport map
M GIS
30 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
One dataset, several maps
Cycle map
M GIS
30 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
One dataset, several maps
MapQuest
M GIS
30 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
One dataset, several maps
FranceTopo.fr (enriched with other public datasets such as Nasa SRTM)
M GIS
30 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
One dataset, several maps
3D-OSM (XNavigator – University of Bonn and Heidelberg)
M GIS
30 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
History
1. Founding and Early History
I
9th August 2004 - openstreetmap.org registered by Steve Coast
I
20th August 2004 - Steve Coast presented his mapping idea at EuroFOO
I
2nd September 2004 - First posting to the mailing list
I
17th July 2005 - Map Limehouse the first Mapping Party
I
22th January 2006 - Release of version 1.0 of the offline editor JOSM
I
20th August 2006 - OpenStreetMap Foundation registered
I
10th November 2006 - Mapnik rendered Slippy map makes its debut.
I
4th December 2006 - Yahoo! aerial imagery sketching allowed
http://wiki.openstreetmap.org/wiki/History
M GIS
31 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
History
2. The Start of OSM’s Current Technology Stack
I
5th May 2007 - 1st version of the Potlatch editor.
I
14th-15th July 2007 - First conference, ”State Of The Map 2007”, held in
Manchester.
I
September 2007 - TIGER data import for the US started
I
20th September 2007 - AND Data for The Netherlands imported
I
- The French Direction g´en´erale des finances publiques
January 2009
officially allows the OSM contributors to use the Cadastre as a source of
data.
http://wiki.openstreetmap.org/wiki/History
M GIS
32 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
History
3. The Switch to API 0.6 and the explosion of User Growth
I
21st April 2009 - Big switch to API version 0.6
I
1st April 2010 - Ordnance Survey Opendata releases. OSM partly
responsible for bringing this about.
I
30th November 2010 - Use of Bing vertical aerial imagery allowed
I
25th November 2011
I
12th Sept 2012 - License switched over to ODbL
- Association OpenStreetMap France registered
http://wiki.openstreetmap.org/wiki/History
M GIS
33 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Number of contributors
2e+06
Today
1.8e+06
Number of contributors
1.6e+06
1.4e+06
1.2e+06
1e+06
800000
600000
400000
200000
0
2000/01 2002/01 2004/01 2006/01 2008/01 2010/01 2012/01 2014/01 2016/01
Date
http://wiki.openstreetmap.org/wiki/Statistics
M GIS
34 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Paris
Paris in OpenStreetMap
september 2006 −→ october 2010.
http://wiki.openstreetmap.org/wiki/Historical_Coverage
M GIS
35 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Current state
Current state of the database (25
M GIS
th
September, 2014)
Number of users
1,800,453
Number of uploaded GPS points
4,218,137,961
Number of nodes
2,535,804,643
Number of ways
253,523,371
Number of relations
2,818,286
36 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Presentation of the OpenStreetMap project
OSM: History and principles
What is OSM?
History
Technical considerations
Data model
The OSM ontology
Contributing
M GIS
37 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Basic OSM data model
As in most GIS, each geographical entity is described in OSM using:
M GIS
I
Geographical information (geometries)
I
Attributes (≈ semantics)
38 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Basic OSM data model
As in most GIS, each geographical entity is described in OSM using:
I
Geographical information (geometries)
I
Attributes (≈ semantics)
More precisely, each OSM entity has:
I
a numeric identifier: OSM ID
I
a geometry
I
a set of generic attributes present for every element
I
I
I
I
I
I
M GIS
uid, user: user id and user name
timestamp: time of the last modification
visible: if false then the element should only be returned by history calls
version: edit version of the object (starts from 1)
changeset: the changeset (group of edits made within a certain time by one
user) in which the object was created or updated
a set of tags (attributes): key-value pairs
38 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Geometries in OpenStreetMap
Three kinds of geometries:
1. nodes : basic element.
Geographic point: latitude & longitude (WGS84)
→ Point Of Interest (POIs)
2. ways : ordered interconnection of nodes
open ways → linear features (roads, railways...)
closed ways → areas
3. relations : group of any primitive with associated roles
Relate nodes, ways and potentially other relations to each other,
thereby forming complex objects (e.g. multipolygons). → relationship between objects and abstract objects
M GIS
39 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Example of a way
M GIS
40 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Example of a relation
M GIS
41 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Tags in OpenStreetMap
Attributes of geographical entities are described using tags
M GIS
42 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Tags in OpenStreetMap
Attributes of geographical entities are described using tags
I
A tag is a key-value pair
I
I
A key broadly describes an element (e.g. highway, name)
A value specifically describes its accompanying key
http://wiki.openstreetmap.org/wiki/Tagging_samples/out_of_town
M GIS
42 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Tags in OpenStreetMap
Attributes of geographical entities are described using tags
I
A tag is a key-value pair
I
I
A key broadly describes an element (e.g. highway, name)
A value specifically describes its accompanying key
http://wiki.openstreetmap.org/wiki/Tagging_samples/out_of_town
I
Use of keys and values is unrestricted (free text)
I
I
M GIS
the data model is infinitely extensible
anyone can define and use its own keys and values
42 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags
M GIS
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags lead to uncontrolled data production process.
