C n n n n 10 NP 2 N (V, E*) n G = (V, E) E* = {{u,v} | u,v V, u ≠ v} Gc = (V, E* − E) G G N Gc 1 2 3 4 1 2 5 3 4 (Gc)c = G 5 N N vs n G = (V, E) V’ G V’ G G’ = (V’, E’) E’ = { {u, v} | u,v V’ ,{u, v} E } V V’ G G Gc V’ u,v V’ (u ≠ v ) {u, v} Gc u,v V’ (u ≠ v ) {u, v} 1 1 G G’ 2 4 44 5 7 5 7 V’ = {2,4,6,7,9} 4 3 4 7 2 2 3 3 1 2 5 7 8 8 9 6 9 8 9 6 9 6 N N G=(V, E) V’ 2 (a) V’ G (b) Gc V’ V n n n IndVerSet Gc G IndVerSet NP 9.8 Clique NP Clique ≤P IndVerSet n Clique 10.1 IndVerSet NP 6 N N G G=(V, E) G 1 2 2 4 3 4 3 5 7 8 V 5 7 (a) V’ G (b) Gc V’ (c) V − V’ G 8 9 6 9 e={u,v} V’ V’ 3 1 V−V’ u, v <G, 4> Ind erSet 6 e={u,v} u, v <G, 5> IndVerSet, Clique, VertexCover VertexCover N G=(V, E) I V={1,…,n} i V Si = { e E | e (a) I (b) {Si}i N i} G I E {Si}i V N N (1,2) (2,3) G S1 1 2 4 3 5 7 8 9 6 (1,2) (2,3) G (2,4) S2 (3,7) S3 (3,8) S4 (4,5) S5 (4,7) S6 (4,9) S7 (5,6) S8 (5,7) S9 E 1 2 4 3 8 9 6 e={u,v} E (5,9) I (7,8) (7,9) 5 7 I G u, v ⟺ {Si}i n n SetCover 9.9 I VertexCover NP VertexCover ≤P SetCover n NP S2 (3,7) S3 (3,8) S4 (4,5) S5 (4,7) S6 (4,9) S7 (5,6) S8 (5,7) S9 (5,9) (7,9) NP 10.2 SetCover (2,4) (7,8) E N n S1 N E N 3Sat N 3DM 10.3 3Sat 3Sat 3DM 3DM n 3Sat 3CNF φ = c1∧…∧cm n φ x1,…, xn n n n n 1 N X, Y, Z N W xi n 2m m 3 m ¬xi[1] m=4 xi[1] ai[2] ¬xi[2] ai[1] bi[1] bi[4] bi[2] bi[3] xi[2] xi[4] ¬xi[4] ai[4] xi[3] ai[3] ¬xi[3] ai[j] bi[j] N N ¬xi[1] m=4 xi[1] ai[2] ¬xi[2] ai[1] bi[1] bi[3] xi[2] xi[1] ai[2] ¬xi[2] ¬xi[4] bi[1] bi[3] xi[2] xi[4] bi[4] bi[2] ai[4] xi[3] ai[3] ai[1] xi[4] bi[4] bi[2] ¬xi[1] m=4 ¬xi[4] ai[4] xi[3] ai[3] ¬xi[3] ¬xi[3] N N n TiT = {(¬xi[j], ai[j], TiF = {(xi[j], Ti = xi[1], xi[2],…, xi[m] xi=1 ¬xi[1], ¬xi[2],…, ¬xi[m] xi=0 TiT ∪ TiF bi[j]) | 1≤j≤m} ai[j+1], bi[j]) | 1≤j≤m−1}∪{(xi[m], ai[1], bi[m])} N cj = u ∨ v ∨ w s1[j] s2[j] N (u, v, w 3 s1[j] s2[j] ) 3 3 3 u[j] v[j] s1[j] w[j] s2[j] N N n n 2mn Cj ={([j], s1[j], s2[j]) | ∈ cj} n ∪{(¬[j], s1[j], s2[j]) | ¬ ∈ cj} c=u v w