経済産業省委託 平成27年度二国間クレジット取得等インフラ整備調査事業(エネルギー 効率向上に関する国際パートナーシップ(GSEP鉄鋼WG)を活用した途 上国の技術支援ニーズ等に関する調査) 調査報告書 平成28年2月 デロイト トーマツ コンサルティング合同会社 目次 第 1 章. 1.1. 1.2. 1.3. 1.4. 1.5. 第 2 章. 2.1. 2.2. 第 3 章. 3.1. 3.2. 3.3. 第 4 章. 4.1. 4.2. 4.3. 第 5 章. 5.1. 第 6 章. 6.1. 6.2. 6.3. 本事業の背景と目的 .................................................................................................................... 2 本事業の背景 ............................................................................................................................... 2 本事業の目的 ............................................................................................................................... 3 調査結果 ....................................................................................................................................... 4 業務内容 ....................................................................................................................................... 4 業務スケジュールと進捗結果 ...................................................................................................... 4 GSEP 鉄鋼 WG の運営支援 ........................................................................................................ 6 GSEP 鉄鋼 WG の運営支援(概要) ............................................................................................... 6 GSEP 鉄鋼 WG の運営支援(詳細) ............................................................................................... 6 各国のエネルギー管理、必要とする省エネ技術等の情報の整理、編纂 .................................... 9 背景 .............................................................................................................................................. 9 業務内容 ..................................................................................................................................... 10 各国調査結果 ............................................................................................................................. 13 国際会議開催等支援各国のエネルギー管理、必要とする省エネ技術等の情報の整理 ............... 14 国際会議の開催検討の経緯 ....................................................................................................... 14 国際会合開催に向けた準備 ....................................................................................................... 