Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl Soluzioni ai problemi proposti nel libro Capitolo 4 4.1 La formula generale per un alcano aciclico è CnH2n + 2. a. C12H26 2n + 2 = # H's 2(12) + 2 = 26 yes b. C8H16 c. C30H64 2n + 2 = # H's 2(8) + 2 = 18 no 2n + 2 = # H's 2(30) + 2 = 62 no 4.2 Il butano ha 4 Carboni in fila. L’isobutano ha 3 Carboni in fila ed 1 carbonio in catena laterale. H H H H H a. H C C C b. (CH3)3CH H CH3 H H CH3 CH3 C H H C C H c. H H H C C H e. H H CH3 4 C's in a row. butane d. 3 C's in a row. isobutane 4 C's in a row. butane 4 C's in a row. butane 3 C's in a row. isobutane 4.3 L’isopentano ha 4 carboni in fila ed 1 carbonio in catena laterale. H H a. CH3CH2 C CH3 CH3 b. H C CH3 CH3 C CH3 H c. CH3CH2CH(CH3)2 redraw H isopentane isopentane d. H H C CH3 C H e. C H CH3 H isopentane 5 C's in a row. pentane isopentane 4.4 Per classificare un atomo di carbonio come 1°, 2°, 3° o 4° determinare a quanti atomi di carbonio è legato (1° C = legato ad un altro C, 2° C = legato a due altri C, 3° C = legato a tre altri C, 4° C = legato a quattro altri C). Ridisegnare se necessario per osservare ogni carbonio chiaramente. 1°C 1°C's 1°C a. CH3CH2CH2CH3 b. (CH3)3CH c. d. 4°C CH3 2°C's 1°C's CH3 C H CH3 3°C 1°C 4°C's All other C's are 1°C's. All other C's are 2°C's. 3°C Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4.5 Per classificare un atomo di idrogeno come 1°, 2°, or 3°, determinare se è legato ad un carbonio 1°, 2° o 3° C (un H 1° è legato ad un C 1°, un H 2° è legato ad un C 2°, un H 3° è legato ad un C 3°). Ridisegnare se necessario. 1° H 1° H a. CH3CH2CH3 2° H's 2° H's CH3 CH2 H CH3 C C CH3 CH2 CH3 CH redraw 3° H 1° H's CH3 3° H redraw c. b. CH3CH2CH(CH3)C(CH3)3 CH2 C CH CH3 CH 3° H's CH2 2° H's CH3 CH3 CH3 CH3 All other H's are 1° H's. 2° H's 1° H's 4.6 Gli isomeri costituzionali differiscono nel modo in cui gli atomi sono legati tra di loro. Per disegnare tutti gli isomeri costituzionali: [1] Disegnare tutti i carboni della catena principale. [2] Togliere un C ed usarlo come sostituente. (Non aggiungerlo al carbonio terminale: questo rigenera la catena precedente.) [3] Togliere due C ed usarli come sostituenti, etc. Five constitutional isomers of molecular formula C6H14 [1] long chain [2] with one C as a substituent CH3CH2CH2CH2CH2CH3 CH3CH2CH2 [3] using 2 C's as substituents CH3 CH3 CH3 C CH3 CH3CH2 C CH2CH3 H H CH3CH2 C CH3 CH3 4.7 Molecular formula C8H18 with one CH3 substituent. CH3CH2CH2CH2CH2 CH3 CH3 C CH3 CH3CH2CH2CH2 C CH2CH3 H H 4.8 Usare le regole delle risposte 4.4 e 4.5. CH3 CH3CH2CH2 C CH2CH2CH3 H CH3 H H C C CH3 CH3 CH3 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 1° 4° 3° CH3 CH3 2° a. 1) 2° 2) 4° b. 1) CH3 CH2 CH2 CH CH3 2) CH3 3° 1° C C CH2 CH3 CH2 CH All CH3's have 1° H's. All CH2's have 2° H's. All CH's have 3° H's. 2° 1° CH3 CH2 CH2 CH CH3 CH3 4.9 One possibility: H H H H c. H C C C H CH3 a. CH3 C CH3 b. CH3 CH3 d. HH CH3 CH CH3 4.10 Usare i passaggi della risposta 4.6 per disegnare gli isomeri costituzionali. Five constitutional isomers of molecular formula C5H10 having one ring [1] [2] [3] CH3 4.11 4.12 CH3 CH3 CH3 CH2CH3 CH3 I cicloalcani hanno formula molecolare CnH2n. Per un cicloalcano con 288 carboni, ci sarebbero 2(288) = 576 H. Formula molecolare = C288H576. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl a. Five consitutional isomers of molecular formula C4H8: CH2 CH2 CH3CH CHCH3 CHCH2CH3 CH3 CH3 C CH3 b. Nine constitutional isomers of molecular formula C7H16. H CH3 CH3CH2CH2CH2CH2CH2CH3 H C CH2CH2CH2CH3 CH3CH2 CH3 CH3 CH3 CH3 CH3 H H C CH2CH2CH3 CH3CH2 C CH2CH3 CH3 C C CH2CH3 CH3 CH3 CH3 CH3 H CH3CH2 C CH2CH3 CH2CH3 CH3 H CH3 C C CH3 C CH2CH2CH3 CH3 H H C CH2 C CH3 CH3 CH3 CH3 CH3 c. Twelve constitutional isomers of molecular formula C6H12 containing one ring. 4.13 Seguire questi passaggi per attribuire il nome ad un alcano: [1] Attribuire il nome alla catena principale attraverso l’individuazione della catena carboniosa più lunga. [2] Numerare la catena in modo che il primo sostituente abbia il numero più basso. Successivamente nominare e numerare tutti i sostituenti, assegnando a sostituenti simili un prefisso (di, tri, etc.). [3] Combinare tutte le parti, ordinando sostituenti in ordine alfabetico, ignorando tutti i prefissi eccetto iso. