Bibliography - Dissertations

Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions:
with Formulas, Graphs, and Mathematical Tables. Dover, New York.
Barlow, D., Nock, M., and Hersen, M. (2009). Single Case Experimental Designs.
Strategies for Studying Behavior for Change. Boston, MA: Pearson, 3rd edition.
Beeson, P. M. and Robey, R. R. (2006). Evaluating single-subject treatment
research: Lessons learned from the aphasia literature. Neuropsychology Review,
Berger, J. O. and Berry, D. A. (1988). Statistical analysis and the illusion of
objectivity. American Scientist, 76:159–165.
Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis: The irreconcilability of p values and evidence. Journal of the American Statistical
Association, 82(397):112–122.
Bisconer, S. W., Green, M., Mallon-Czajka, J., and Johnson, J. S. (2006). Managing aggression in a psychiatric hospital using a behaviour plan: A case study.
Journal of Psychiatric and Mental Health Nursing, 13:515–521.
Bult´e, I. and Onghena, P. (2008). An R package for single-case randomization
tests. Behavior Research Methods, 40:467–478.
Bult´e, I. and Onghena, P. (2009). Randomization tests for multiple-baseline
designs: an extension of the SCRT-R package. Behavior Research Methods,
Buonaccorsi, J. P. (2010). Measurement Error: Models, Methods, and Applications. Chapman & Hall/CRC interdisciplinary statistics series. Boca Raton,
FL: CRC Press.
Burgess, P., Pirkis, J., and Coombs, T. (2009). Modelling candidate effectiveness
indicators for mental health services. Australian and New Zealand Journal of
Psychiatry, 43:531–538.
Busk, P. L. and Marascuilo, L. A. (1988). Autocorrelation in single-subject research: a counterargument to the myth of no autocorrelation. Behavioral Assessment, 10:229–242.
Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society. Series B (Methodological), 57(3):473–484.
Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury, Pacific
Grove, CA.
Chandrasekaran, S., Gu, M., Sun, X., Xia, J., and Zhu, J. (2007). A superfast
algorithm for toeplitz systems of linear equations. SIAM Journal on Matrix
˘ S1266.
Analysis and Applications, 29(4):1247ˆaA¸
Cleveland, W. S. (1981). Lowess: A program for smoothing scatterplots by robust
locally weighted regression. The American Statistician, 35:54.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112:155–159.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49:997–
de Beurs, E. (2010). De genormaliseerde t-score. een “euro” voor testuitslagen
[the normalized t-score. a “euro” for test outcomes.]. Maandblad Geestelijke
volksgezondheid, 65:684 – 695.
de Vries, R. M., Hartogs, B. M. A., and Morey, R. D. (Submitted). A tutorial on
computing bayes factors for single-subject designs. Behavior Therapy.
de Vries, R. M. and Morey, R. D. (2013). Bayesian hypothesis testing for singlesubject designs. Psychological Methods, 18(2):165 – 185.
de Vries, R. M., Morey, R. D., and Tendeiro, J. N. (In preparation). Bayesian
hypothesis testing for routine outcome measurement data.
Derogatis, L. R. (2001). Brief Symptom Inventory (BSI)-18. Administration,
scoring and procedures manual. Minneapolis: NCS Pearson, Inc.
Dickey, J. M. and Lientz, B. P. (1970). The weighted likelihood ratio, sharp
hypotheses about chances, the order of a Markov chain. The Annals of Mathematical Statistics, 41(1):214–226.
Edwards, W., Lindman, H., and Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70:193–242.
Ferron, J. and Foster-Johnson, L. (1998). Analyzing single-case data with visually
guided randomization tests. Behavior Research Methods, 30:698–706.
Fox, J. (2008). Applied regression analysis and generalized linear models. Sage,
Los Angeles, 2 edition.
Gelfand, A. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association,
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian data
analysis (2nd edition). Chapman and Hall, London.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:721–741.
Glover, S. and Dixon, P. (2004). Likelihood ratios: a simple and flexible statistic
for empirical psychologists. Psychonomic Bulletin & Review, 11:791–806.
