C ! NP ! 7 ! NP Clique ! NP SubsetSum NP HamPath HamPath ={<G,s,t> | G s t } 2 ! (2 ) s t HamPath HamPath ! HamPath ={<G,s,t> | G s t HamPath } ! 2 ! (2 HamPath ! ) t s Composites={x | p,q>1 x=pq} V V A ! A={w | x ! G c } |w| ! (polynomial time ! ! A (verifier) V <w,c> x p verifier) c |w| A ! A (polynomially verifiable) (certificate) c ! w ! c A A (certificate) (proof) ! HamPath s t ! Composites NP 9 NP NP NP HamPath N1=“ NP <G,s,t> 1. G n 7.1 HamPath NP 7.2 Composites n {1,…,n} p1,...,pn 2. s=p1, t=pn NP 3. i=1,…,n−1 i 4. 11 (pi, pi+1) G ” 12 NP NP NP 7.3 L NTM NP L NP = kNTIME(n ! L NP ! V nk L DTM NTM N ! k) V N=“ n 1. nk 2. <w,c> L w c V 3. V ” 13 14 NP ! ! N N V=“ 1. c NTM L N nk V L <w,c> N c N 2. N ! N CLIQUE ” c |w|=n V nk V V N 15 NP NP Clique ! Clique = {<G, k> | G (clique) ! k k- NP 7.4 Clique NP Clique V Clique V=“ Clique <<G, k>, c> 1. c G k 2. G c 3. SUBSETSUM 19 k- }. NP NP SubsetSum SubsetSum SubsetSum 7.5 SubsetSum NP SubsetSum ={<S, t > | S t = Σx T x S T }. ! S={12, 1, 3, 8, 20, 50}, t=44 ! S={12, 1, 3, 8, 20, 50}, t=14 NP SubsetSum 7.5 V SubsetSum V=“ 1. c 2. c SubsetSum <<S, >, c> S t 3. 23 ! G=(VG, EG) H=(VH, EH) (isomorphic) φ: VG → VH {u,v} EG " {φ(u), φ(v)} EH ! Iso = {<G, H> | G H Iso NP }
© Copyright 2024 ExpyDoc