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4-tert-butyl [1] CH3 a. CH3CH2CH2 [2] CH3 C CH3 C CH2CH2CH2CH3 CH3 [3] 4-tert-butyl-4-methyloctane CH3 CH3 C CH3 CH3CH2CH2 C CH2CH2CH2CH3 1 2 3 4 CH3 6 7 8 8 carbons = octane 4-methyl [1] b. H H C CH3 H C CH2 CHCH3 CH3 CH3 [2] 5 H 6 [3] 2,4-dimethylhexane H C CH3 H C CH2 CHCH3 4 CH3 2 CH31 6 carbons = hexane 4-methyl 2-methyl [1] CH3 c. CH3CH2CH2 6-isopropyl H C CH3 C CH2 CH2 H H CH3 C CH3 CH3CH2CH2 C CH2 CH2 9 8 7 6H 5 4 [2] CH2CH3 C CH3 H 9 carbons = nonane 4.14 2 1 [3] 6-isopropyl-3-methylnonane CH2CH3 C CH3 H 3 3-methyl Usare i passaggi della risposta 4.10 per assegnare il nome ad ogni alcano. a. CH3CH2CH(CH3)CH2CH3 [1] [2] redraw CH3CH2 CH CH2CH3 1 2 CH3CH2 CH3 3 4 [3] 3-methylpentane 5 CH CH2CH3 CH3 3-methyl 5 carbons = pentane b. (CH3)3CCH2CH(CH2CH3)2 redraw [1] [2] 2 CH3 1 CH3 CH3 C CH2 CH CH2CH3 CH3 [3] 4-ethyl-2,2-dimethylhexane 4 5 6 CH3 C CH2 CH CH2CH3 CH2CH3 CH3 6 carbons = hexane CH2CH3 4-ethyl 2,2-dimethyl c. CH3(CH2)3CH(CH2CH2CH3)CH(CH3)2 redraw [1] 4-isopropyl [3] 4-isopropyloctane [2] CH3 CH3CH2CH2CH2 CH CH CH3 CH3 8 7 6 5 4 CH3CH2CH2CH2 CH CH CH3 CH2CH2CH3 8 carbons = octane 2,2,4,4-tetramethyl d. [1] 5 carbons = pentane [2] CH2CH2CH3 3 2 1 [3] 2,2,4,4-tetramethylpentane 1 2 3 4 5 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 2-methyl [2] [1] 1 [3] 3-ethyl-2,5-dimethylheptane 34 5 6 7 e. 2 or 3-ethyl 5-methyl longest chain = 7 carbons = heptane Number so there are more substituents. Pick the upper option. 2-methyl f. [2] 1 [1] 3 5 3-ethyl 6 [3] 5-sec-butyl-3-ethyl-2,7-dimethyldecane 5-sec-butyl 2 10 carbons = decane 8 9 10 7-methyl 4.15 Per disegnare una struttura dal nome: [1] Trovare la radice corrispondente e disegnare il numero di atomi di carbonio. Usare il suffisso per identificare il gruppo funzionale. (-ano = alcano) [2] Numerare arbitrariamente gli atomi di C nella catena. Aggiungere i sostituenti ai carboni appropriati. [3] Ridisegnare con gli H in modo che i carboni abbiano 4 legami. a. 3-methylhexane [1] 6 carbon alkane [2] CH3 C C C C C C C methyl on C3 C C C C C [3] CH3 CH3CH2 CH CH2CH2CH3 b. 3,3-dimethylpentane [1] 5 carbon alkane [2] methyl groups on C3 [3] CH3 CH3 C C C C C c. 3,5,5-trimethyloctane [1] 8 carbon alkane C C C C C [2] methyl groups on C3 and C5 CH3 CH2CH3 [3] CH3 C C C C C C C C C CH3 CH3 CH3 C C C C C C C C CH3CH2 CH3 CH3CH2 CH3 CH CH2 C CH2CH2CH3 CH3 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl d. 3-ethyl-4-methylhexane [1] [2] 6 carbon alkane [3] ethyl group on C3 CH2CH3 CH3CH2 CH2CH3 C C C C C C C C C C C C CH3 CH CH CH2CH3 CH3 methyl group on C4 e. 3-ethyl-5-isobutylnonane [1] [2] C C C C C C C C C [3] isobutyl group on C5 9 carbon alkane CH3 CH3 CH2 CH CH3 CH2 CH CH3 C C C C C C C C C CH3CH2 CH CH2 CH CH2CH2CH2CH3 CH2CH3 CH2CH3 ethyl group on C3 4.16 Usare i passaggi della risposta 4.10 per assegnare il nome ad ogni alcano. [1] [3] hexane [2] H H H H H H H C C C C C C H no substituents , skip [2] H H H H H H 6 carbons = hexane [1] 2-methyl [2] H H H CH3 H H C C C C C H H H H H H H C C C C 5 [1] H H H [2] H H CH3 H H H C C C C C H H H 5 H C C C C H H H CH3 H H H 2,2-dimethyl [2] H H CH3 H [3] 3-methylpentane C C H H H H 5 carbons = pentane [1] 1 H 3-methyl H H CH3 H H H C C C [3] 2-methylpentane C H H H H H 5 carbons = pentane 1 H H H CH3 H 1 H H CH3 H H C C C C [3] 2,2-dimethylbutane H 4 H H CH3 H [2] H H H H H C C C C H 4 carbons = butane [1] H H H H H C C C C H H CH3 CH3 H 4 1 [3] 2,3-dimethylbutane H CH3 CH3 H 4 carbons = butane 2,3-dimethyl 4.17 Seguire questi passaggi per assegnare il nome ad un cicloalcano: [1] Assegnare il nome alla radice del cicloalcano contando i carboni dell’anello ed aggiungendo ciclo-. [2] Numerazione: Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl [2a] Numerare l’anello iniziando da un sostituente ed assegnando al secondo sostituente il numero più basso. [2b] Assegnare il numero più basso al sostituente che precede in ordine alfabetico. [2c] Denominare e numerare tutti i sostituenti, assegnando ai sostituenti uguali un prefisso (di, tri, ecc.). [3] Combinare tutte le parti, disponendo in ordine alfabetico tutti i sostituenti, ed ignorando tutti I prefissi ad eccezione di iso. (Ricordare: se una catena carboniosa ha più carboni dell’anello, la catena diventa la radice e l’anello un sostituente.) 