Good, I. J. (1985). Weight of evidence: A brief survey. In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M., editors, Bayesian Statistics
2, pages 249–270, North-Holland. Elsevier Science Publishers B.V.
Goodman, S. N. (1999a). Toward evidence-based medical statistics. 2: the Bayes
factor. Annals of Internal Medicine, 130(12):1005–1013.
Goodman, S. N. (1999b). Toward evidence-based medical statistics I. The p-value
fallacy. Annals of internal medicine, 130:995–1004.
Hacking, I. (1965). Logic of Statistical Inference. Cambridge University Press,
Cambridge, England.
Haller, H. and Krauss, S. (2002). Misinterpretations of significance: A problem
students share with their teachers? Methods of Psychological Research Online,
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57:97–109.
Henriques, G., Keffer, S., Abrahamson, C., and Horst, S. J. (2011). Exploring the
effectiveness of a computer-based heart rate variability biofeedback program
in reducing anxiety in college students. Applied Psychophysiol Biofeedback,
Jacobson, N. S. and Truax, P. (1991). Clinical significance: A statistical approach
to defining meaningful change in psychotherapy research. Journal of Consulting
and Clinical Psychology, 59:12–19.
Jaynes, E. (1986). Bayesian methods: General background. In Justice, J., editor, Maximum-Entropy and Bayesian Methods in Applied Statistics. Cambridge
University Press, Cambridge.
Jaynes, E. (2003). Probability theory: the logic of science. Cambridge University
Press, Cambridge, UK.
Jeffreys, H. (1946). An invariant form for the prior probability in estimation
problems. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 186(1007):453–461.
Jeffreys, H. (1961). Theory of Probability (3rd Edition). Oxford University Press,
New York.
Johnson, V. E. (2013). Revised standards for statistical evidence. Proceedings of
the National Academy of Sciences, 110:19313–19317.
Jones, W. P. (2003). Single-case time series with bayesian analysis: A practioner’s
guide. Measurement and Evaluation in Counseling and Development, 36:28 –
Kinugasa, T., Cerin, E., and Hooper, S. (2004). Single-subject research designs
and data analyses for assessing elite athletes’ conditioning. Sports Medicine,
Lambert, M. J., Whipple, J. L., Hawkins, E. J., Vermeersch, D. A., Nielsen,
S. L., and Smart, D. W. (2003). Is it iime for clinicians to routinely track
patient outcome? a meta-analysis. Clinical Psychology: Science and Practice,
Lee, P. M. (2004). Bayesian statistics: An introduction (3rd ed.). Wiley, New
Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures
of g-priors for Bayesian variable selection. Journal of the American Statistical
Association, 103:410–423.
Lindley, D. V. (1957). A statistical paradox. Biometrika, 44:187–192.
Loftus, G. R. (1996). Psychology will be a much better science when we change
the way we analyze data. Current directions in psychological science, 5:161–171.
Ma, H.-H. (2006). An alternative method for quantitative synthesis of singlesubject researchers. Behavior Modification, 30:598–617.
Maggin, D. M., Swaminathan, H., Rogers, H. J., O’Keeffe, B. V., Sugai, G.,
and Horner, R. H. (2011). A generalized least squares regression approach for
computing effect sizes in single-case research: application examples. Journal
of School Psychology, 49:301–321.
Manolov, R. and Solanas, A. (2009). Problems of the randomization test for ab
designs. Psicol´
ogica, 30:137–154.
Mastropieri, M. and Scruggs, T. (1985). Early intervention for socially withdrawn
children. The Journal of Special Education, 19:429–441.
Matyas, T. A. and Greenwood, K. M. (1997). Serial dependency in single-case
time series. In Franklin, R. D., Allison, D. B., and Gorman, B. S., editors,
Design and analysis of single-case research. Erlbaum, Mahwah, NJ.
McDowall, D., McCleary, R., Meidinger, E. E., and Hay, R. A. (1980). Interrupted
time series analysis. Number 21 in Quantitative applications in the social
sciences. Sage, Beverly Hills.
Morey, R. D. and de Vries, R. M. (2014). BayesSingleSub 0.6.2. Comprehensive
R Archive Network.