M GIS
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags lead to uncontrolled data production process. Uncontrolled
data production process leads to anarchy.
M GIS
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags lead to uncontrolled data production process. Uncontrolled
data production process leads to anarchy. Anarchy leads to useless data.
M GIS
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags lead to uncontrolled data production process. Uncontrolled
data production process leads to anarchy. Anarchy leads to useless data.
Unrestricted tags are the path to the dark side.
M GIS
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags lead to uncontrolled data production process. Uncontrolled
data production process leads to anarchy. Anarchy leads to useless data.
Unrestricted tags are the path to the dark side.
Actually, tagging in OSM is governed by an agile self-organizing community
process defining the basic ontology of OSM
M GIS
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Anarchy?
Unrestricted tags lead to uncontrolled data production process. Uncontrolled
data production process leads to anarchy. Anarchy leads to useless data.
Unrestricted tags are the path to the dark side.
Actually, tagging in OSM is governed by an agile self-organizing community
process defining the basic ontology of OSM
Resources to find an appropriate tag or explore tag usage:
I
I
M GIS
Map Features ( http://wiki.openstreetmap.org/wiki/Map_Features ) ; an
extensive list of the most commonly used tags
Taginfo ( http://taginfo.openstreetmap.org/ ) ; a useful site to exploring
current tag usage, including tag values that are not necessarily documented
43 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Example of OSM tags
I
Tags to describe real world objects
I
I
I
I
Tags to describe immaterial objects
I
I
I
boundary = administrative, national_park...
...
Commons tags
I
I
M GIS
building = church, hotel, school, university...
highway = motorway, primary, secondary...
...
name = *
source = *
44 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM tags
M GIS
45 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
A more formal OSM ontology?
Simple tag structure and unrestricted tags are probably one reason for the
success of OSM (easiness of contribution, flexibility, extensibility...)
M GIS
46 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
A more formal OSM ontology?
Simple tag structure and unrestricted tags are probably one reason for the
success of OSM (easiness of contribution, flexibility, extensibility...)
The price to pay is poor semantics
I
harder to detect and fix logical inconsistencies
I
less expressive queries
I
link to other datasets? (Linked Data)
Some attempts to provide a formal (ontological) backbone to the OSM
ontology: e.g. LinkedGeoData
M GIS
46 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM Editing tools
How to contribute?
M GIS
47 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM Editing tools
How to contribute?
I
Id (
I
I
I
I
)
JavaScript online editor, web application
easy to use, recommended for beginners
JOSM (
I
M GIS
http://ideditor.com/
http://josm.openstreetmap.de/
) Java OpenStreetMap Editor
desktop application written in Java, with a plugin architecture
for advanced users, large set of features and tools
47 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM Editing tools
How to contribute?
I
Id (
I
I
I
I
I
I
http://wiki.openstreetmap.org/wiki/Potlatch_2
)
written in Flash, can be used directly from a web browser
has been made obsolete by Id
desktop application C++,Qt (Windows, GNU/Linux, MacOSX)
Plugins for:
I
I
M GIS
) Java OpenStreetMap Editor
Merkaartor (http://merkaartor.be/)
I
I
http://josm.openstreetmap.de/
desktop application written in Java, with a plugin architecture
for advanced users, large set of features and tools
Potlatch (
I
)
JavaScript online editor, web application
easy to use, recommended for beginners
JOSM (
I
I
http://ideditor.com/
QGIS ( http://esriosmeditor.codeplex.com/ )
ArcGIS ( http://esriosmeditor.codeplex.com/ )
47 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The Id editor
M GIS
48 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The Id editor
M GIS
48 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The Id editor
M GIS
48 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The Id editor
M GIS
48 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Typical JOSM edition session
M GIS
49 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Typical JOSM edition session
M GIS
49 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Typical JOSM edition session
M GIS
49 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Typical JOSM edition session
M GIS
49 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
3
Third part
Using OpenStreetMap data
Exploiting the data
Retrieving data (basic principles)
OSM API
Other querying tools
End user applications
Tutorial: create your own database
Basic principles
A step by step example
Using OpenStreetMap data
Exploiting the data
Retrieving data (basic principles)
OSM API
Other querying tools
End user applications
Tutorial: create your own database
Basic principles
A step by step example
M GIS
51 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM and server applications
I
I
I
The OSM server cannot be queried for data directly (only a small amount).
Instead, it can provide some dumps and regular diffs → application servers
have to instantiate the DB locally.