1 2 CH3 [2] 3 C C C CH 3 [1] a. C 4 6 carbons in ring = cyclohexane C 1,1-dimethyl [3] 1,1-dimethylcyclohexane C 6 5 Number so the substituents are at C1. 1,2,3-trimethyl [1] [2] 3 4C b. CH3 [3] 1,2,3-trimethylcyclopentane C 2 C CH3 5C C CH3 5 carbons in ring = cyclopentane 1 Number so the first substituent is at C1, second at C2. 1 2 3 C C [2] C [1] c. C CH3 4 C 5 6 carbons in ring = cyclohexane 4-methyl C [3] 1-butyl-4-methylcyclohexane 6 1-butyl Number so the earliest alphabetical substituent is at C1, butyl before methyl. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 1 [1] [2] C 5C d. 4C C 3 6 carbons in ring = cyclohexane 1-sec-butyl 6 [3] 1-sec-butyl-2-isopropylcyclohexane C C 2 2-isopropyl Number so the earliest alphabetical substituent is at C1, butyl before isopropyl. [1] [2] 1 3 5 C C C e. C C [3] 1-cyclopropylpentane 4 2 1-cyclopropyl longest chain = 5 carbons = pentane Number so the cyclopropyl is at C1. 4.18 Per disegnare le strutture, usare i passaggi della risposta 4.15. a. 1,2-dimethylcyclobutane [1] 4 carbon cycloalkane [2] methyl groups on C1 and C2 C C C C CH3 1 C C 4 [3] CH3 C C 3 CH3 2 CH3 b. 1,1,2-trimethylcyclopropane [1] 3 carbon cycloalkane c. 4-ethyl-1,2-dimethylcyclohexane [1] 6 carbon cycloalkane [2] C C C [3] CH3 CH3 [1] 5 carbon cycloalkane C C C C CH3 3 CH3CH2 4 C 2 CH3 C C [3] CH CH 3 2 C C ethyl 5 C 1 CH3 on C4 6 2 CH3's C d. 1-sec-butyl-3-isopropylcyclopentane C 3 CH3's 3 C C C 2C C C CH3 1 CH 3 C C CH3 [2] [2] CH3 CH CH3 isopropyl [3] C3 4C C 2 C C 5 1 CH CH3 sec-butyl CH3 CH2 CH3 CH3 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl e. 1,1,2,3,4-pentamethylcycloheptane [1] 7 carbon cycloalkane [2] 5 CH3's CH3 CH3 3 C 4 C C5 C C C C C C C CH3 2C CH3 1 C6 C C7 CH3 CH3 [3] CH3 CH3 CH3 CH3 4.19 Per assegnare il nome ai cicloalcani, usare i passaggi della risposta 4.17. [1] 5 carbons in ring = cyclopentane [1] [2] C C [3] methylcyclobutane C C CH3 CH3 4 carbons in ring = cyclobutane [1] methyl [2] CH3 CH3 CH3 3 carbons in ring = cyclopropane [1] [2] CH3 3 carbons in ring = cyclopropane 4.20 CH3 C C C [3] ethylcyclopropane CH2CH3 ethyl 3 carbons in ring = cyclopropane CH3 C C 1,2-dimethyl CH2CH3 [1] [3] 1,2-dimethylcyclopropane C [2] CH3 [3] 1,1-dimethylcyclopropane CH3 1,1-dimethyl Usare I passaggi delle risposte 4.13 e 4.17 per dare il nome agli alcani. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl a. CH3CH2CHCH2CHCH2CH2CH3 [1] CH3 CH2CH3 1 2 3 4 5 6 CH3 5-ethyl CH3 7-methyl 7 b. CH3CH2CCH2CH2CHCHCH2CH2CH3 [2] 1 [3] 5-ethyl-3-methyloctane CH2CH3 3-methyl [1] 8 [2] CH3CH2CHCH2CHCH2CH2CH3 8 carbons = octane CH2CH3 7 CH3 2 3CH2CH3 [3] 3,3,6-triethyl-7-methyldecane CH3CH2CCH2CH2CHCHCH2CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 10 carbons = decane 3,3,6-triethyl c. CH3CH2CH2C(CH3)2C(CH3)2CH2CH3 [1] [2] redraw CH3CH2CH2 CH3 CH3 CH3CH2CH2 C [3] 3,3,4,4-tetramethylheptane CH3 CH3 3 C C CH2CH3 2 4 CH3 CH3 C CH2CH3 CH3 CH3 1 3,3,4,4-tetramethyl 7 carbons = heptane d. CH3CH2C(CH2CH3)2CH(CH3)CH(CH2CH2CH3)2 3,3-diethyl redraw [1] [2] CH3CH2 H CH3CH2 C CH3CH2 H H CH3CH2 C CH2CH2CH3 C 1 CH3CH2 CH3 CH2CH2CH3 C 5 4 C CH2CH2CH3 C CH3CH2 CH3 CH2CH2CH3 4-methyl 8 carbons = octane e. (CH3CH2)3CCH(CH3)CH2CH2CH3 [3] 3,3-diethyl-4-methyl-5-propyloctane H 5-propyl 3,3-diethyl 4 [1] redraw [2] CH3CH2 CH3CH2 H CH3CH2 C 1 C CH2CH2CH3 [3] 3,3-diethyl-4-methylheptane CH3CH2 H C C CH2CH2CH3 CH3CH2 CH3 6 7 4-methyl CH3CH2 CH3 7 carbons = heptane f. CH3CH2CH(CH3)CH(CH3)CH(CH2CH2CH3)(CH2)3CH3 3 4 5 redraw H H H [1] [2] CH3CH2 H H H C C C CH2CH2CH2CH3 CH3 CH3 CH2CH2CH3 9 carbons = nonane CH3CH2 1 2 C C [3] 3,4-dimethyl-5-propylnonane C CH2CH2CH2CH3 CH3 CH3 CH2CH2CH3 3,4-dimethyl 5-propyl Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl g. (CH3CH2CH2)4C 4,4-dipropyl redraw [1] [2] CH2CH2CH3 CH3CH2CH2 4 C CH2CH2CH3 CH2CH2CH3 CH3CH2CH2 C CH2CH2CH3 3 1 2 CH2CH2CH3 [3] 4,4-dipropylheptane CH2CH2CH3 7 carbons = heptane h. 1 2 [1] [2] 5 3 7 6-isopropyl 3-methyl 10 carbons =decane i. [3] 6-isopropyl-3-methyldecane 6 [2] [1] 10 carbons = decane 8 6 4-isopropyl 4 [3] 8-ethyl-4-isopropyl-2,6-dimethyldecane 1 8-ethyl 2,6-dimethyl 4-isopropyl j. 4 [2] [1] [3] 4-isopropyloctane 1 8 carbons = octane 2,2,5-trimethyl k. 2,2,5-trimethylheptane 1 2 1 2 