14 会合当日 ..................................................................................................................................... 14 GSEP 鉄鋼 WG 以降の活動に向けた提案 ................................................................................ 26 今次 GSEP 鉄鋼 WG 開催後の活動........................................................................................... 26 Appendix ................................................................................................................................... 27 質問表に添付された省エネルギー技術リスト .......................................................................... 27 GSEP 鉄鋼 WG 各国への主な連絡・調整................................................................................. 29 略語表 ........................................................................................................................................ 30 図表目次 図 1: APP から GSEP への再編・以降 概念図 .............................................................................................. 3 図 2: 第 1 回 GSEP 鉄鋼 WG で合意されたアクションプランおよび第 2 回 GSEP 鉄鋼 WG で合意された GSEP 鉄鋼 WG の焦点 .............................................................................................................................. 9 図 3: 第 2 回 GSEP 鉄鋼 WG で合意された業務内容 .................................................................................... 10 表 表 表 表 1: 各国との調整内容および結果概要 .......................................................................................................... 7 2: 質問票回収結果 ..................................................................................................................................... 12 3: 各国の Booklet に対する原稿案指摘事項 ............................................................................................. 12 4: GSEP 鉄鋼 WG への参加組織・参加者一覧 .......................................................................................... 16 1 第1章. 本事業の背景と目的 1.1. 本事業の背景 わが国日本は、世界規模での気候変動問題の解決に向け、国連気候変動枠組条約における国際交渉への 参加等、多国間交渉の場を通じて世界的な枠組み・仕組みの構築に貢献している。また、二国間の枠組みを通 じて、日本の優れた環境・省エネ技術の普及等を進め、温室効果ガスの削減に貢献する仕組みとして「二国間 クレジット制度」を推進している。当該制度の普及には、産業分野ごとの環境・省エネ技術に関するニーズやポ テンシャルを二国間の枠組みで把握することのみならず、多国間の枠組みを活用していくことも効果的である。 