The OSM server can provide tiles updated on a regular basis.
planet.osm
(first import)
OSM server
http://www.
regular diffs
openstreetmap.org/
Application server (data)
API or Web server
Regular tile generation (Mapnik)
tiles
Client
(e.g OpenLayers)
M GIS
Client
52 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Mapnik
A (standalone) tile generator for OpenStreetMap: Mapnik
OSM file
OR
Mapnik
Tile (image)
PostGIS
database
M GIS
53 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM API v0.6
I
RESTFul API to consult and edit OSM entities
I
I
requests take the form of HTTP GET, PUT, POST, and DELETE messages
requests return or expect the data for the entities in a XML format
http://wiki.openstreetmap.org/wiki/OSM_Protocol_Version_0.6/DTD
I
Example : GET /api/0.6/[node|way|relation]/#id
I
M GIS
returns the XML representation of the entity
54 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM API v0.6
http://api.openstreetmap.org/api/0.6/way/23000671
< osm version = " 0.6 " generator = " OpenStreetMap server "
copyright = " OpenStreetMap and contributors "
attribution = " http: // www . openstreetmap . org / copyright "
license = " http: // op end atac ommo ns . org / licenses / odbl /1 -0/ " >
< way id = " 23000671 " visible = " true " timestamp = " 2013 -03 -10 T09:00:14Z "
version = " 11 " changeset = " 15311804 "
user = " Liberal " uid = " 667850 " >
< nd ref = " 344548301 " / >
< nd ref = " 247961085 " / >
[...]
< nd ref = " 344548275 " / >
< nd ref = " 344548301 " / >
< tag k = " amenity " v = " university " / >
< tag k = " building " v = " yes " / >
< tag k = " contact:webs ite " v = " http: // ensimag . grenoble - inp . fr / " / >
< tag k = " name " v = " Ensimag - D " / >
</ way >
</ osm >
M GIS
55 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
OSM API v0.6
http://api.openstreetmap.org/api/0.6/node/344548301
< osm version = " 0.6 " generator = " OpenStreetMap server "
copyright = " OpenStreetMap and contributors "
attribution = " http: // www . openstreetmap . org / copyright "
license = " http: // op end atac ommo ns . org / licenses / odbl /1 -0/ " >
< node id = " 344548301 " version = " 3 " changeset = " 4100388 "
lat = " 45.1932723 " lon = " 5.7684104 " user = " FredB "
uid = " 1626 " visible = " true " timestamp = " 2010 -03 -11 T19:09:04Z " >
< tag k = " source "
v = " cadastre - dgi - fr source : Direction G e
´n´
e rale des Imp ^
o ts Cadastre . Mise `
a jour : 2009 " / >
</ node >
</ osm >
M GIS
56 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API
http://wiki.openstreetmap.org/wiki/Overpass_API
M GIS
I
an optimized read-only API that serves up custom selected parts of the
OSM map data
I
a powerful query language with search criteria like e.g. location, type of
objects, tag properties, proximity, or combinations of them.
57 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API: Example
Overpass XML
Overpass QL
< query type = " node " >
<has - kv k = " name " v = " Ensimag " / >
< bbox - query e = " 5.78 " n = " 45.22 "
s = " 45.13 " w = " 5.67 " / >
</ query >
< union >
< item / >
< recurse type = " down " / >
</ union >
< print / >
relation
[ " name " = " Ensimag " ]
(45.13 ,5.67 ,45.22 ,5.78)
;
( ._;
>;
);
out
OR
Output in OSM XML or JSON
M GIS
58 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API: Example
http://overpass-api.de/api/interpreter?data=relation["name"="Ensimag"](45.
13,5.67,45.22,5.78);(._;>;);out;
<? xml version = " 1.0 " encoding = " UTF -8 " ? >
< osm version = " 0.6 " generator = " Overpass API " >
< note > The data included in this document is from www . openstreetmap . org . The data
is made available under ODbL . </ note >
< meta osm_base = " 2013 -04 -11 T09:07:03Z " / >
< node id = " 247961085 " lat = " 45.1933111 " lon = " 5.7690476 " / >
[...]
< node id = " 2148742026 " lat = " 45.1932049 " lon = " 5.7690445 " / >
< node id = " 2148742029 " lat = " 45.1931915 " lon = " 5.7688690 " / >
< way id = " 23000671 " >
< nd ref = " 344548301 " / >
[...]
< nd ref = " 344548301 " / >
< tag k = " amenity " v = " university " / >
< tag k = " building " v = " yes " / >
< tag k = " contact:website " v = " http: // ensimag . grenoble - inp . fr / " / >
< tag k = " name " v = " Ensimag - D " / >
</ way >
[...]
< relation id = " 2776018 " >
< member type = " way " ref = " 31391089 " role = " " / >
[...]
M GIS
59 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API Applications
http://wiki.openstreetmap.org/wiki/Overpass_API/Applications
Overpass Turbo: A web based graphical user interface for Overpass API
http://overpass-turbo.eu/
M GIS
60 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API Applications
Public transport line generator
http://www.overpass-api.de/public_transport.html
M GIS
61 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API Applications
Public transport line generator
http://www.overpass-api.de/public_transport.html
http://www.overpass-api.de/api/sketch-line?network=TAG&ref=B&correspondences=100&
width=1600&force-rows=1
M GIS
61 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Overpass API Applications
Public transport line generator
http://www.overpass-api.de/public_transport.html
http://www.overpass-api.de/api/sketch-line?network=TAG&ref=B&correspondences=100&
width=1600&force-rows=1
⇓
M GIS
61 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Nominatim
I
Nominatim: tool to search OSM data by name and address.