CH(CH2CH3)2 l. = 3 3-cyclobutylpentane 4 5 3-cyclobutyl 5 m. 4 3 1 1-sec-butyl 2 1-sec-butyl-2-isopropylcyclopentane 2-isopropyl 5 n. 6 1 4 3 1-isobutyl-3-isopropylcyclohexane 2 1-isobutyl 3-isopropyl Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4.21 2,2-dimethyl CH3 3,3-dimethyl CH3 4,4-dimethyl CH3 CH3 C CH2CH2CH2CH2CH3 CH3CH2 C CH2CH2CH2CH3 CH3CH2CH2 C CH2CH2CH3 1 CH3 1 CH3 1 CH3 2 3 3,3-dimethylheptane 2,2-dimethylheptane H H H H CH2CH2 C CH2CH3 CH3 C CH2 C CH2CH2CH3 CH3 C 1 1 CH3 2 CH3 4 CH3 2 H H CH3 C CH2CH2CH2 C CH3 1 CH3 6 CH3 2,6-dimethyl 2,6-dimethylheptane H 1 C 1 CH3 CH3 C CH2CH2CH3 3 H C CH2CH2CH2CH3 CH3CH3 2,3-dimethyl 2,3-dimethylheptane H H CH3CH2 3 H CH3 C CH3 2,5-dimethylheptane 2,4-dimethylheptane 4.22 2 2,5-dimethyl 2,4-dimethyl 2 5 4 4,4-dimethylheptane H CH3CH2 C CH2 C CH2CH3 1 CH3 4 3,4-dimethyl 3,4-dimethylheptane Usare i passaggi della risposta 4.15 per disegnare le strutture. 3 5 CH3 3,5-dimethyl 3,5-dimethylheptane Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl a. 3-ethyl-2-methylhexane [1] 6 C chain C C [2] C C C C C C b. sec-butylcyclopentane 5 C ring [1] C C C C H CH3 CH2CH3 methyl on C2 [3] CH3 C H C CH2CH2CH3 CH3 CH2CH3 ethyl on C3 [2] isopropyl on C4 c. 4-isopropyl-2,4,5-trimethylheptane [1] 7 C chain [2] CH3 CH C C C C CH3 C C C C C C C CH3 [3] C C C CH3 CH3 methyls on C2, C4, and C5 d. cyclobutylcycloheptane [1] 7 C cycloalkane [2] CH3 CH3 CH3 CH CH CH2 C CHCH2CH3 CH3 CH3 CH3 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl e. 3-ethyl-1,1-dimethylcyclohexane [1] 6 C cycloalkane [2] [3] CH3CH2 C C C C C ethyl on C3 C C 2 ethyl groups 8 C cycloalkane C C C C C C C g. 6-isopropyl-2,3-dimethylnonane [1] 9 C alkane C [2] C C C C C C C C C C C C C 8 C alkane C C C C C C C C C C CH3 C CH3 [2] CH3 CH3 C C C C C [1] C C Disegnare i composti. [3] ethyl on C1 [2] CH2CH3 or methyl on C3 C(CH3)3 [2] CH3CH2 4.23 C CH3 CH3 C C C C CH2CH3 j. trans-1-tert-butyl-4-ethylcyclohexane 6 C ring C C methyl CH3 [1] [3] CH3 CH3 i. cis-1-ethyl-3-methylcyclopentane 5 C ring CH 5 methyl groups h. 2,2,6,6,7-pentamethyloctane [1] isopropyl methyl CH3 C [3] C C C C 2 methyl groups on C1 CH3 C C C C C CH3 C C C [2] C C C f. 4-butyl-1,1-diethylcyclooctane [1] C CH3 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl a. 2,2-dimethyl-4-ethylheptane CH2CH3 CH2 C CH2CH2CH3 CH3 CH3 C alphabetized incorrectly ethyl before methyl CH3 e. 1-ethyl-2,6-dimethylcycloheptane CH2CH3 2 CH3 Numbered incorrectly. Renumber so methyls are at C1 and C4. H 1 4 CH3 4-ethyl-2,2-dimethylheptane 2-ethyl-1,4-dimethylcycloheptane b. 5-ethyl-2-methylhexane f. 5,5,6-trimethyloctane Longest chain was not chosen = heptane 3 Numbered incorrectly. Renumber so methyls are at C3 and C4. 4 2,5-dimethylheptane 3,4,4-trimethyloctane H c. 2-methyl-2-isopropylheptane g. 3-butyl-2,2-dimethylhexane CH3C CH3 longest chain was not chosen = octane CH3 C CH2CH2CH2CH2CH3 CH3 2,3,3-trimethyloctane d. 1,5-dimethylcyclohexane CH3 1 Numbered incorrectly. Renumber so methyls are at C1 and C3. 1 4-tert-butyloctane h. 1,3-dimethylbutane longest chain not chosen = pentane 3 CH3 H CH3 CCH2 CH3 1,3-dimethylcyclohexane 4.24 4 longest chain not chosen = octane CH2 CH3 2-methylpentane Confrontare i pesi molecolari per determinare i punti di ebollizione relativi. gasoline: C5H12 - C12H26 lowest molecular weight: lowest boiling point kerosene: C12H26 - C16H34 middle molecular weight: intermediate boiling point diesel fuel: C15H32 - C18H38 highest molecular weight: highest boiling point 4.25 Confrontare i numeri dei carboni e l’area superficiale per determinare I punti di ebollizione relativi. Regole: [1] Aumento del numero dei carboni = aumento del punto di ebollizione. [2] Aumento dell’area superficiale = aumento del punto di ebollizione (la ramificazione diminuisce l’area superficiale). Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl CH3(CH2)6CH3 CH3(CH2)5CH3 CH3CH2CH2CH2CH(CH3)2 (CH3)3CCH(CH3)2 7 C's linear 8 C's linear largest number of C's no branching highest bp 7 C's one branch 7 C's three branches increasing branching decreasing surface area decreasing bp increasing boiling point: (CH3)3CCH(CH3)2 < CH3CH2CH2CH2CH(CH3)2 < CH3(CH2)5CH3 < CH3(CH2)6CH3 4.26 Usare le regole della risposta 4.25. a. CH3CH2CH3, CH3CH2CH2CH3, CH3CH2CH2CH2CH3 4 C's 3C's 5 C's lowest boiling point highest boiling point b. (CH3)2CHCH(CH3)2, CH3CH2CH2CH(CH3)2, most branching lowest boiling point CH3(CH2)4CH3 least branching highest boiling point 4.27 CH3(CH2)6CH3 no branching = higher surface area higher boiling point 4.28 (CH3)3C(CH3)3 branching = lower surface area lower boiling point more spherical, better packing = higher melting point Per disegnare una proiezione di Newman, visualizzare i carboni come uno davanti ed uno dietro rispettivamente. Il legame C−C non viene disegnato. C’è una sola conformazione sfalsata ed una eclissata. Br rotation here H H H C C Br C in front H H H H C behind H H 60o H H H Br H H H 1 staggered 2 eclipsed 4.29 Le conformazioni sfalsate sono più stabili delle conformazioni eclissate. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl H H H CH3 HH H H H HH H H H HCH3 H H H H CH3 H H CH3 eclipsed energy maximum H H H C C CH3 H H Energy rotation here H H H H H 0o 60o CH3 H H H H H H H CH3 CH 3 120o H H 180o 240o H 300o Dihedral angle 360o = 0o staggered energy minimum Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4.30 1 kcal/mol H H H CH3 To calculate H,CH3 destabilization: 3.5 kcal/mol (total) − 2 kcal/mol for 2 H,H eclipsing interactions = 1.5 kcal/mol for one H,CH3 eclipsing interaction H H,H eclipsing 1 kcal/mol of destabilization H 1 kcal/mol 4.31 Per determinare l’energia dei conformeri ricordare due fattori: [1] I conformeri eclissati sono più stabili di quelli eclissati. [2] Minimizzare le interazioni steriche mettendo I gruppi più ingombranti lontano uno dall’altro. La conformazione a più alta energia è la conformazione eclissata in cui i due gruppi più ingombranti sono eclissati. La conformazione a minore energia è la configurazione sfalsata in cui i due gruppi più ingombranti sono anti. CH3 H H H CH3 CH3 H CH3 CH3 CH3 H H most stable least stable 1 2 2 2 2 Energy 2 1 0 o 60o 1 120 o 180 1 o 240 o 300 o 360 o dihedral angle 4.32 Per determinare i conformeri più stabili e quelli meno stabili, usare le regole della risposta 4.31. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl rotation here H CH3 H CH3 CH3 60o C CH2CH3 CH3 H CH3 CH3 H H CH3 H CH3 H H 1 staggered most stable H 2 eclipsed 3 staggered most stable 60o CH3 CH3 CH3 CH3 CH3 60o H H CH3 CH3 60o CH3 H H H 6 eclipsed least stable H CH3 60o H CH3 CH3 CH3 60o H H H 5 staggered 4 eclipsed least stable 4.33 Per determinare i conformeri più stabili e quelli meno stabili, usare le regole della risposta 4.31. Cl 1,2-dichloroethane H H ClCH2 CH2 Cl 60o H H H H H H Cl Cl H Cl 1 staggered, anti 2 eclipsed rotation here 60o H H Cl H Cl 3 staggered, gauche 60o 60o H Cl H HH H o 60 H Cl 6 eclipsed Cl H H Cl 5 staggered, gauche 60o HH HH Cl Cl 4 eclipsed Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl highest energy Cl groups eclipsed least stable 4 2 Eclipsed forms are higher in energy. Energy 6 3 180o Staggered forms are lower in energy. 5 1 most stable 1 most stable Cl groups anti 120o 60o 0o 60o 120o 180o Dihedral angle between 2 Cl's 4.34 Aggiungere l’aumento di energia per ogni interazione eclissata per determinare la destabilizzazione. H H CH3 H H CH3 H CH3 b. a. CH3 H H 1 H,H interaction = 2 H,CH3 interactions (2 x 1.5 kcal/mol) = 1 kcal/mol 3 kcal/mol CH3 3 H,CH3 interactions (3 x 1.5 kcal/mol) = 4.5 kcal/mol Total destabilization Total destabilization = 4 kcal/mol 4.35 CH3 a. H H CH3 H CH3 H and H H 1 gauche CH3,CH3 = 0.9 kcal/mol of destabilization CH3 H CH3 CH3 higher energy 2 gauche CH3,CH3 0.9 kcal/mol x 2 = 1.8 kcal/mol of destabilization Energy difference = 1.8 kcal/mol – 0.9 kcal/mol = 4.36 b. H H and CH3 CH3 H CH3 H CH3 CH3 2 gauche CH3,CH3 0.9 kcal/mol x 2 = 1.8 kcal/mol of destabilization CH3 H higher energy 3 eclipsed H,CH3 1.5 kcal/mol x 3 = 4.5 kcal/mol of destabilization Energy difference = 0.9 kcal/mol 4.5 kcal/mol – 1.8 kcal/mol = 2.7 kcal/mol Usare le regole della risposta 4.31 per determinare i conformeri più stabili e meno stabili. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl a. CH3 CH2CH2CH2CH3 b. CH3CH2CH2 CH2CH2CH3 H CH CH CH 2 2 3 H CH2CH2CH3 H H H H H HH H staggered most stable H CH2CH3 H eclipsed least stable CH3CH2 CH2CH3 CH2CH3 H H staggered ethyl groups anti most stable All staggered conformers are equal in energy. All eclipsed conformers are equal in energy. H HH H eclipsed ethyl groups eclipsed least stable 4.37 CH3CH2 H H 60° (1) CH3CH2 H CH3 H CH2CH2CH3 H CH2CH3 H H H 60° H H CH3 H 1 60° 60° H H H H H 60° H CH3CH2 CH3 H 6 60° H CH3 5 Energy 1 most stable 120o Staggered forms are lower in energy. 