このような背景から、日本は多国間の枠組みに積極的に関与しており、エネルギー効率向上に関する国際パー トナーシップ(Global Superior Energy Performance Partnership: GSEP)の活動への関与もその一環であ る。 GSEP は、官民主体パートナーシップのもと、省エネ・環境対応技術の開発・普及・移転および関連する技術 協力を通じて、エネルギー安全保障の確保および地球温暖化対策の推進を目的とする国際的な枠組みである。 また、主要国の官公庁主体と民間主体および国際機関が集い、特定分野のエネルギー・環境政策や技術等に ついて情報を共有し、議論をする貴重な場である。 GSEP は、2010 年 7 月のクリーンエネルギー大臣会合(Clean Energy Ministerial:CEM)において、そ の下のイニシアチブとして日米共同で提案し承認された。併せて、2010 年 9 月にパリで開催された国際省エ ネ協力パートナーシップ(International Partnership for Energy Efficiency Cooperation:IPEEC)執行委 員会において、その下に GSEP を位置付けることが承認された。また、2011 年のクリーン開発と気候に関する アジア太平洋パートナーシップ(Asia-Pacific Partnership on Clean Development and Climate:APP)の終 了を受け、APP の成果と事業内容を引き継いでいる。 APP は 2005 年 7 月に設立され、アジア太平洋地域において増大するエネルギー需要に対応するとともに、 環境汚染、エネルギー安全保障、気候変動問題への対処に資する活動を趣旨とし、日本、豪州、カナダ、中国、 インド、韓国、米国の参加により、官民主体パートナーシップを築いていた。APP では、よりクリーンで効率的な 技術の開発・普及・移転のための地域協力を推進するべく、①アルミニウム、②セメント、③石炭鉱業、④再生可 能エネルギーと分散型電源、⑤建物および電気機器、⑥クリーンな化石エネルギー、⑦発送電、⑧鉄鋼の 8 つ のタスクフォース(Task Force: TF)を設置し、協力を進めてきた。その後、2011 年 4 月に開催された APP 第 9 回政策実施委員会において、事務局を務めてきた米国国務省の予算上の制約等の理由により APP の作業 終了が合意され、同時に、鉄鋼、セメント、発送電の 3TF を、GSEP に引き継ぐことが説明された。加えて、エ ネルギーマネジメント作業部会(Working Group: WG)(米国主導)、熱電併給・地域熱供給 WG(フィンランド主 導)、クールルーフ・舗装 WG(米国主導)の 3WG も発足し、GSEP は 6 つの WG を有する形で、CEM と IPEEC の下でその取組みを正式に開始した。 日本は、産業分野ごとの取組みとして、GSEP のセクター別ワーキンググループ(WG)(セメント WG、電力 WG、鉄鋼 WG)を議長国として主導している。 2 出所: 経済産業省、エネルギー効率向上に関する国際パートナーシップ(GSEP)の目的と概要 図 1: APP から GSEP への再編・以降 概念図 2011 年、GSEP は 9 月に米国でワークショップを開催した。GSEP 発足後の最初の会合であり、APP の 各 TF の活動を GSEP に引き継ぐことを含め、今後の活動継続への期待が各参加者から表明された。 2012 年 3 月には東京で GSEP 第1回セクター別 WG を開催し、各 WG の運営方針や各セクターにおける 行動計画を策定した。この結果行動計画としては、省エネや低炭素化のための技術・製品の開発・普及・移転、 排出削減効果の評価等の活動を開始することが合意された。 当該合意に基づき、GSEP 鉄鋼 WG は、2014 年 2 月に GSEP エネルギー管理 WG(議長:米国)と協力し、 インド、中国、韓国、米国の官民主体メンバー参加のもと、エネルギー管理等に関するセミナーを東京で開催し た。また、同年 9 月には上記メンバーに欧州、国際エネルギー機関(International Energy Agency: IEA)も加 わり、第 2 回会合をパリで開催した。第 2 回会合では、各国のエネルギー管理、必要とする省エネ技術情報等 を Booklet に編纂すること、また第 3 回会合においては同 Booklet に基づき議論を行うことが、アクションプラ ンとして合意された。これらを受けて、今回、第 3 回会合を開催する運びとなった。 1.2. 本事業の目的 GSEP 鉄鋼 WG の活動支援を通じ、多国間の枠組みにおける日本の鉄鋼分野の低炭素技術およびエネル ギー管理手法に関する知見の共有、普及、移転を促進することを本事業の目的としている。特に、GSEP 鉄鋼 WG では議長国である日本が主導的な役割を担うことが期待され、また日本としても、二国間クレジット制度推 進や当該分野における国際的な貢献・活躍のため、その役割を最大限に活用することを狙いとした。 