I
Accessible through the HTTP protocol with GET parameters → can be
queried with a standard web browser or with command-line tools.
I
Three output formats:
I
I
I
Standard HTML (a web page with embedded openlayers map)
XML
JSON
Example:
[sylvain@msnordlys]~ $ curl "http://nominatim.openstreetmap.org/search.php?q=rue+
de+la+Passerelle%2C+Saint-Martin-d%27H%C3%A8res&polygon=1&format=xml"
M GIS
62 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Nominatim: result of the query
<? xml version = " 1.0 " encoding = " UTF -8 " ? >
< searchresults timestamp = ’Thu , 21 Mar 13 08 :36:41 +0000 ’ attribution = ’ Data ( c )
OpenStreetMap contributors , ODbL 1.0. http: // www . openstreetmap . org /
copyright ’ querystring = ’ rue de la Passerelle , Saint - Martin - d &#039; H `
e res ’
polygon = ’ true ’ exclude_place_ids = ’ 20901791 ,20955443 ,20237913 ’ more_url = ’
http: // nominatim . openstreetmap . org / search ? format = xml & amp ; exclude_place_ids
=20901791 ,20955443 ,20237913& amp ; polygon =1& amp ; q = rue + de + la + Passerelle %2 C +
Saint - Martin - d %27 H % C3 % A8res ’ >
< place place_id = ’ 20901791 ’ osm_type = ’ way ’ osm_id = ’ 4014846 ’ place_rank = ’ 26 ’
boundingbox = "
4 5.1930046081543 ,45.1940269470215 ,5.76749229431152 ,5.76763010025024 " lat =
’ 45.1931335 ’ lon = ’ 5.7676136 ’ display_name = ’ Rue de la Passerelle , Saint Martin - d &#039; H `
e res , Domaine Universitaire , Saint - Martin - d &#039; H e
` res ,
Grenoble , Is `
e re , Rh ^
o ne - Alpes , 38402 , France m ´
e tropolitaine , European
Union ’ class = ’ highway ’ type = ’ unclassified ’ importance = ’ 1.6 ’/ >
< place place_id = ’ 20955443 ’ osm_type = ’ way ’ osm_id = ’ 4014844 ’ place_rank = ’ 26 ’
boundingbox = "
4 5.1941413879395 ,45.1945037841797 ,5.7674036026001 ,5.76747751235962 " lat = ’
45.1941427 ’ lon = ’ 5.7674775 ’ display_name = ’ Rue de la Passerelle , Saint Martin - d &#039; H `
e res , Domaine Universitaire , Saint - Martin - d &#039; H e
` res ,
Grenoble , Is `
e re , Rh ^
o ne - Alpes , 38402 , France m ´
e tropolitaine ’ class = ’
highway ’ type = ’ unclassified ’ importance = ’ 1.6 ’/ >
</ searchresults >
M GIS
63 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
End user applications
M GIS
I
MapOSMatic
I
WheelMap
I
OpenRouteService:
I
“Thematic” maps:
http://openrouteservice.org/
I
http://openpistemap.org/ – map of skiing/snowboarding pistes
I
http://opencyclemap.org/ – map of cycling routes
I
http://openseamap.org/ – map of sea navigation elements
64 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Using OpenStreetMap data
Exploiting the data
Retrieving data (basic principles)
OSM API
Other querying tools
End user applications
Tutorial: create your own database
Basic principles
A step by step example
M GIS
65 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data formats
Where to download ?
I http://download.geofabrik.de/osm/
: OSM files (XML format) by geographical
area, city, country. . .
: Garmin Map files, Shape files, TomTom
POI, Adobe Illustrator, ..., by geographical area, city, ...
I http://download.cloudmade.com/
I http://planet.osm.org/
: OSM files + changesets.
What to download ?
M GIS
I
OSM files: planet.osm for the entire planet (currently over 27GB
compressed, over 300GB uncompressed), or regional extracts.
I
Diffs: changesets for regular database updates (example: weekly
changesets in http://planet.osm.org/ ).
66 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Create your own database
PostGIS
database
OSM file
Several possible tools and schemas. . .
I
Osm2pgsql: Lossy translation (only converts some entities). Reconstructs
polygons from relations (e.g for administrative boundaries)
I
Osmosis: OSM data general purpose processing tool
I
I
I
I
M GIS
converts OSM data to Postgres/PostGIS DB (sticks to OSM datamodel)
generates planet dumps from a DB
applies or generates changesets
extracts data. . .
67 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
A small Example
The problem
I want to develop a little application that displays a map showing the French
departments and regions, and the French road network.