5 3 180o Eclipsed forms are higher in energy. 6 1 most stable 60o 0o 60o 120o 180o Dihedral angle between two alkyl groups H H H H least stable 4 2 CH2CH3 CH3 3 2 CH3CH2 H CH3 CH2CH3 4 Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl most stable CH3CH2 H H (2) CH3CH2 CHCH2CH3 60° H H H 60° CH3 CH3 H CH3 H CH2CH3 H H CH2CH3 CH3 CH3 CH3 1 CH3 3 2 60° 60° H CH3 H CH3CH2 H 60° H CH3CH2 CH3 H H H H CH3 CH3 60° H CH3 CH2CH3 CH3 5 6 least stable 4 least stable 4 Energy 2 Staggered forms are lower in energy. 5 3 1 most stable 180o Eclipsed forms are higher in energy. 6 1 most stable 120o 60o 0o 60o 120o 180o Dihedral angle (between CH3 CH2 in back and CH 3 in front) 4.38 Due tipi di tensione: • La tensione torsionale è dovuta a gruppi eclissati su atomi di carbonio adiacenti. • La tensione sterica è dovuta a sovrapposizione delle nuvole elettroniche di gruppi voluminosi (es: interazioni gauche). H CH3 H CH3 H a. b. CH3 H CH3 two sites three bulky methyl groups close = steric strain H H H CH3 HH c. H CH3 eclisped conformation= torsional strain CH2CH3 CH3CH2 two bulky ethyl groups close = steric strain eclipsed conformation = torsional strain Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4.39 La barriera di energia rotazionale è uguale alla differenza di energia tra la più alta energia eclissata e la più bassa energia sfalsata della molecola. a. CH3 CH(CH3)2 CH3 H H b. CH3 C(CH3)3 CH3 H H CH3 H H CH3 CH3 H H H most stable CH3 CH3 H least stable Destabilization energy = CH3 H H CH3 H CH3 H most stable least stable Destabilization energy = 2 H,CH3 eclipsing interactions 2(1.5 kcal/mol) = 1 H,H eclipsing interaction = 3 kcal/mol 1 kcal/mol Total destabilization = 4 kcal/mol 4 kcal/mol = rotation barrier 3 H,CH3 eclipsing interactions 3(1.5 kcal/mol) = 4.5 kcal/mol Total destabilization = 4.5 kcal/mol 4.5 kcal/mol = rotation barrier 4.40 Cl H H H H H most stable H H H Cl H H least stable 2 H,H eclipsing interactions = 2(1 kcal/mol) = 2 kcal/mol Since the barrier to rotation is 3.7 kcal/mol, the difference between this value and the destabilization due to H,H eclipsing is the destabilization due to H,Cl eclipsing. 3.7 kcal/mol - 2 kcal/mol = 1.7 kcal/mol destabilization due to H,Cl eclipsing 4.41 Il conformero gauche può formare un legame idrogeno intramolecolare, che lo rende il conformero più stabile. 4.42 Due punti: • I legami assiali sono direzionati in alto o in basso, mentre quelli equatoriali verso l’esterno. • Un carbonio in alto ha un legame assiale in alto, ed un carbonio in basso ha un legame assiale in basso. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl equatorial axial up CH3 Br H H HO H equatorial H Cl H H OH CH3 axial up Br HO H axial down Cl OH Up carbons are dark circles. Down carbons are clear circles. equatorial 4.43 Disegnare un secondo conformero a sedia per inversione dell’anello. • I carboni in alto diventano carboni in basso, e i legami assiali diventano legami equatoriali. • I legami assiali diventano equatoriali, ma i legami in alto rimangono in alto; cioè un legame assiale in alto diventa un legame equatoriale in alto. • Il conformero con i gruppi più ingombranti in posizione equatoriale è più stabile ed è presente in maggior concentrazione all’equilibrio. axial H eq Draw in the H Br a. Draw second conformer. Br H Up carbons switch and label the C to down carbons. more stable as up or down. Axial bond is up = Br is equatorial. up carbon Br axial eq Axial bond is down = down carbon axial eq Cl b. Cl Draw in the H Draw second conformer. Cl Up carbons switch and label the C to down carbons. axial Haxial bond is down = as up or down. eq down carbon Axial bond is up = up carbon more stable Cl is equatorial. H Axial bond is up = up carbon eq H c. CH2CH3 more stable CH2CH3 is equatorial. 