Decidable Languages Fall 2006 Costas Busch - RPI 1 Recall that: A language L is Turing-Acceptable if there is a Turing machine M that accepts L Also known as: Turing-Recognizable or Recursively-enumerable languages Fall 2006 Costas Busch - RPI 2 For any string w : w L M halts in an accept state w L M halts in a non-accept state or loops forever Fall 2006 Costas Busch - RPI 3 Definition: A language L is decidable if there is a Turing machine (decider) which accepts L and halts on every input string M Also known as recursive languages Fall 2006 Costas Busch - RPI 4 For any string w: w L M halts in an accept state w L M halts in a non-accept state Every decidable language is Turing-Acceptable Fall 2006 Costas Busch - RPI 5 Sometimes, it is convenient to have Turing machines with single accept and reject states qaccept qreject These are the only halting states That result to possible halting configurations Fall 2006 Costas Busch - RPI 6 We can convert any Turing machine to have single accept and reject states New machine Old machine qaccept x x ,R x x ,R x x,L x x ,R Multiple accept states Fall 2006 For each tape symbol x One accept state Costas Busch - RPI 7 Do the following for each possible halting state: New machine Old machine qi x x, R For each qi Multiple reject states Fall 2006 qreject For all tape symbols x not used for read in the other transitions of qi One reject state Costas Busch - RPI 8 For a decidable language Decider for L: L qaccept Input string qreject Decision On Halt: Accept Reject For each input string, the computation halts in the accept or reject state Fall 2006 Costas Busch - RPI 9 For a Turing-Acceptable language Turing Machine for L: L qaccept Input string qreject It is possible that for some input string the machine enters an infinite loop Fall 2006 Costas Busch - RPI 10 Problem: Is number x prime? Corresponding language: PRIMES {1, 2, 3, 5, 7, } We will show it is decidable Fall 2006 Costas Busch - RPI 11 Decider for PRIMES : On input number x : Divide x with all possible numbers between 2 and x If any of them divides x Then reject Else accept Fall 2006 Costas Busch - RPI 12 the decider for the language solves the corresponding problem Decider for PRIMES qaccept Input number x (Input string) is x prime? qreject Fall 2006 Costas Busch - RPI YES (Accept) NO (Reject) 13 Theorem: If a language L is decidable, then its complement L is decidable too Proof: Build a Turing machine M that accepts L and halts on every input string ( M is decider for Fall 2006 Costas Busch - RPI L ) 14 Transform accept state to reject and vice-versa M M qaccept qreject qreject qr qaccept qr qa qa Fall 2006 Costas Busch - RPI 15 Turing Machine On each input string w M do: 1. Let M be the decider for L 2. Run M If If with input string w M accepts then reject M rejects then accept Accepts L and halts on every input string Fall 2006 Costas Busch - RPI END OF PROOF 16 Undecidable Languages An undecidable language has no decider: each Turing machine that accepts L does not halt on some input string We will show that: There is a language which is Turing-Acceptable and undecidable Fall 2006 Costas Busch - RPI 17 We will prove that there is a language L: • is not Turing-acceptable (not accepted by any Turing Machine) • L L is Turing-acceptable the complement of a decidable language is decidable Therefore, Fall 2006 L is undecidable Costas Busch - RPI 18 Non Turing-Acceptable Turing-Acceptable L L Decidable Fall 2006 Costas Busch - RPI 19 A Language which is not Turing Acceptable Fall 2006 Costas Busch - RPI 20 Consider alphabet Strings of {a} {a } : a, aa, aaa, aaaa, 1 a a Fall 2006 2 a 3 Costas Busch - RPI a 4 21 Consider Turing Machines that accept languages over alphabet {a} They are countable: M1, M 2 , M 3 , M 4 , (There is an enumerator that generates them) Fall 2006 Costas Busch - RPI 22 Each machine accepts some language over {a} M1, M 2 , M 3 , M 4 , L( M1), L( M 2 ), L( M 3 ), L( M 4 ), Note that it is possible to have L( M i ) L( M j ) for i j Since, a language could be accepted by more than one Turing machine Fall 2006 Costas Busch - RPI 23 Example language accepted by M i L(M i ) {aa, aaaa, aaaaaa} L( M i ) {a , a , a } 2 4 6 Binary representation 1 2 a a L( M i ) 0 1 Fall 2006 a 3 0 4 a 1 0 a Costas Busch - RPI 5 a 6 1 a 7 0 24 Example of binary representations 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 Fall 2006 Costas Busch - RPI 3 a 4 25 Consider the language L {a : a L( M i )} i i L consists of the 1’s in the diagonal Fall 2006 Costas Busch - RPI 26 1 2 3 4 a a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 a a L {a , a ,} 3 Fall 2006 4 Costas Busch - RPI 27 Consider the language L L {a : a L( M i )} i i L {a : a L( M i )} i L Fall 2006 i consists of the 0’s in the diagonal Costas Busch - RPI 28 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 3 a 4 L {a , a ,} 1 Fall 2006 2 Costas Busch - RPI 29 Theorem: Language L is not Turing-Acceptable Proof: Assume for contradiction that L is Turing-Acceptable There must exist some machine that accepts L : L( M k ) L Fall 2006 Costas Busch - RPI Mk 30 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 Question: M k M1 ? Fall 2006 Costas Busch - RPI 3 a 4 L( M k ) L 31 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 3 a 4 1 Answer: Fall 2006 a L( M k ) M k M1 1 Costas Busch - RPI a L ( M1 ) 32 