My initial configuration: a PC running Ubuntu 12.10 GNU/Linux OS
1st step. Install Postgresql:
[sylvain@msnordlys]~ $ sudo apt-get install postgresql-9.1
M GIS
68 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
PostGIS installation
2nd step. Install PostGIS:
[sylvain@msnordlys]~ $ sudo apt-get install postgis postgresql-9.1-postgis
(A piece of cake... We have some packages for that in the distribution)
M GIS
69 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Database creation
3rd step. Login as postgres user and create a new user and a new
database (and set this new user to be the database’s owner):
[sylvain@msnordlys]~ $ sudo -s
Password:
[root@msnordlys]~ # su postgres
[postgresql@msnordlys] ~ $ psql
postgres=# CREATE USER [username];
CREATE ROLE
postgres=# ALTER USER [username] WITH ENCRYPTED PASSWORD ’[password]’;
ALTER ROLE
postgres=# CREATE DATABASE [dbname];
CREATE DATABASE
postgres=# ALTER DATABASE [dbname] OWNER TO [username];
ALTER DATABASE
M GIS
70 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
PostGIS Enabling
4th step. Enable PostGIS spatial functions into the database:
[postgresql@msnordlys]~ $ cd /usr/share/postgresql/9.1/contrib/postgis-1.5
[postgresql@msnordlys]/.../postgis-1.5 $ createlang plpgsql mydb
[...]
[postgresql@msnordlys]/.../postgis-1.5 $ psql -d [dbname] -f postgis.sql
[...]
[postgresql@msnordlys]/.../postgis-1.5 $ psql -d [dbname] -f spatial_ref_sys.sql
[...]
[postgresql@msnordlys]/.../postgis-1.5 $ cd ..
[postgresql@msnordlys]/.../postgis-1.5 $ psql -d [dbname] -f postgis_comments.sql
[...]
M GIS
71 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Data conversion
5th step. Run osm2pgsql to load Data into the database:
[sylvain@msnordlys]~ $ osm2pgsql -U [username] -d [dbname] -r pbf --cache=4000 \
> -W france.osm.pbf
Password:
Using projection SRS 900913 (Spherical Mercator)
Setting up table: planet_osm_point
NOTICE: table "planet_osm_point_tmp" does not exist, skipping
Setting up table: planet_osm_line
[...]
Completed planet_osm_polygon
Osm2pgsql took 15962s overall
M GIS
72 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
A test request
We can now check whether the data has been correctly loaded...
[sylvain@msnordlys]~ $ psql -U [username] -d [dbname]
Password for user [username]:
psql (9.1.8)
Type "help" for help.
[dbname]=# SELECT name, place, ST_XMin(way), ST_YMin(way)
[dbname]-# FROM planet_osm_point WHERE name=’Grenoble’ AND place=’city’;
name
| place |
st_xmin
|
st_ymin
----------+-------+------------------+-----------------Grenoble | city | 638583.190179611 | 5650917.09875511
(1 row)
M GIS
73 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Boundaries and roads
The SQL requests inside the program...
Retrieve administrative boundaries
SELECT name , S T _ S i m p l i f y P r e s e r v e T o p o l o g y ( way ,5000) , admin_level
FROM pla net _os m_p oly g o n
WHERE boundary = ’ administrative ’ AND admin_level <= ’6 ’;
Retrieve the road network
SELECT S T _ S i m p l i f y P r e s e r v e T o p o l o g y ( way ,5000) , highway
FROM planet_osm_line
WHERE highway IN ( ’ motorway ’ , ’ trunk ’ , ’ primary ’ , ’ secondary ’) ;
M GIS
74 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
The result
M GIS
75 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
4
Fourth part
Using Volunteered Geographic Information
Authoritative data vs participative data
Authoritative data, conventional data
About metadata
Can we trust OpenStreetMap?
About data quality
Some OSM data quality tools
Case 1: Data quality for Location Based Services
Case 2: Evaluating OSM data quality on the Department of Sarthe
Using Volunteered Geographic Information
Authoritative data vs participative data
Authoritative data, conventional data
About metadata
Can we trust OpenStreetMap?
About data quality
Some OSM data quality tools
Case 1: Data quality for Location Based Services
Case 2: Evaluating OSM data quality on the Department of Sarthe
M GIS
77 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI vs authoritative
“My project [put here the name of any serious research or industrial
project] cannot use VGI data because we cannot control, trust, verify
[put any other reason here] it...”
(Anonymous quotation)
M GIS
78 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI vs authoritative
“My project [put here the name of any serious research or industrial
project] cannot use VGI data because we cannot control, trust, verify
[put any other reason here] it...”
(Anonymous quotation)
“VGI is not a very important trend in GIS nowadays, so we do not
consider this approach in our GIS department”
(Head of GIS department of a big IT group — cited from memory)
M GIS
78 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI vs authoritative
“My project [put here the name of any serious research or industrial
project] cannot use VGI data because we cannot control, trust, verify
[put any other reason here] it...”
(Anonymous quotation)
“VGI is not a very important trend in GIS nowadays, so we do not
consider this approach in our GIS department”
(Head of GIS department of a big IT group — cited from memory)
M GIS
I
Are participative and authoritative data production so antagonistic?
I
Can we trust participative data?