4.44 Draw second conformer. Draw in the H CH2CH3 and label the C as up or down. eq Up carbons switch to down carbons. H CH2CH3 Axial bond is down = down carbon Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl axial H OH axial [a] (1) [c] HO [d] down HO HO eq eq HO H H eq [a] (2) [b] H axial H eq CH3eq H H OH OH down up CH eq Br 3 H eq ax ax [c] HO ax Br [d] CH3 H [b] OH eq eq Br CH3 up H axial HO [c] both up = cis H OH ax H ax ax H H axial [a] OH Br H eq CH3 eq H eq eq HO eq up Br H ax OH H one up, one down = trans axial (3) ax H up OH [b] HO [d] ax ax H OH OH eq eq HO eq H H eq H one up, one down = trans H ax OH ax 4.45 Un isomero cis ha due gruppi dalla stessa parte dell’anello. I due gruppi possono essere disegnati entrambi su sia entrambi giù. Viene rappresentata solo una possibilità. Un isomero trans ha un gruppo su una parte dell’anello ed uno dalla parte opposta. Ciascun gruppo può essere disegnato da ciascun lato. Viene rappresentata solo una possibilità. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl (1) [a] cis (2) (3) [a] [a] trans cis [b] cis isomer trans cis [b] cis isomer trans [b] cis isomer ax ax ax ax ax ax eq eq eq both groups equatorial more stable [c] trans isomer ax eq eq eq larger group equatorial more stable [c] trans isomer larger group equatorial more stable [c] trans isomer ax ax eq eq eq eq ax larger group equatorial more stable [d] ax both groups equatorial more stable [d] The cis isomer is more stable than the trans since one conformer has both groups equatorial. eq eq ax both groups equatorial more stable [d] The trans isomer is more stable than the cis since one conformer has both groups equatorial. The trans isomer is more stable than the cis since one conformer has both groups equatorial. 4.46 Confrontare gli isomeri disegnandoli nella conformazione a sedia. I sostituenti equatoriali sono più stabili. Confrontare le definizioni del problema 4.53. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl (a) 1,2-diethylcyclohexane cis H CH2CH3 ax H cis CH2CH3 eq H (CH3)2CH H CH3CH2 CH2CH3 eq ax eq H H H both groups equatorial most stable of all conformers cis isomer eq CH2CH3 H trans H H (CH3)2CH CH2CH3 (CH3)2CH both groups equatorial most stable of all conformers trans isomer CH2CH3 H CH2CH3 eq H H eq eq H ax The cis isomer is more stable than the trans isomer because its more stable conformer has two groups equatorial. The trans isomer is more stable than the cis isomer because its more stable conformer has two groups equatorial. 4.47 Only the more stable conformer of each compound is drawn. CH3 CH3 CH3 CH3 CH3 or a. CH3 CH3 CH3 or b. CH3 CH3 CH3 CH3 redraw to see axial and equatorial redraw to see axial and equatorial CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 more stable can all be equatorial more stable substituents on C1, C3, C5= all equatorial 4.48 a. OH O OH HO HO HO most stable all groups are equatorial 4.49 HO b. ax (CH3)2CH CH2CH3 H CH2CH3 eq trans (b) 1-ethyl-3-isopropylcyclohexane ax ax CH2CH3 ax O HO OH HO OH I cunei indicano gruppi “sopra” alla pagina, e i trattini sono “sotto” dietro alla pagina. I gruppi cis sono dalla stessa parte dell’anello, i gruppi trans da parti opposte. ax CH2CH3 H Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl trans-1-ethyl-2-methylcyclopentane cis-1,2-dimethylcyclopropane CH3 or CH3 CH3 or CH3 CH3CH2 cis = same side of the ring both groups on wedges or both on dashes CH3 CH3CH2 CH3 trans = opposite sides of the ring one group on a wedge, one group on a dash 4.50 Per classificare un composto come isomero cis o trans, classificare ogni gruppo diverso dall’idrogeno come su o giù. Gruppi dalla stessa parte = isomero cis, gruppi da parti opposte = isomero trans. down bond (up) (equatorial) HH(up) HO a. down bond (up) (equatorial) H up bond (axial) H Cl H HO Cl Cl b. OH OH H H up bond H (down) (equatorial) down bond (equatorial) both groups down = cis isomer (up) Br H c. H (down) H Br Br down bond H (equatorial) one group up, one down = trans isomer Cl one group up, one down = trans isomer Br 4.51 ax ax H H CH3 CH3 eq H eq eq H eq CH3 CH3 ax ax both groups equatorial more stable 4.52 CH3 a. trans: CH3 CH3 c. CH3 groups on same side cis isomer CH3 cis: H CH3 b. H CH3 groups on opposite sides trans isomer CH3 CH3 H H two chair conformers for the cis isomer Same stability since they are identical groups with one equatorial, one axial. H CH3 H H CH3 H CH3 both groups equatorial more stable two chair conformers for the trans isomer d. The trans isomer is more stable because it can have both methyl groups in the more roomy equatorial position. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4.53 a. and CH3 H f. same molecular formula C4H8 different connectivity constitutional isomers CH CH3 CH3 CH3CH2 H and H CH2CH3 CH3 different arrangement in three dimensions stereoisomers CH3 c. CH3 H and H CH3 CH3 CH3 1 down, 1 up = trans H CH2CH3 d. CH2CH3 redraw CH3 CH2 CH3 CH H CH3 1 down, 1 up = trans CH CH2CH3 CH2CH3 3-ethyl-2-methylpentane 3-ethyl-2-methylpentane same molecular formula same name identical molecules H = same arrangement in three dimensions identical CH3 CH3 CH2CH3 CH3 CH CH H H CH3 and b. H CH2CH3 up CH3 eq and CH3 H CH3CH2 up ax ax g. eq H up both up = cis H H both up = cis CH2CH3 and same molecular formula C10H20 different connectivity constitutional isomers and e. same arrangement in three dimensions identical CH2CH3 CH2CH3 CH3 h. and 3,4-dimethylhexane 2,4-dimethylhexane same molecular formula C8H18 molecular formula: C6H10 molecular formula: C6H12 different IUPAC names constitutional isomers different molecular formulas not isomers 4.54 up Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl constitutional isomer One possibility: stereoisomer a. trans cis H H b. H OH H OH cis HO OH H OH c. OH H trans Cl cis Cl Cl Cl Cl Cl trans 4.55 Three constitutional isomers of C7H14: 1,1-dimethylcyclopentane 1,2-dimethylcyclopentane 1,3-dimethylcyclopentane or or trans cis trans cis 4.56 L’ ossidazione provoca un aumento del numero di legami C−Z, o in una diminuzione del numero di legami C−H. La riduzione provoca una diminuzione del numero di legami C−Z, o un aumento del numero di legami C−H. a. CH3 O O C C H CH3 O OH c. Decrease in the number of C–H bonds. Increase in the number of C–O bonds. Oxidation CH3 C CH3 HO OH C CH3 CH3 No change in the number of C–O or C-H bonds. Neither O b. CH3 C CH3 CH3CH2CH3 Decrease in the number of C–O bonds. Increase in the number of C–H bonds. Reduction d. O OH Decrease in the number of C–O bonds. Increase in the number of C–H bonds. Reduction 4.57 I prodotti della combustione di un idrocarburo sono sempre gli stessi: CO2 e H2O. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl 4.58 a. CH3CH2CH3 b. + + flame 5 O2 9 O2 flame 3 CO2 + 6 CO2 + 4 H2O + heat 6 H2O + heat Usare le definizioni della risposta 4.56 per classificare le reazioni. O a. = CH3CHO CH3 C CH3CH2OH H d. CH2 CH2 Decrease in the number of C–O bonds. Reduction H C C H Decrease in the number of C–H bonds. Oxidation CH3 b. Increase in the number of C–Z bonds. Oxidation Increase in the number of C–O bonds. Oxidation c. CH2 CH2 f. HOCH2CH2OH CH3CH2OH CH2 CH2 Loss of one C–O bond and one C–H bond. Neither Two new C–O bonds. Oxidation 4.59 CH2Br e. O Usare la regola della risposta 4.57. flame a. CH3CH2CH2CH2CH(CH3)2 7 CO2 + 8 H2O + heat 11 O2 flame b. 4 CO2 + 5 H2O + heat (13/2) O2 4.60 1 C–O bond 2 C–O bonds H O a. OH 2 C–H bonds H benzene an arene oxide increase in C–O bonds oxidation reaction H 1 C–H bond phenol loss of 1 C–O bond, loss of 1 C–H bond neither b. Phenol is more water soluble than benzene because it is polar (contains an O–H group) and can hydrogen bond with water, whereas benzene is nonpolar and cannot hydrogen bond. 4.61 L’ammide del ciclo a quattro termini ha angoli di legame a 90° che originano tensione angolare, e quindi è più reattiva. Fondamenti di chimica organica Janice Gorzynski Smith Copyright © 2009 – The McGraw-Hill Companies srl amide H N penicillin G S N O O CH3 CH3 COOH strained amide more reactive 4.62 CH3 CH3 CH3 CH3 cis-1,4-dimethylcyclohexane trans-1,4-dimethylcyclohexane more symmetrical better packing higher melting point 4.63 Cl H Example: HH IH HH H Cl C H H HH H HH I H C C H Although I is a much bigger atom than Cl, the C–I bond is also much longer than the C–Cl bond. As a result the eclipsing interaction of the H and I atoms is not very much different from the H,Cl eclipsing interaction in magnitude. H C H H H longer bond 4.64 H H H decalin H trans-decalin cis-decalin H H H H H trans The trans isomer is more stable since the carbon groups at the ring junction are both in the favorable equatorial position. H 1,3-diaxial interaction cis This bond is axial, creating unfavorable 1,3-diaxial interactions.
© Copyright 2025 ExpyDoc