3 1.3. 調査結果 GSEP 鉄鋼 WG は主要国の官公庁主体、民間主体および国際機関が集い、特定分野のエネルギー・環 境政策や技術等について情報を共有し、また議論をする国際的な場である。左記の場において、日本は 議長国としてメンバー国を取りまとめ、有意義な WG とするべく尽力した。一方で、2015 年に開催さ れた CEM 会合にて、GSEP 傘下の WG は、イニシアチブへ格上げもしくは解散、の選択肢が与えら れ、決断を求められた。これを受け、GSEP 鉄鋼 WG の議長国であるわが国は、本 WG を 2015 年度を もって解散することとした。よって、今次会合を GSEP 鉄鋼 WG の最終会合とし、メンバー国の理解 を得て、円滑な終了を実現することとなった。 1.4. 業務内容 本事業の目的を遂行するにあたり、実施した業務は以下のとおりである。 (1) 鉄鋼 WG の運営支援 鉄鋼 WG の運営支援を行うサポート体制を構築し、鉄鋼 WG の事務局業務を実施した。具体的に は、①鉄鋼 WG 議長の支援(WG での議論に必要な調査や資料作成、各国への協議、議論の補助等)、 ②鉄鋼 WG メンバー国や関係機関との連絡・調整、③鉄鋼 WG 国内関係者による打合せへの参加・補 助等、であり、経済産業省地球環境対策室および鉄鋼 WG の担当課である製鉄企画室の指示に従い実 施した。詳細については、第 2 章を参照のこと。 (2) 各国のエネルギー管理、必要とする省エネ技術等の情報の整理、編纂 昨年 9 月に行われた GSEP 鉄鋼 WG 会合では、参加各国(米国、欧州連合(European Union: EU)、 中国、韓国、インド、日本)のエネルギー管理、および、企業等に必要とされる省エネ技術等に関する 情報を取りまとめて Booklet を作成し、その情報を基に次回会合で議論を行うことが合意された。詳 細については、第 3 章を参照されたい。また、今次会合をもって GSEP 鉄鋼 WG を終了する運びとな ったことを受け、このたび作成した Booklet を最終成果物とすることとなった。 なお、Booklet 作成にあたり上記各国からの情報収集、Booklet の編纂に関する業務を実施した。 Booklet は、上記 6 か国の官民主体から収集した各国のエネルギー管理手法および必要とする省エネ 技術等を国別に取りまとめたものであり、内容については今次 GSEP 鉄鋼 WG 会合で議論した。内容 の詳細については、資料(Booklet for Iron and Steel Industry – Action on Energy Saving and Climate Change)を参照のこと。 (3) 国際会議開催等支援 第 3 回および最後の GSEP 鉄鋼 WG を 2016 年 2 月 3 日(水)、霞が関・経済産業省に於いて開催し た。開催にあたり、事前準備、当日運営、および事後フォローの一連について支援を行った。詳細は、 第 4 章を参照のこと。 1.5. 業務スケジュールと進捗結果 当初、Innovation for Cool Earth Forum (ICEF)(経済産業省主管)の開催とあわせて 2015 年 10 月 8 日 (木)に都内で開催予定であったところ、主要国の不参加が確実となったことを受け、延期する運びとなった。延 期の背景については、第 4 章を参照されたい。 その後、各国との調整を経て 2016 年 2 月 3 日(水)に第 3 回会合を開催することが確定され、開催に向けて、 会合参加と Booklet 作成に向けた調整を行った。各国との調整の詳細については、第 2 章、第 4 章、および 4 Appendix を参照のこと。 なお、Booklet 作成については、主に以下の手順で進められた。 2014 年 ※昨年度事業中 11 月 各国から情報を得るべく、日本が質問票を作成。各国へ送付・回答を依頼。 2015 年 ~11 月 質問状への回答・返送を依頼 11、12 月 各国から得た質問票への回答等をふまえ、日本が文献調査を実施し、ドラフト原稿を作成 12 月 ドラフト原稿の内容について、各国官公庁主体・民間主体に確認を依頼 2016 年 1月 各国からドラフト原稿内容の確認結果返信・返信内容に基づきドラフト原稿を修正 1月 29 日、校了・完成 5 第2章. GSEP 鉄鋼 WG の運営支援 2.1. GSEP 鉄鋼 WG の運営支援(概要) GSEP 鉄鋼 WG の運営支援にあたり、支援体制を構築し、鉄鋼 WG の事務局業務を実施した。今回 は、事業実施中の 2015 年 3 月の CEM 準備会議において、2015 年度をもって GSEP 鉄鋼 WG が終了 することが方向づけられたため、円滑な終了に向けた作業も求められた。 