c={u, v, w} m(n−1) n 3DM mn m N 3 N (xi[j], g1[k], g2[k]), (¬xi[j], g1[k], g2[k]) i, j, k (1≤i≤n, 1≤j≤m, 1≤k≤m(n−1)) x1[1] ¬x1[1] x1[2] ¬x1[2] n G ={ (xi[j], g1[k], g2[k]) | 1≤k≤m(n−1), 1≤i≤n, 1≤j≤m} {(¬xi[j], g1[k], g2[k]) | 1≤k≤m(n−1), 1≤i≤n, 1≤j≤m} xn[m] ¬xn[m] x1[1] g1[k], g2[k] g1[1] g2[1] g1[2] g2[2] g1[3] g2[3] 3 g1[m(n-1)] g2[m(n-1)] N 3Sat φ=c1∧…∧cm N 3DM X = ∪i,j {xi[j], ¬xi[j]} Y = ∪i,j {ai[j]}∪(∪j{s1[j]})∪(∪k{g1[k]}) Z = ∪i,j {bi[j]}∪(∪j{s2[j]})∪(∪k{g2[k]}) 3Sat 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ m(n−1) 3DM Gk ={ (xi[j], g1[k], g2[k]) | 1≤i≤n, 1≤j≤m} ∪{(¬xi[j], g1[k], g2[k]) | 1≤i≤n, 1≤j≤m} W = (∪iTi) ∪ (∪j Cj) ∪ (∪kGk) <X, Y, Z; W> W 3DM X×Y×Z 3CNF Ti = {(¬xi[j], ai[j], bi[j]) | 1≤j≤m} ∪{(xi[j], ai[j+1], bi[j]) | 1≤j≤m−1}∪{(xi[m], ai[1], bi[m])} Cj ={(x[j], s1[j], s2[j]) | x ∈ cj}∪{(¬x[j], s1[j], s2[j]) | ¬x ∈ cj} 3CNF 3Sat n n φ ⟺ <X, Y, Z; W> n N N ⟹ ⟸ φ n n n xi:=1 xi ¬xi[1], ¬xi[2],…, ¬xi[m] xi:=0 xi xi[1], xi[2],…, xi[m] φ n φ xi 1 ¬xi[1], ¬xi[2],…, ¬xi[m] 0 xi W n W n N 10.4 3DM 3DM N NP n 10.3 n 9.7 3CNF (x ∨ y ∨ z)∧(¬x ∨ ¬z ∨ ¬w)∧(¬y ∨ z ∨ w) NP n n φ NP 3DM n 1 X, Y, Z n n 3Sat ≤P 3DM 3Sat 9.5 NP 3DM NP N 3DM SubsetSum 10.5 3DM SubsetSum N 37 N 3DM N SubsetSum X×Y×Z n X={x1,…, xn}, Y={y1,…, yn}, Z={z1,…, zn} w =(xi, yj, zk) W X×Y×Z E(w) = a1…an b1…bn c1…cn ai=bj=ck n n=6 w = (x2, y4, z3) 0 1 0 0 X 0 E(w) 0 0 0 0 1 Y 0 0 0 0 1 0 Z 0 0 N N dn 3DM E(t) d- M ⊕ W={w1,…,wk} M ={u1,…,um} W dE(M) E(M) = E(u1) … E(um) ⊕ n n d d = |W| + 1 X×Y×Z n = |X| = |Y| = |Z| d = |W| + 1 E(wi) : wi E(wi) : E(wi) dS = {E(w1), …, E(wk)} t = (d3n−1)/(d−1) = d3n−1 + + d1 + d0 = |W| + 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 2 0 0 0 S, t N 3DM SubsetSum N SubsetSum SubsetSum NP 10.6 SubsetSum n NP n M ⟺ E(M) 1 n SubsetSum NP n 10.5 3DM ≤P SubsetSum n 10.4 3DM n 9.5 NP SubsetSum NP Sat 3Sat Cook-Levin NP Clique IndVertSet 3DM SubsetSum VertexCover SetCover
© Copyright 2024 ExpyDoc