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 Question: M k M 2 ? Fall 2006 Costas Busch - RPI 3 a 4 L( M k ) L 33 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 3 a 4 2 Answer: Fall 2006 a L( M k ) Mk M2 2 Costas Busch - RPI a L( M 2 ) 34 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 Question: M k M 3 ? Fall 2006 Costas Busch - RPI 3 a 4 L( M k ) L 35 1 a a 2 a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 3 a 4 3 Answer: Fall 2006 a L( M k ) M k M3 3 Costas Busch - RPI a L( M 3 ) 36 Similarly: M k Mi Because either: i a L( M k ) i a L( M i ) the machine L Fall 2006 for any i a L( M k ) i or Mk a L( M i ) i cannot exist is not Turing-Acceptable Costas Busch - RPI End of Proof 37 Non Turing-Acceptable L Turing-Acceptable Decidable Fall 2006 Costas Busch - RPI 38 A Language which is Turing-Acceptable and Undecidable Fall 2006 Costas Busch - RPI 39 We will prove that the language i i L {a : a L( M i )} Is TuringAcceptable There is a Turing machine that accepts L Fall 2006 Undecidable Each machine that accepts L doesn’t halt on some input string Costas Busch - RPI 40 1 2 3 4 a a L ( M1 ) 0 1 0 1 L( M 2 ) 1 0 0 1 L( M 3 ) 0 1 1 1 L( M 4 ) 0 0 0 1 a a L {a , a ,} 3 Fall 2006 4 Costas Busch - RPI 41 Theorem: The language i i L {a : a L( M i )} Is Turing-Acceptable Proof: We will give a Turing Machine that accepts L Fall 2006 Costas Busch - RPI 42 Turing Machine that accepts For any input string L w • Compute i , for which • Find Turing machine wa i Mi (using the enumerator for Turing Machines) • Simulate • If Mi Mi on input a i accepts, then accept w End of Proof Fall 2006 Costas Busch - RPI 43 Observation: Turing-Acceptable i i L {a : a L( M i )} Not Turing-acceptable i i L {a : a L( M i )} (Thus, Fall 2006 L is undecidable) Costas Busch - RPI 44 Non Turing-Acceptable Turing-Acceptable L L Decidable L? Fall 2006 Costas Busch - RPI 45 Theorem: L {a : a L( M i )} i i is undecidable Proof: If L is decidable the complement of a decidable language is decidable Then L is decidable However, L is not Turing-Acceptable! Contradiction!!!! Fall 2006 Costas Busch - RPI 46 Not Turing-Acceptable Turing-Acceptable L L Decidable Fall 2006 Costas Busch - RPI 47 Turing acceptable languages and Enumerators Fall 2006 Costas Busch - RPI 48 We will prove: (weak result) • If a language is decidable then there is an enumerator for it (strong result) • A language is Turing-acceptable if and only if there is an enumerator for it Fall 2006 Costas Busch - RPI 49 Theorem: if a language L is decidable then there is an enumerator for it Proof: Let M be the decider for L Use M to build the enumerator for L Fall 2006 Costas Busch - RPI 50 ~ Let M be an enumerator that prints all strings from input alphabet in proper order Example: alphabet is Fall 2006 {a, b} a b aa ab ba (proper order) bb aaa aab ...... Costas Busch - RPI 51 Enumerator for Repeat: L ~ 1. M generates a string w 2. M checks if w L YES: print NO: ignore w to output w This part terminates, because L is decidable Fall 2006 Costas Busch - RPI 52 Enumerator for L ~ M Enumerates all strings of input alphabet Give me next string string wi M If M accepts wi then print wi to output output All strings of Generates all Strings in alphabet Fall 2006 Tests each string if it is accepted by Costas Busch - RPI L M 53 Example: L {b, ab, bb, aaa,....} ~ M w1 w2 w3 Fall 2006 a b aa ab ba bb aaa aab M Enumeration Output reject accept reject b accept ab reject accept accept bb aaa reject Costas Busch - RPI END OF PROOF 54 Theorem: if language L is Turing-Acceptable then there is an enumerator for it Proof: Let M be the Turing machine that accepts L Use M to build the enumerator for L Fall 2006 Costas Busch - RPI 55 Enumerator for L ~ M M Enumerates all strings of input alphabet in proper order Fall 2006 Costas Busch - RPI Accepts L 56 NAIVE APPROACH Enumerator for Repeat: L ~ generates a string w M M checks if w L YES: print NO: ignore Problem: If w L machine M Fall 2006 Costas Busch - RPI w to output w may loop forever 57 BETTER APPROACH ~ Generates first string w M 1 M executes first step on w1 ~ Generates second string w M 2 M executes first step on w2 second step on Fall 2006 Costas Busch - RPI w1 58 ~ Generates third string w M 3 M executes first step on w3 second step on w2 third step on w1 And so on............ Fall 2006 Costas Busch - RPI 59 String: Step in computation of string Fall 2006 w1 w2 w3 w4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 Costas Busch - RPI 60 If for any string wi machine M halts in an accepting state then print wi on the output End of Proof Fall 2006 Costas Busch - RPI 61 Theorem: If for language L there is an enumerator then L is Turing-Acceptable Proof: Using the enumerator for L we will build a Turing machine that accepts L Fall 2006 Costas Busch - RPI 62 Input Tape w Turing Machine that accepts Enumerator for L Fall 2006 w wi Give me the next string in the enumeration sequence L Compare If same, Accept and Halt Costas Busch - RPI 63 Turing machine that accepts For any input string L w Loop: • Using the enumerator of L , generate the next string of L • Compare generated string with w If same, accept and exit loop End of Proof Fall 2006 Costas Busch - RPI 64 By combining the last two theorems, we have proven: A language is Turing-Acceptable if and only if there is an enumerator for it Fall 2006 Costas Busch - RPI 65
© Copyright 2025 ExpyDoc