n n Sat n 3Sat Information Science 11 Cook-Levin (Sat) φ n φ n φ 1 SAT={<φ> | φ ¬ (x∨y) ∨(z∧x∧¬z) (satisfiable) 0 1 } Sat Sat Sat NP SAT n Sat V=“ 1. c Clique V Sat <<φ>,c> φ IndVertSet c 2. Sat 3Sat Cook-Levin 3DM VertexCover SubsetSum φ 3. SetCover NP Sat Sat A NP n n N nk A A NTM Sat (k A Sat N w ) φ N w N w φ φ Sat Sat w N w w n N N n (nk+1)×(nk+4) # nk+1 $ q0 w1 □ w N □ □ N □ # # # # # # # # 1 nk+1 nk $ q0 w1 # # # # # # # nk+4 1 nk nk+4 # # Sat A Sat φ Sat n C=Q Γ {#} n Q i n φ N φ=φcell φstart φmove φaccept j cell[i, j] C cell[i, j] xi,j,s xi,j,s φ Sat n Γ n n A 1 cell[i,j]=s φstart φmove φaccept xi,j,s (1≤i≤nk+1, 1≤j≤nk+4, s∈C) 1 φcell 1 w 1 N N Sat A Sat φcell Sat n φcell 1 A 1 φstart n N % % ( % ( ' ϕ cell = ∧ ' ' ∨ xi, j,s * ∧ '' ∧ (¬xi, j,s ∨¬xi, j,t ) ** ) ' s,t∈C * 1≤i≤n k +1 ' & s∈C & s≠t ) 1≤ j≤n k +4 & φstart Sat φstart=x1,1,# ( * * * ) 1 w x1,2,$ x1,3,q0 x1,4,w1 x1,5,w2 x1,n+4,□ … … x1,n+3,wn x1,nk+3,□ x1,nk+4,# 1 C s t #$q0w1w2...wn□□...□# Sat A Sat φaccept Sat n φaccept A φmove Sat φmove n 2×3 n ϕ accept = ∨ k 1≤i≤n +1 1≤ j≤n k +4 xi, j,qaccept n N 2×3 N Sat A Sat φmove Sat A n n q1 q1 c de af g c de af g (q2, b, R) c c δ(q1, a) d d e q1 a e b q2 f f g g (q2, b, L) c de bf g c de bf g Sat Sat φmove Sat A n n {#} # # $ $ d e q1 a d q2 e b f f $ $ a a a, b, c Γ – {$} q1, q2 Q δ(q1, a)={(q1, b, R)}, Q a a φmove Sat n n Γ c c δ(q1, a) q2 q2 A φmove Sat δ(q1, b)={(q2, c, L), (q2, a, R)} b b a, b, c a a Γ−{$} b b c c a a b b # # NTM a q1 b a q1 b a a q1 q2 a c a a q2 a a b # $ a a b a b b b # $ a a b q2 c b b g g Sat A Sat φmove Sat A NTM n a b a a q1 b b q1 b a a a q1 a a q2 b q2 Sat φmove Sat n 1 n Sat A φmove Sat A φmove Sat N φmove= ((i,j) ) 1<i≤nk+1 1<j<nk+4 φcell a1 a2 a3 φstart φmove a4 a5 a6 (i,j) (xi−1,j−1,a1 a1,...,a6 xi−1,j,a2 xi−1,j+1,a3 xi,j−1,a4 w xi,j,a5 xi,j+1,a6) w N N φaccept φ φ = φcell φstart φmove φaccept Sat Sat φ φ φ ( |C| n (nk+1)×(nk+4) n |C| C n |C| n φcell n φstart O(n2k) 1 φmove O(n2k) O(n2k) O(n2k) φaccept n n O(n2k) N φ w n N φ φstart O(nk) w ) 3Sat 3Sat Sat 3Sat Cook-Levin NP Clique IndVertSet 3DM SubsetSum VertexCover ) SetCover 4 3Sat 3Sat 3Sat NP CNF n 3Sat NP n Sat 3CNF n 3Sat n CNF 3-CNF (a1 a2 m−3 m−2 Tseitin CNF (a1 3Sat a2 z1) (¬z1 a3 z2) (¬z2 a4 z3) … (¬zm-3 am-1 am) 3Sat CNF 3CNF CNF CNF n (a1 a2 a3 a2 x) CNF a4) n (x1 (a1 am) … (¬x a3 a4) (a1 a2 a3 a4 (a1 a2 x) (¬x a3 y) m=2 a5) m=3 (¬y a4 a5) y1) … (xm ym) (x1 y1) (x2 y2) (x1 x2) (x1 y2) (y1 x2) (x1 y1) (x2 y2) (x3 y3) 2m m (y1 y2) (x1 x2 x3) (x1 x2 y3) (x1 y2 x3) (x1 y2 y3) (y1 x2 x3) (y1 x2 y3) (y1 y2 x3) (y1 y2 y3) 3Sat 3Sat Tseitin Tseitin CNF n n CNF ¬x ((y z) a ¬ x b c d y Sat u a (a ⟷ b c) (b ⟷ ¬x) (c ⟷ d u) (d ⟷ y z) a (¬ a b c) (a ¬ b) (a ¬ c) (¬b ¬x) (b x) (¬ c d) (¬ c u) (c ¬ d ¬ u) (¬ d y z) (d ¬ y) (d ¬ z) z 3Sat Cook-Levin NP u) Clique IndVertSet 3DM SubsetSum VertexCover SetCover A, B n n x ⟷A B n x ⟷A B n x ⟷¬ A (x → A B) (¬ x → ¬ (A B)) (¬ x A B) (x (¬ A ¬ B)) (¬ x A B) (x ¬ A) (x ¬ B) (x → A B) (¬ x → ¬ (A B)) (¬ x (A B)) (x ¬ A ¬ B) (¬ x A) (¬ x B) (x ¬ A ¬ B) (x → ¬A) (¬ x → A) (¬x ¬A) (x A)
© Copyright 2025 ExpyDoc