事務局業務として、具体的には、(1)鉄鋼 WG 議長の支援(WG での議論に必要な調査や資料作成、各 国への協議、議論の補助等)、(2)鉄鋼 WG メンバー国や関係機関との連絡・調整、および(3)鉄鋼 WG 国 内関係者による打合せへの参加・補助等について、地球環境対策室と鉄鋼 WG の担当課である製鉄企画 室の指示に従い、実施した。 2.2. GSEP 鉄鋼 WG の運営支援(詳細) (1) 鉄鋼 WG 議長の支援 議長国である日本は、今次 WG の運営および会合の実施を主導する役割にある。この役割のもと議長が行 う以下の活動に対する支援を行った。 (a). 前回会合の合意に基づく Booklet の作成 先述の通り、第 3 回 GSEP 鉄鋼 WG においては、各国のエネルギー管理形態や必要とされる省エネ 技術情報等を編纂した Booklet に基づき協議を行うことが、アクションプランとして合意されていたため、 今年度は本 Booklet の編纂・取りまとめの支援を行った。また、第 3 回会合にて議長が Booklet を紹介 するための説明資料作成支援を行った。Booklet 作成業務の詳細は第 3 章を参照のこと。 (b). 第 3 回 GSEP 鉄鋼 WG の開催支援 第 3 回会合の開催に向けて、会合目的に沿った議事次第の作成・変更、開催における運営側・参加 側の関係各者との調整、WG 会合等における日本側からの発信内容の整理、会合当日の議事進行支 援等を行った。 (c). 第 3 回 GSEP 鉄鋼 WG における各国との協議および議論の補助 前述の通り、2015 年 3 月の CEM 準備会合の結果を受け、今次会合では GSEP 鉄鋼 WG の円滑 な終了を報告し取りまとめることが求められた。これらについて、本会合の最後に本 WG メンバー国に対 して行う発表原稿原案について作成支援を行い、会合当日には内容を踏まえた修正対応の準備を行 うなど、円滑な終了に向けた会合運営の補助を行った。 (2) 鉄鋼 WG メンバー国や関係機関との連絡・調整 会合開催にあたり、可能な限り全メンバー国の参加を得ることを目指し、主に E メールおよび電話にて、各メ ンバー国関係者と調整を行った。連絡・調整内容は主に Booklet 作成および会合開催に向けたものである。 (a). Booklet 作成に係る主な調整項目 質問状の作成・送信・回収を通じた各国からの情報収集 Booklet 原稿案の作成および内容確認依頼・確認後の内容確認 ※本調整内容については第 3 章を参照のこと 6 (b). 会合開催に係る主な調整項目 開催案内および出欠確認 宿泊・フライト調整・手配・連絡、ビザ申請書類準備(中国およびインド) プレゼンテーションに係る調整、等 各国とは特に、会合開催が 2 月 3 日に確定した時期、すなわち 2015 年 12 月から特に密な連携を図っ た。主な調整内容は以下の表 1 および Appendix を参照のこと。 質問 票配 布国 インド 韓国 中国 米国 EU 官/ 民 参 加 官 ○ • • 民 ○ • 官 ○ • 民 ○ • 官 × • 民 ○ • 官 ○ • 米国エネルギー省(United States Department of Energy: US-DOE)の前回鉄鋼 WG 会合出 席者に案内をしたところ、欠席の返事を得た。同組織の別担当者または日本国内の関連組織から の参加を再三にわたり依頼したが、結局は不参加となった。 民 ― • 本鉄鋼 WG への活発な活動がないことから、今次会合への案内は見送った。 官 × • 民 × • 欧州委員会(European Commission: EC)の前回鉄鋼 WG 会合出席者に案内をしたところ、欠席 の返事を得た。同組織の別担当者を紹介いただき、あらためて案内および出席を依頼した。検討い ただいたが、結局は不参加となった。日本国内の関連組織からの参加についても依頼したが、参加 は得られなかった。 欧州鉄鋼協会(The European Steel Association: Eurofer)の前回鉄鋼 WG 会合出席者に案内 をしたところ、欠席の返事を得た。同組織の別担当者または日本国内の関連組織からの参加を再三 にわたり依頼したが、結局は不参加となった。 調整結果概要 E メールや電話による密な連携により、インド鉄鋼省からバートワール局長含め 2 名の参加を得た。 電力省・エネルギー効率局(Bureau of Energy Efficiency: BEE, Ministry of Power: MOP)へ も参加を依頼し、参加に向けて調整いただいたが、参加は得られなかった。 E メールによる密な連携により、国営インド鉄鋼公社(Steel Authority of India. Ltd: SAIL)、イン ド国営ラシュトリヤ・イスパット・ニガム社(Rashtriya Ispat Nigam Limited: RINL)、Tata Steel Limited 含め、6 社から 7 名の参加を得た。 E メールや電話による密な連携により、Korea Energy Agency (KEA)から 1 名の参加を得た。 