78 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Authoritative data
Authoritative data ≈ produced by professional mapping organizations
M GIS
79 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Authoritative data
Authoritative data ≈ produced by professional mapping organizations
According to Van der Molen and Wubbe [2007] (cited by Coleman [2013]):
I
High-quality database
I
Explicit guarantees about quality assurance
I
Contains essential data about persons, institutions, issues, entities...
I
Designated by law as the sole officially recognized register to be used by
government agencies
Coleman, D. J. (2013).
Potential contributions and challenges of VGI for conventional topgraphic base-mapping
programs.
In Crowdsourcing Geographic Knowledge [...], chapter 14. Springer.
Van Der Molen, P. and Wubbe, M. (2007).
E-government and e-land administration-as an example: The netherlands.
In 6th FIG Regional Conference, San Jose, Costa Rica, pages 12–15.
M GIS
79 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Conventional data
The term authoritative is a bit restrictive
Coote and Rackham [2008] prefer the term conventional data:
I
Collected for specific purpose and requirements
I
Usually not free (charged)
I
Use limited to some organizations or individuals
I
Copyrighted data
I
Managed by organizations established for the purpose
I
Collected by professional staff, paid for this
I
Based on standard and established methods and practices
I
Quality assessment at different levels, guarantees provided to the user
Coote, A. and Rackham, L. (2008).
Neogeographic data quality — is it an issue?
In AGI Geocommunity conference, ConsultingWhere Ltd.
M GIS
80 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Example – IGN, BD Topo
http://professionnels.ign.fr/bdtopo
M GIS
I
Restricted access, specific license (free for a sample, charged for the rest)
I
IGN keeps the ownership of data, and only gives utilization rights
I
Collected by professional staff at IGN, standard production techniques
I
Complete metadata following ISO-19115 standard
I
Well-documented dataset, detailed quality assessment
81 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
About metadata
One important aspect in Geographical datasets is metadata.
M GIS
82 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
About metadata
One important aspect in Geographical datasets is metadata.
M GIS
I
Metadata: ≈ data about the data (producer, owner, units, error bounds,
geographical bounding box, production process, source of data...)
I
Usually, metadata is separated from data (ISO 19115)
I
Usually, metadata production is separated from data production
82 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
About metadata
One important aspect in Geographical datasets is metadata.
I
Metadata: ≈ data about the data (producer, owner, units, error bounds,
geographical bounding box, production process, source of data...)
I
Usually, metadata is separated from data (ISO 19115)
I
Usually, metadata production is separated from data production
But in the context of VGI...
M GIS
82 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
About metadata
One important aspect in Geographical datasets is metadata.
I
Metadata: ≈ data about the data (producer, owner, units, error bounds,
geographical bounding box, production process, source of data...)
I
Usually, metadata is separated from data (ISO 19115)
I
Usually, metadata production is separated from data production
But in the context of VGI...
M GIS
I
Some metadata elements make sense for the dataset as a whole: owner
(?), description of the dataset...
I
But some don’t really: bounding box, producer, production process...
82 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Metadata embedded
Let’s have a look at OpenStreetMap...
M GIS
83 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Metadata embedded
Let’s have a look at OpenStreetMap...
Reminder: Each OSM entity has:
I
a numeric identifier: OSM ID
I
a geometry
I
a set of generic attributes present for every element
I
I
I
I
I
I
M GIS
uid, user: user id and user name
timestamp: time of the last modification
version: edit version of the object (starts from 1)
changeset: the changeset (group of edits made within a certain time by one
user) in which the object was created or updated
comment: each changeset has an associated comment describing it
a set of tags (attributes): key-value pairs
83 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Metadata embedded
Let’s have a look at OpenStreetMap...
Reminder: Each OSM entity has:
I
a numeric identifier: OSM ID
I
a geometry
I
a set of generic attributes present for every element
I
I
I
I
I
I
uid, user: user id and user name
timestamp: time of the last modification
version: edit version of the object (starts from 1)
changeset: the changeset (group of edits made within a certain time by one
user) in which the object was created or updated
comment: each changeset has an associated comment describing it
a set of tags (attributes): key-value pairs
Metadata, “embedded” in the description of the entity itself
M GIS
83 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Metadata embedded
Metadata embedded: user, timestamp, version, changeset, comment
M GIS
84 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Metadata embedded
Metadata embedded: user, timestamp, version, changeset, comment
But tags can also contain metadata, e.g.:
M GIS
source
=
tiger:source
survey:date
=
=
cadastre-dgi-fr source : Direction G´
en´
erale des
Imp^
ots - Cadastre. Mise `
a jour : 2009
tiger_import_dch_v0.6_20070829
2013-12-10
84 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Metadata embedded
Metadata embedded: user, timestamp, version, changeset, comment
But tags can also contain metadata, e.g.:
source
=
tiger:source
survey:date
=
=
cadastre-dgi-fr source : Direction G´
en´
erale des
Imp^
ots - Cadastre. Mise `
a jour : 2009
tiger_import_dch_v0.6_20070829
2013-12-10
Actually, some metadata is common to the whole OSM dataset: license,
conditions of use, and OSM Wiki ( http://wiki.openstreetmap.org/ )
M GIS
84 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Centralized vs distributed approaches to metadata
I
Traditional approach to metadata: “centralized” standards (ISO-19115)
I
I
I
I
I
Distributed “user-centric” approach:
I
I
I
M GIS
Clear standards, easy to navigate
Heavy to produce ; sometimes incomplete even for authoritative data
Does not always completely make sense
Does not always completely reflects the production process
Can be messy
Lightweight and flexible approach
Consistent with the production process
85 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI and metadata
Conclusion about VGI and metadata [Poore and Wolf, 2013]: the process of
producing metadata has to be rethought for VGI, because the dataset is:
I
dynamically (continuously) generated
I
generated locally by hundreds, thousands, or millions of users
; Production of metadata has to be integrated to the data production process
Poore, B. S. and Wolf, E. B. (2013).
