経済数学 II 練習問題 1 解答 1 (2) y = 2 × 712 log10 (2 × 712 ) = log10 2 + 12 × log10 7 = 0.301 + 12 × 0.845 = 10.441 (1) 2−3 × 24 = 2−3+4 = 21 = 2 (2) (2 3 )3 = 2 3 ×3 = 22 = 4 2 (3) 8− 3 = (8− 3 )2 = ( 2 1 3 → 11 桁 1 1 )2 = ( )2 = 2 4 8 1 1 3 1 (4) 25 2 = (25 2 )3 = 53 = 125 2 5 (5) 36 ÷ 6 3 10 2 5 = (6 ) ÷ 6 2 3 10 4 4 5 =6 ÷6 3 10 3 4 1 A = 2x2 − 1 とおくと A dA 4x f ′ (x) = d exp dA dx = 2x2 −1 (6) log27 1 = 0 f ′ (x) = = −2 (9) log35 7 + log35 5 = log35 7 × 5 = log35 35 = 1 (10) log4 5 5 12 −log4 6 5 = log4 ( 12 × 65 ) = log4 1 2 = − 12 (11) log2 25 · log3 16 · log5 27 = log2 52 × log2 24 log2 3 = (2 × 4 × 3) × = 24 log2 33 log2 5 log2 2 log2 5 × log 23 × × log2 3 log2 5 = log 1 − log x2 = −2 log x (3) f (x) = (x2 − x + 1)(x − 1) →省略 5 平均経済成長率 4 (1) ( 528,991.90 530,528.40 ) − 1 = −0.0115 →マイナス 1.15% 1 5 (2) ( 530,528.40 505,383.50 ) − 1 = 0.0098 (12) 2 log2 6 − log2 9 = log2 2 1 x2 − x2 (2) f (x) = log (7) log3 27 = 3 1 4 指数関数・対数関数の微分 (1) f (x) = exp[2x2 − 1] = 6 5 − 10 = 6 2 (8) log2 ねずみ算 (1) y = 2 × 7x 指数・対数の計算 2 3 62 9 = log2 4 = 2 複利 (1) A(1 + r)n (2) (1 + 0.01)n = 2 log10 2 → n = log1.01 2 = log = 10 1.01 したがって,71 年。 (3) (1 + 0.05)n = 2 log10 2 → n = log1.05 2 = log = 10 1.05 したがって,15 年。 0.3010 0.0043 = 70.47 0.3010 0.0212 = 14.20 (4) (1.03)12 − 1 = 0.426 → 42.6% (5) (1 + r)15 = 2 1 → r = 2 15 − 1 = 0.0047 → 4.7% 1 (6) [(1 + 0.5) × (1 − 0.3)] 2 − 1 = 0.0247 → 2.47% → 0.98%
© Copyright 2025 ExpyDoc