E メールや電話による密な連携により、POSCO Research Institute (POSRI)から 1 名の参加を 得た。 中国国家気候変動戦略研究・国際協力センター(National Center for Climate Change Strategy and International Cooperation: NCSC)から 1 名の参加を予定していたが、会合開催 直前に、参加予定者の都合により参加がキャンセルされた。急きょ日本国内の関連組織からの参加 についても依頼したが、結局は不参加となった。 E メールや電話による密な連携により、China Iron and Steel Association (CISA)から 1 名の参 加を得た。 表 1: 各国との調整内容および結果概要 Booklet 作成のスケジュールや調整については、第 3 章および Appendix を参照のこと。 関係国との連携により、当初の意図を満たした内容の Booklet を完成させることができたとともに、今次鉄 鋼 WG 会合へ、インド(官・民)、中国(民)、韓国(官・民)、日本(官・民)、からの参加を得た。また IEA へも開 催を案内し、1 名の参加を得た。 なお、中国官公庁主体については、NCSC からの参加表明を受けて、日本側としても準備を進めていた が、会合開催直前に先方都合によりキャンセルとなった。急きょ、日本国内の関連機関からの派遣を依頼し たが手配ができず、結局、中国の官公庁主体からは不参加となった。また、欧州および米国からも参加者が 得られなかった。代理出席を含めて参加を依頼をしたが、結局は不参加となった。 (3) 鉄鋼 WG 国内関係者による打ち合わせへの参加補助等 日本鉄鋼連盟が主催する地球温暖化対策タスクフォース・国際環境戦略委員会に参加し、GSEP 鉄鋼 7 WG の運営や第 3 回会合開催に向けた準備状況の相談・報告を行った。会合開催案内先やアジェンダにつ いて相談するとともに、各国との調整状況や当日運営等について報告した。また Booklet の作成手順や構成 についての相談や報告等も行った。 上記他、GSEP 鉄鋼 WG の運営および会合開催にあたり、関係者間の協議の場を設けた。 8 第3章. 各国のエネルギー管理、必要とする省エネ技術等の情報の整理、編纂 3.1. 背景 GSEP 鉄鋼 WG 会合は、今次会合を含めて 3 回開催された。2012 年 3 月 12 日に東京にて開催され た第 1 回 GSEP 鉄鋼 WG 会合には、韓国、豪州、中国、日本、米国他が参加し、図 2 左の通り、アク ションプランが合意された後、2014 年 9 月 12 日フランス・パリで開催された第 2 回 GSEP 鉄鋼 WG 会合にて、参加各国(EU、インド、韓国、中国、日本、米国)により改めてアクションプランが見直された。こ の結果、アクションプランが 2 項目に集約され、GSEP 鉄鋼 WG 会合は「最新情報を共有する場」と し、導入後の便益や導入に伴う課題など最新の省エネルギー・環境技術の情報共有と、エネルギー管理 に係る政策や関連活動の情報共有を行うこととした。 第1回GSEP鉄鋼WGで合意されたアクションプラン 1 2 第2回GSEP鉄鋼WGで合意された GSEP鉄鋼WGの焦点 エネルギーマネジメント • エネルギーマネジメントシステム • 省エネのキャパビルと改善 アクションプラン 2&4 「技術」 導入後の便益や導入に 伴う障害など最新の省エ ネルギー・環境技術の情 報共有 SOACT ハンドブック“改良版” • コスト・収益に関する一層の情報 • 技術の追加 3 技術普及 4 ブレークスルー研究開発 5 政策提言・広報 • バリア分析 • 解決策のための限界削減費用のカーブ • 長期的ビジョン • ブレークスルー技術の情報シェア (技術ハンドブック) • 技術普及のために適切な国内外の政策 • 広報 省エネ型社会へのご提案 アクションプラン 1&5 「エネルギー管理政策」 エネルギー管理に係る 政策や関連活動の情報 共有 出所: DTC 作成 図 2: 第 1 回 GSEP 鉄鋼 WG で合意されたアクションプランおよび第 2 回 GSEP 鉄鋼 WG で合意された GSEP 鉄鋼 WG の焦点 上記に示した合意結果を受けて、第 3 回 GSEP 鉄鋼 WG ではまず現状把握として、各国のエネルギ ー管理に係る政策や関連活動の最新動向、および実行する上での課題、また省エネルギー・環境技術の 導入状況や導入ニーズに関して共有することとなった。 更に、これを実現するためのアプローチとして、参加国間で以下の 3 業務を実行することが合意され た。 (1) STEP1:準備 (2) STEP2:Booklet の編纂 (3) STEP3:GSEP における協議 9 STEP1: 準備 STEP2: Bookletの編纂 STEP3: GSEPにおける協議 上記ニーズや課題を纏めた Bookletを作成する。 