Metadata squared: Enhancing its usability for volunteered geographic information and the
geoweb.
In Crowdsourcing Geographic Knowledge [...], chapter 4. Springer.
M GIS
86 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Using Volunteered Geographic Information
Authoritative data vs participative data
Authoritative data, conventional data
About metadata
Can we trust OpenStreetMap?
About data quality
Some OSM data quality tools
Case 1: Data quality for Location Based Services
Case 2: Evaluating OSM data quality on the Department of Sarthe
M GIS
87 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
What is data quality?
Data quality is a perception or an assessment of data’s fitness to serve
its purpose in a given context and a subjective to various applications.
It highly depends on the need of individuals on how to use datasets.
[Caprioli et al., 2003]
Two main objectives:
I
Is the dataset suitable for my needs?
I
How can the dataset be improved?
Caprioli, M., Scognamiglio, A., Strisciuglio, G., and Tarantino, E. (2003).
Rules and standards for spatial data quality in gis environments.
In Proc. 21st Int. Cartographic Conf., pages 10–16, Durban, South Africa.
M GIS
88 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Main dimensions
I
Accuracy Does it reflect reality? [Olson, 2003]
I
Completeness Is something missing? [Batini and Scannapieco, 2006],
I
Timeliness Is the data up-to-date? [Pipino et al., 2002]
I
Volatility How long stays the information valid?
[Batini and Scannapieco, 2006]
Batini, C. and Scannapieco, M. (2006).
Data quality: concepts, methodologies and techniques.
Springer.
Olson, J. E. (2003).
Data quality: the accuracy dimension.
Morgan Kaufmann.
Pipino, L. L., Lee, Y. W., and Wang, R. Y. (2002).
Data quality assessment.
Communications of the ACM, 45(4):211–218.
M GIS
89 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Main dimensions
I
Consistency Does it involve inconsistent data?
[Batini and Scannapieco, 2006]
I
Quality of information source Credibility? [Pipino et al., 2002]
I
Validity Inside a range? [Olson, 2003]
I
Understandability Clarity of information? [Pipino et al., 2002]
Batini, C. and Scannapieco, M. (2006).
Data quality: concepts, methodologies and techniques.
Springer.
Olson, J. E. (2003).
Data quality: the accuracy dimension.
Morgan Kaufmann.
Pipino, L. L., Lee, Y. W., and Wang, R. Y. (2002).
Data quality assessment.
Communications of the ACM, 45(4):211–218.
M GIS
90 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Geographical dimensions [ANZLIC, 2001]
I
Lineage Can we assess where the data comes from?
I
Positional accuracy Absolute Position
I
Attributive accuracy Does it contain all attributes to reflect reality?
I
Logical consistency Does it contain logical errors?
I
Completeness Does it contain all information needed for the task at
hand?
ANZLIC (2001).
Anzlic metadata guidelines: Core metadata elements for geographic data in australia and
new zealand.
Technical report, ANZLIC.
M GIS
91 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Assessing geographical data Quality
I
Ground truth
I
I
M GIS
Ground truth on sparse points
Second dataset considered as ground truth
I
Logical rules, mainly for checking logical consistency (open polygons,
non-crossing roads, etc.) or completeness (missing mandatory information)
I
Statistical approach using predefined metrics based e.g. on completeness
of information or user activity
92 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Bug reporting
http://www.openstreetmap.org/
I
Anyone can add notes to any geographical place on the OSM website
I
Notes can be visualized on the map or downloaded as RSS feeds using
OSM API
http://www.openstreetmap.org/api/0.6/notes/feed?bbox=5.7393265,45.1798589,5.
7891083,45.206352
M GIS
93 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Error detection tools
I
Keep Right (
I
I
Osmose (
I
I
)
http://osmose.openstreetmap.fr/map/
)
Similar to KeepRight.
Currently, it covers :
I
I
I
M GIS
http://keepright.at/
Detects: non-closed areas, dead-ended one-ways, almost junctions,
deprecated tags, missing tags, bridges/tunnels without layer (careful - not
always an error), motorways without ref, places of worship without religion,
POIs without name, ways without nodes, floating islands, un-tagged railway
crossings, wrongly-used railway crossing tag, objects with FIXME tags, and
relations without type.