Morey, R. D., Romeijn, J.-W., and Rouder, J. N. (2013). The humble Bayesian:
model checking from a fully Bayesian perspective. British Journal of Mathematical and Statistical Psychology, 66:68–75.
Morey, R. D. and Rouder, J. N. (2011). Bayes factor approaches for testing
interval null hypotheses. Psychological Methods, 16:406–419.
Morey, R. D., Rouder, J. N., Pratte, M. S., and Speckman, P. L. (2011). Using
MCMC chain outputs to efficiently estimate Bayes factors. Journal of Mathematical Psychology, 55:368–378.
Morey, R. D. and Wagenmakers, E.-J. (submitted). Simple relation between
one-sided and two-sided Bayesian point-null hypothesis tests. Submitted.
Morgan, D. L. and Morgan, R. K. (2009). Single-case research methods for the
behavioral and health sciences. Sage, Los Angeles, CA [etc.].
Parker, R. I. and Brossart, D. F. (2003). Evaluating single-case research data: a
comparison of seven statistical methods. Behavior Therapy, 34:189–211.
Parker, R. I., Brossart, D. F., Vannest, K. J., Long, J. R., Garcia de Alba, R.,
Baugh, F. G., and Sullivan, J. R. (2005). Effect sizes in single case research:
How large is large? School Psychology Review, 34(1):116 – 132.
Parker, R. I. and Hagan-Burke, S. (2007). Median-based overlap analysis for
single case data. Behavior Modification, 31:919–936.
Parker, R. I., Hagan-Burke, S., and Vannest, K. (2007). Percentage of all nonoverlapping data (PAND): An alternative to PND. Journal of Special Education, 40:194–204.
Parker, R. I. and Vannest, K. (2009). An improved effect size for single-case
research: Nonoverlap of all pairs. Behavior Therapy, 40:357–367.
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling. In Proceedings of the 3rd International Workshop on
Distributed Statistical Computing.
Pollard, P. and Richardson, J. (1987). On the probability of making Type I
errors. Psychological Bulletin, 102:159–163.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, F. P. (1992). Numerical Recipes in C: The art of Scientific Computing. Cambridge University
Press, Cambridge, England, second edition edition.
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0.
Raftery, A. E. and Lewis, S. (1992). Comment: One long run with diagnostics:
Implementation strategies for markov chain monte carlo. Statistical Science,
Rasquin, S. M. C., Van De Sande, P., Praamstra, A. J., and Van Heugten, C. M.
(2009). Cognitive-behavioral intervention for depression after stroke: Five single case studies on effects and feasibility. Neuropsychological Rehabilitation,
Reichardt, C. S. and Gollob, H. F. (1997). When confidence intervals should be
used instead of statistical tests, and vice versa. In Harlow, L. L., Mulaik, S. A.,
and Steiger, J. H., editors, What if there were no significance tests?, pages
259–284. Lawrence Erlbaum Associates, Mahwah, New Jersey, USA.
Rindskopf, D. (2014). Nonlinear bayesian analysis for single case designs. Journal
of School Psychology, 52(2):179 – 189.
Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation structure,
blocking and parameterization for the Gibbs sampler. Journal of the Royal
Statistical Society, Series B, Methodological, 59:291–317.
Ross, S. M. (2002). Simulation. Academic Press, London, 3rd edition edition.
Rouder, J. N. and Lu, J. (2005). An introduction to Bayesian hierarchical models
with an application in the theory of signal detection. Psychonomic Bulletin and
Review, 12:573–604.
Rouder, J. N. and Morey, R. D. (2005). Relational and arelational confidence
intervals: A comment on Fidler et al. (2004). Psychological Science, 16:77–79.
Rouder, J. N., Morey, R. D., Verhagen, J., Province, J. M., and Wagenmakers,
E.-J. (submitted). The p < .05 rule and the hidden costs of the free lunch in
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., and Iverson, G. (2009).
Bayesian t-tests for accepting and rejecting the null hypothesis. Psychonomic
Bulletin and Review, 16:225–237.
Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. CRC Press, New
Schmidt, F. L. and Hunter, J. E. (1997). Eight common but false objections to
the discontinuation of significance testing in the analysis of research data. In
Harlow, L. L., Mulaik, S. A., and Steiger, J. H., editors, What if there were no
significance tests?, pages 37–64. Erlbaum, London.
Sellke, T., Bayarri, M. J., and Berger, J. O. (2001). Calibration of p values for
testing precise null hypotheses. American Statistician, 55:62–71.
Shadish, W., Rindskopf, D., and Hedges, L. (2008). The state of the science in
the meta-analysis of single-case experimental designs. Evidence-Based Communication Assessment and Intervention, 2:188–196.
Shadish, W. and Sullivan, K. (2011). Characteristics of single-case designs used
to assess intervention effects in 2008. Behavior Research Methods, 43(4):971 –
Sharpley, C. F. and Alavosius, M. P. (1988). Autocorrelation in behavioral data:
an alternative perspective. Behavioral Assessment, 10:243–251.
Simpson, S., Corney, R., Fitzgerald, P., and Beecham, J. (2003). A randomized controlled trial to evaluate the effectiveness and cost-effectiveness of psychodynamic counselling for general practice patients with chronic depression.
Psychological Medicine, 33(2):229–239.
Slade, M. (2002a). Routine outcome assessment in mental health services. Psychological Medicine, 32:1339–1343.
Slade, M. (2002b). What outcomes to measure in routine mental health services,
and how to assess them: a systematic review. Australian and New Zealand
Journal of Psychiatry, 36:743–753.
Solanas, A., Manolov, R., and Sierra, V. (2010). Lag-one autocorrelation in short
series: estimation and hypotheses testing. Psicol´
ogica, 31:357–381.
Stiles, W. B., Barkham, M., Twigg, E., Mellor-Clark, J., and Cooper, M.
(2006). Effectiveness of cognitive-behavioural, person-centred and psychodynamic therapies as practised in uk national health service settings. Psychological Medicine, 36(4):555–566.
Swaminathan, H., H.J., R., and Horner, R. (2014). An effect size measure and
bayesian analysis. Journal of School Psychology, 52(2):213 – 230.
Van Hees, S., Van der Vlist, P., and Mulder, N. (2011). Van Weten naar Meten:
ROM in de ggz [From Knowledge to Measurement: ROM in the ggz]. Amsterdam: Uitgeverij Boom.
Van Os, J., Kahn, R., Denys, D., Schoevers, R. A., Beekman, A. T. F.,
Hoogendijk, W. J. G., Van Hemert, A. M., Hodiamont, P. P. G., Scheepers,
F., Delespaul, P. A. E. G., and Leentjens, A. F. G. (2012). Rom: gedragsnorm
of dwangmaatregel? Tijdschrift voor Psychiatrie, 54:245 – 253.
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problem of p
values. Psychonomic Bulletin and Review, 14:779–804.
Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., and Iverson, G. (2008). Bayesian
versus frequentist inference. In Hoijtink, H., Klugkist, I., and Boelen, P., editors, Practical Bayesian Approaches to Testing Behavioral and Social Science
Hypotheses, pages 181–207, New York. Springer.
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., and Grasman, R. (2010).
Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey
method. Cognitive Psychology, 60:158–189.
Wellek, S. (2003). Testing Statistical Hypotheses of Equivalence. Chapman &
Hall/CRC, Boca Raton.
Wheat, A. and Larkin, K. (2010). Biofeedback of heart rate variability and related physiology: A critical review. Applied Psychophysiology and Biofeedback,
35(3):229 – 242.
Zellner, A. and Siow, A. (1980). Posterior odds ratios for selected regression
hypotheses. In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith,
A. F. M., editors, Bayesian Statistics: Proceedings of the First International
Meeting held in Valencia (Spain), pages 585–603. University of Valencia.
Zucker, D., Ruthazer, R., and Schmid, C. (2010). Individual (n-of-1) trials can be
combined to give population comparative treatment effect estimates: Methodologic considerations. Journal of Clinical Epidemiology, 63(12):1312 – 1323.