Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Polytech’Montpellier – MEA4 M2 EEA – Systèmes Microélectroniques Analog IC Design Building a DC Small-Signal Model of a CMOS Analog Circuit: a comprehensive guide Pascal Nouet – 2014/2015 - [email protected] http://www2.lirmm.fr/~nouet/homepage/lecture_ressources.html Objective / Content • Demystify the building of a low-frequency (dc) small-signal model for your CMOS analog circuit • A step by step straightforward approach • Pre-requisites – Good practice of solving electrical circuits (Node and Mesh laws) – Large- and small-signal models for MOST in stronginversion • Content – A comprehensive guide – A set of exercises • Next step – Solving small-signal circuits 1 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 From Norton (Current) Source to MOS transistor Practical Current Source ≠ Current supply Ideal Current supply Norton Source MOST DrainSource Current (Model) (e.g. "idc" within simulator) I I I I I V r0 V r0 V V I Norton V V Outline • Large- and small-signal models for MOST in strong-inversion – Overview of theoretical background – Experiments • DC Small-Signal Model of a CMOS Analog Circuit – Straightforward approach • Exercises – A basic Voltage source : determine Vdd dependency – A basic Current source : output resistance and Vdd dependency – A basic amplifier : voltage gain 2 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Large-signal model of the MOS transistor: saturation current, Idsat Ids I dsat = µnCox W 2 Veff = 3.6 µA 2 L Vgs = 0.6 V Value of µ.Cox ? NMOS W=10µm and L=2µm Veff = 100mV Vds (V) Small-signal model of the MOS transistor: transconductance, gm Ids Vgs = 0.61 V Vgs = 0.6 V 0.6 µA 0.6 µA Vgs = 0.59 V ∂I dsat W = µCox Veff = gm L ∂Vgs ⇒ gm = 2 ⋅ I dsat W = 2 µCox I dsat L Veff Vds (V) 3 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Small-signal model of the MOS transistor: output resistance, rds Ids I dsat = µnCox W 2 Veff = 3.6 µA 2 L I ds = I dsat !"1+ λn ( Vds -Veff )#$ Vgs = 0.6 V ΔIds / ΔVds = 0,145 µA/V ΔI ds λn = Veff = 100mV ΔVds ≅ 4.10 −2 V −1 I dsat Value of λ for this NMOST ? Vds (V) Pre-requisite summary • N-type MOS transistor SSM in strong inversion – 3 independent terminals d1 g1 g1 d1 gm1vgs1 T1 s1 g2, d2 s2 s3 s3 rds1 g3 gm3vgs3 T3 d3 rds3 g3 d3 – 2-terminal (diode-like) s4 1 gm2 T2 s2 – 3 independent terminals s1 – 2-terminal (diode-like) g2, d2 • P-type MOS transistor SSM in strong inversion g4, d4 1 gm 4 T4 g4, d4 s4 4 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Outline • Large- and small-signal models for MOST in strong-inversion – Overview of theoretical background – Experiments • DC Small-Signal Model of a CMOS Analog Circuit – Straightforward approach • Exercises – A basic Voltage source : determine Vdd dependency – A basic Current source : output resistance and Vdd dependency – A basic amplifier : voltage gain Characterization of a diodeconnected NMOS Transistor Ids (A) I dsat = µn Cox W Veff 2 2 L Vgs Vds & Vgs (V) 5 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Characterization of a diodeconnected NMOS Transistor Veff (V) 0.5 1 2 Idsat (µA) 171 647 2380 δIds/δVgs (mA/V) 0.709 1.28 2.23 µnCox (A/V2) 1.42e-4 1.28e-4 1.12e-4 µnCox (A/V2) 1.37e-4 1.29e-4 1.19e-4 gm = ∂I ds g W = µnCox Veff ⇒ µnCox = m W ∂Vgs L Veff L &W 2 # µnCox = 2 I dsat $ Veff ! " %L µn.Cox = 112 to 142 µA/V2 Characterization of a diodeconnected NMOS Transistor 45 40 35 Average : 126 µA/V2 µnCox (µA/V2) Standard-deviation : 24 µA/V2 30 25 20 15 10 5 0 6 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Characterization of rds (PMOS) 1.E+10 1.E+09 rds (Ω Ω) 1.E+08 1.E+07 1.E+06 1.E+05 1.E+04 1.00E-‐01 1.00E+00 1.00E+01 Idsat (µA) 1.00E+02 1.00E+03 Characterization of rds (PMOS) 1.E+10 y = 1.31E+07x-‐9.52E-‐01 R² = 9.91E-‐01 ⇒ rds ≅ 1.E+09 1,31.10 7 × L(m) I dsat ( A) rds (Ω Ω) 1.E+08 1.E+07 1.E+06 1.E+05 1.E+04 1.00E-‐03 1.00E-‐02 1.00E-‐01 1.00E+00 Idsat/L (A/m) 1.00E+01 1.00E+02 1.00E+03 7 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Characterization of λp [ ] I ds = I dsat 1 + λ (Vds − Veff ) avec λ = 13,1× L( µm) 76mV −1 ⇒ λp = I dsat ( A) L( µm) rds ≅ • Standard deviation • Fixed length design (e.g. L=10µm) è λ p = 7,65.10−3V −1 2 Leff k ds = 2ε 0ε r qN a rds modèle vs. rds mesure 1.E+10 1.E+09 rds (modèle, Ω ) ± 25% k ds Vds − Veff + Φ 0 1.E+08 1.E+07 y = 0.5026x1.0419 R² = 0.9915 1.E+06 1.E+05 1.E+04 1.E+04 1.E+05 1.E+06 1.E+07 rds (mesure, Ω ) 1.E+08 1.E+09 1.E+10 Lab #1: Technology characterization • BSIM3v3 models – – – – – /soft/DKits/Ams/HK_410/spectre/c35/cmos53.scs Identification of various models