France
some nearby countries in Europe: Belgium, Luxembourg, and Switzerland;
some nearby countries in Africa/Indian Ocean: Madagascar, Cameroon
94 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Case 1: Data quality for Location Based Services
Context: Data Quality Analysis of the OpenStreetMap Project Regarding
Location Based Services, Bachelor Thesis by Niklas Petersen
Approach:
M GIS
I
Grid Analysis with 1km2 cells
I
Count the number of values in each cell
I
Merge with population data (reference ≈ ground truth)
I
Highlight differences
95 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
House numbers
M GIS
96 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
House numbers
M GIS
97 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Buildings
M GIS
98 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Roads
M GIS
99 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Shops
M GIS
100 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Conclusion about the case study
I
Urban > rural regions
I
Strongest coverage:
I
I
I
M GIS
Buildings: Netherlands
→ can be considered as complete
Housenumbers: Czech Republic
→ coverage in general weak
Shops: Switzerland
→ big difference between countries
101 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Case 2: Evaluating OSM data quality on the
Department of Sarthe
Context: a study of OSM data quality carried out by Petit, Billon and Follin
[2012] on the French department of Sarthe
OSM data analyzed from the point of view of:
I
geometrical accuracy
I
attributive accuracy
I
completeness
Petit, O., Billon, P., and Follin, J.-M. (2012).
´
Evaluation
de la qualit´
e des donn´
ees OpenStreetMap sur la Sarthe et r´
eflexion sur le
processus de contribution.
XYZ, (131):24–34.
M GIS
102 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Methodology
´
Reference: R´ef´erentiel `
a Grande Echelle
(RGE), IGN (authoritative data)
M GIS
I
Preprossessing: automatic matching of OSM and RGE road networks
I
Completeness of road network: comparison of the total lengths OSM vs
RGE, for each city
I
Geometrical accuracy of road network: Hausdorff distance (roads) and
average Euclidian distance (nodes)
I
Attributive precision: comparison of lengths named (name = ...) roads
between OSM and RGE + manual comparison to find the sources of
mismatches (spelling errors, punctuation, incomplete names...)
I
+ Evaluation of the precision for two methods of contribution (GPS, and
imagery-based digitizing)
103 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Conclusions
M GIS
I
Heterogeneous data quality (urban > rural)
I
Incompleteness is the main weakness (especially on rural areas) – to be
compared with the homogeneity of RGE, whose mission is the complete
cover of French territory
I
Rather good geometrical accuracy
I
A few attribute values but quite good accuracy
I
Both digitizing methods are quite precise
104 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
Conclusion
To VGI or not to VGI?
Conventional data
M GIS
VGI data
106 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To VGI or not to VGI?
Conventional data
Quality of data
M GIS
3
VGI data
Random quality
106 / 107
7
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To VGI or not to VGI?
Conventional data
Quality of data
3
Guarantees about quality
M GIS
VGI data
Random quality
3
7
No guarantee about quality
106 / 107
7
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To VGI or not to VGI?
Conventional data
Quality of data
M GIS
VGI data
3
Random quality
7
Guarantees about quality
3
No guarantee about quality
Heavy production process
7
Lightweight production process
106 / 107
7
3
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To VGI or not to VGI?
Conventional data
Quality of data
3
Random quality
7
Guarantees about quality
3
No guarantee about quality
Heavy production process
7
Lightweight production process
Poor reactivity
M GIS
VGI data
7
Timeliness
106 / 107
7
3
3
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To VGI or not to VGI?
Conventional data
Quality of data
3
Random quality
7
Guarantees about quality
3
No guarantee about quality
Heavy production process
7
Lightweight production process
Poor reactivity
7
Restrictions (usage)
M GIS
VGI data
7
Timeliness
3
Free, open
3
106 / 107
7
3
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
To VGI or not to VGI?
Conventional data
Quality of data
VGI data
3
Random quality
7
Guarantees about quality
3
No guarantee about quality
Heavy production process
7
Lightweight production process
Poor reactivity
7
Restrictions (usage)
7
Timeliness
3
Free, open
3
7
3
Conclusion: VGI is not the solution to everything, but certainly a solution
M GIS
I
If guarantees about data quality (with someone who is liable for that) is
important, use conventional datasets
I
If timeliness is more important (e.g. crisis management), consider using
to VGI datasets
106 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI and conventional data
Actually, several traditional data producers consider integrating VGI in their
data production process
M GIS
107 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI and conventional data
Actually, several traditional data producers consider integrating VGI in their
data production process
Is data quality compatible with agility?
M GIS
107 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete
VGI and conventional data
Actually, several traditional data producers consider integrating VGI in their
data production process
Is data quality compatible with agility?
Three possible approaches:
I
I
I
M GIS
Limit the number of authorized contributors (confidence network) ;
Victoria Department of Sustainability and Environment, Australia
Let the users annotate, then internally check the validity ; Google Map
Maker, United States Geological Survey, 2001
Mix participative and conventional data, flag participative data and let the
end users choose whether they want to integrate them or not ; TomTom
MapShare
107 / 107
´
GdR MAGIS – Ecole
de G´
eomatique
29 septembre au 3 octobre 2014 – S`
ete