Analysis of ‘modn’ and ‘modp’ Find VTH0 (V), U0 (cm2/Vs) and Tox (m) Calculation of µ.Cox TOX = ? ε0 = 8.85e-12 F/m εr = 3.9 Cox = ε 0εr TOX • Calculation of µ.Cox and rds by MOST characterization 8 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Outline • Large- and small-signal models for MOST in strong-inversion – Overview of theoretical background – Experiments • DC Small-Signal Model of a CMOS Analog Circuit – Straightforward approach • Exercises – A basic Voltage source : determine Vdd dependency – A basic Current source : output resistance and Vdd dependency – A basic amplifier : voltage gain The step-by-step method • All the steps below will be easier and you will reduce the risk of error if you keep the initial circuit topography for your smallsignal model… • Step 1: identify your input i.e. the magnitude that will vary during your small-signal analysis and keep-it unaltered anytime • Step 2: replace I and V sources by their small-signal model • Step 3: replace each transistors by their small-signal model including labels for g, d, s • Step 4: add electrical connections as in your initial circuit • Step 5: identify all required vgs and eliminate related voltagecontrolled current sources when vgs=0 • Step 6: identify your output variable, eventually rearrange your circuit and solve the obtained circuit 9 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Outline • Large- and small-signal models for MOST in strong-inversion – Overview of theoretical background – Experiments • DC Small-Signal Model of a CMOS Analog Circuit – Straightforward approach • Exercises – A basic Voltage source : determine Vdd dependency – A basic Current source : output resistance and Vdd dependency – A basic amplifier : voltage gain Your first Analog Design Vdd=3.3V T8 T1 T2 V- T3 Vbias T9 T6 T5 Ids7 T7 V+ Ids11 T10 Vout1 T11 T16 Vout Cf T12 Ids13 T13 T4 Voltage Reference 10 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Homework & Lab • Homework – Design T1 to T4 for Vbias=0.6V and IT1=10µA – Derive a small-signal model of the circuit to determine sensitivity to Vdd of both Vbias and IT1 – Compute these sensitivities • Lab – Verify the biasing point using a ‘Operating Point’ simulation (both Vbias and IT1) – Verify the sensitivity to Vdd of the biasing point using a ‘DC’ simulation (both Vbias and IT1) Outline • Large- and small-signal models for MOST in strong-inversion – Overview of theoretical background – Experiments • DC Small-Signal Model of a CMOS Analog Circuit – Straightforward approach • Exercises – A basic Voltage source : determine Vdd dependency – A basic Current source : output resistance and Vdd dependency – A basic amplifier : voltage gain 11 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Your first Analog Design Vdd=3.3V T8 T1 T2 V- T9 T6 T5 T3 Vbias Ids7 T7 V+ Ids11 T10 Vout1 T11 T16 Vout Cf T12 Ids13 T13 T4 Voltage Reference Current Source Homework & Lab • Homework – Design T13 for IT13=50µA – Derive a small-signal model of the circuit to determine rout – Compute rout • Lab – Verify the biasing point using a ‘Operating Point’ simulation (IT13) – Verify the output resistance using a ‘DC’ simulation 12 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Outline • Large- and small-signal models for MOST in strong-inversion – Overview of theoretical background – Experiments • DC Small-Signal Model of a CMOS Analog Circuit – Straightforward approach • Exercises – A basic Voltage source : determine Vdd dependency – A basic Current source : output resistance and Vdd dependency – A basic amplifier : voltage gain Your first Analog Design Vdd=3.3V T8 T1 T2 V- T3 Vbias T9 T6 T5 Ids7 T7 V+ Ids11 T10 Vout1 T11 T16 Vout Cf T12 Ids13 T13 T4 Voltage Reference Current Source Common source voltage amplifier 13 Analog IC design - 2014/2015 - Chapter 2 19/09/2014 Homework & Lab • Homework – Derive a small-signal model of the circuit to determine the voltage gain – Compute the voltage gain – Design T10 for a voltage gain of 500 • Lab – Verify the voltage gain using a ‘DC’ simulation – Verify the voltage gain using a ‘AC’ simulation Références • D. Johns and K. Martin, "Analog Integrated Circuit Design", John Wiley & Sons, Inc. 1997, ISBN 0-471-14448-7 • P. Allen and D. Holberg, "CMOS Analog Circuit Design", 2nd Edition, 2002,Oxford University Press, ISBN 0-19-511644-5 • B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001, ISBN 0-07-238032-2 • P. Gray, P. Hurst, S. Lewis,and R.G. Meyer, “Analysis and Design of Analog Integrated Circuits”, 4th Edition, John Wiley and Sons, 2001, ISBN 0-471-32168-0 14
© Copyright 2024 ExpyDoc