各国の技術やエネルギー管理に関 するニーズや課題等に関してメン バー国に質問票を送付し、事務局 が回収する。 質問票 必要な技術 Booklet for Iron and Steel Industry アクションプラン 2&4 「技術」 第3回GSEP鉄鋼WGでは、 各国よりBookletの内容に関 するプレゼンを行う。 各国の技術やエネルギー管 理システムの課題について 議論する。 エネルギー管理 アクションプラン 1&5 「エネルギー管理政策」 A AP C P D C GSEP鉄鋼WGへのコメント 議論が必要な課題 2015 GSEP Steel WG 出所: DTC 作成 図 3: 第 2 回 GSEP 鉄鋼 WG で合意された業務内容 各業務内容の詳細は 3.2 を参照のこと。 3.2. 業務内容 (1) STEP 1: 準備 まず各国のエネルギー管理手法および必要とする省エネ技術等の情報を得るため、EU、インド、韓国、中 国、日本、米国の官民主体に対するアンケート調査が行われた。具体的には質問票を用いて、以下の内容が 調査された。 【官公庁主体に対する主な質問事項】 鉄鋼産業のエネルギー管理に関する政策および施策動向 技術導入、技術開発、エネルギー管理に関する課題や他国支援の必要性 GSEP 鉄鋼 WG に対する期待およびコメント 【民間主体に対する質問事項】 省エネルギー・環境技術導入に関する現状と将来ニーズ 製鉄所のエネルギー管理の現状と課題 GSEP 鉄鋼 WG に対する期待およびコメント 質問票の回収結果は以下の通り。 質問票配布国 EU 官/民 回収 官 民 × × 回答内容概要 N/A N/A 10 質問票配布国 インド 韓国 中国 日本 官/民 回収 官 ○ 民 ○ 官 ○ 民 ○ 官 ○ 民 ○ 民 ○ 回答内容概要 • インド鉄鋼産業のエネルギー管理に関わる政策や事業として、インド、省エ ネ達成認証スキーム(Perform Achieve and Trade: PAT)スキームや独 立行政法人新エネルギー・産業技術総合開発機構(New Energy and Industrial Technology Development Organization: NEDO)国際技 術・システム実証事業等が説明された。 • インドの製鉄所のエネルギー消費量が他国より多い理由として、技術導入 不足と経済規模の欠如等の課題が挙げられた。これを受けて、政府が製 鉄所の技術近代化、研究開発投資、エネルギー・CO2 排出削減を継続的 に促進していることが言及された。 • GSEP 鉄鋼 WG への期待として、先進国・開発途上国間で、最新鉄鋼生 産技術情報を継続的に共有すること等が挙げられた。 民間企業 1 社より質問票の回答が得られた: • 既に導入、使用されている省エネルギー技術として、焼結機点火炉用高効 率バーナー等が挙げられた。 • 資金面、管理面の課題等が挙げられた。 • 当該企業が報告を慣行しているエネルギー管理に係る施策として、PAT スキーム等が挙げられた。 • GSEP 鉄鋼 WG への期待として、低品質原料のエネルギー消費に対する 悪影響を最低限に抑えるベストプラクティスや技術を共有すること等が挙げ られた。 • 韓国鉄鋼産業のエネルギー管理に関わる政策として、温室効果ガス排出 量取引制度等が挙げられた。 • GSEP 鉄鋼 WG への期待として、官民主体のパートナーシップという GSEP 鉄鋼 WG の主要原則を保つこと等が挙げられた。 • 韓国鉄鋼産業では、質問票に記載されていた省エネルギー技術 (Appendix 参照)のほとんどが既に導入、使用されていることが述べられ た。 • 幾つかの技術については技術面や資金面での課題により、導入されてい ないことが述べられた。 • 韓国鉄鋼産業の環境に優しい産業構造への移行推進を目的とした法とし て、エネルギーの使用の合理化に関する法律等が挙げられた。 • 中国鉄鋼産業のエネルギー管理に関わる政策として、China's Policy and Action to Address Climate Change 等が挙げられた。 • エネルギー管理政策の課題として、高レベルの省エネルギー・温室効果ガ ス排出削減技術の欠如等が挙げられた。 • GSEP 鉄鋼 WG への期待として、開発途上国の研究機関および企業の ための共同研究開発実現に向けた具体的な実施スキームや、鉄鋼企業の 設備改良のための資金援助スキームを提供することが挙げられた。 • 質問票に記載の各省エネルギー技術に対し、中国鉄鋼産業の主要 12 企 業全体での導入率および各企業のニーズ有無情報が提供された。 • 石炭大量消費産業として、中国鉄鋼産業のエネルギー消費量および石炭 消費量の管理が、エネルギー不足や大気汚染問題解決の要になるだけで なく、中国のエネルギー技術開発国家計画の施行においても重要な役割 を果たすことが言及され、産業構造の最良化等に取り組まなければならな い旨が述べられた。 • 既に国内に広く普及している省エネルギー技術として、コークス乾式消火 設備等が挙げられた。 • 質問票記載の技術以外に将来的に導入が期待される技術として Ferrocoke、技術開発プロジェクトとして COURSE50 が挙げられた。 • 日本鉄鋼産業の省エネルギー活動を促進する政策として、エネルギーの 使用の合理化等に関する法律と地球温暖化対策の推進に関する法律が 挙げられた。また、日本鉄鋼連盟として法的拘束力なく自主的に遂行して いる省エネルギーに向けた取組みとして、低炭素社会実行計画が説明さ れた。 • GSEP 鉄鋼 WG への期待として、メンバー国の積極的な参加のもと、各国 の政策や取り組みに関する情報交換が行われることが挙げられた。 11 質問票配布国 米国 官/民 回収 官 民 × × 回答内容概要 表 2: 質問票回収結果 (2) STEP 2: Booklet の編纂 上記 6 か国の官民主体から収集した質問票への回答結果を、国別に取りまとめた。ただし、一部の国につ いては質問票の回収状況が芳しくないことを受け、日本からの文献調査により情報の不足分を代替・補完の上、 各国 9~15 頁の原稿案を作成した。各国の官民主体へ原稿案内容の確認を依頼し、この結果を反映した。ま た、反映版資料の確認をもって、各国官民主体の内容に対する承認とした。各国による確認結果と主な指摘 事項は次の通り。 質問票配布国 EU インド 韓国 中国 日本 米国 官/民 回収 官 ○ 民 ○ 官 ○ 民 ○ 官 ○ 民 ○ 官 ○ 民 官 ○ ○ 民 ○ 官 民 × × 主な指摘事項(概要) • • • • • • • • • • • • • • • • • • • • • • • 既に記述のあった政策に対し、説明が加筆修正された。 政策・活動の追加、政策説明の加筆のために資料が提供された。 既に記述のあった政策に対し、説明が加筆修正された。 政策が追加された。 既に記述のあった政策に対し、説明が加筆修正された。 既に記述のあった活動に対し、情報が提供された。 既に記述のあった政策に対し、説明が加筆修正された。 記載していたクリーン開発メカニズム(Clean Development Mechanism: CDM)事業例が変更された。 適用されていない企業計画が削除された。 既に記述のあったアンケート結果に対し、情報が加筆修正された。 既に記述のあった政策に対し、説明が加筆修正された。 政策説明の加筆のために資料が提供された。 既に記述のあった活動に対し、説明が加筆修正された。 既に記述のあったアンケート結果に対し、情報が加筆修正された。 記載していた主要政策一覧図表に対し、幾つかの政策、声明の追加が提 案された。 既に記述のあった政策に対し、記載順序の変更が提案された。 既に記述のあった政策に対し、説明の追加が提案された。 既に記述のあった政策に対し、正確でない情報の削除が提案がされた。 既に記述のあった政策・活動に対し、説明が加筆修正された。 記載していた図表の配置が変更された。 既に記述のあった政策・活動に対し、説明が加筆修正された。 既に記述のあった政策に対し、記載順序の変更が提案された。 記載していた主要政策一覧図表の拡大を提案された。 表 3: 各国の Booklet に対する原稿案指摘事項 米国に関しては、前回の GSEP 鉄鋼 WG にて Booklet 作成については承認を受けていたが、質問票の 回答が得られなかった。日本が実施した文献調査を基に 11 頁の原稿案を作成し、内容の確認を依頼した。そ の後、再三に渡り確認内容・結果の返信を依頼したが、回答が得られなかった。原稿案の確認・承認が得られ なかったことを受けて、今次 Booklet から当該章は削除することとした。 (3) STEP 3: GSEP における協議 各国より承認が得られた原稿案に、日本により今次 Booklet 作成の背景等が追加され、合計 92 頁の 12 Booklet が完成した。Booklet は、製本・印刷の上、第 3 回 GSEP 鉄鋼 WG にて発表された。また、当日の 各国官民主体による発表は、原則として Booklet の内容に基づき行われた。発表内容の詳細は第 4 章を参 照のこと。 3.3. 各国調査結果 本事業を通じ GSEP 鉄鋼 WG の成果物として、平成 27 年度に経済産業省より、「Booklet for Iron and Steel Industry – Action on Energy Saving and Climate Change」が編纂、出版された。 13 第4章. 国際会議開催等支援各国のエネルギー管理、必要とする省エネ技術等の情報の整理 4.1. 国際会議の開催検討の経緯 当初、第 3 回 GSEP 鉄鋼 WG は、Innovation for Cool Earth Forum(ICEF)の開催とあわせ、10 月 8 日に開催の予定であった。ICEF とは、エネルギー・環境分野のイノベーションにより気候変動問題の 解決を図るため、世界の学界・産業界・政府関係者間の議論と協力を促進するための国際的なプラット フォームとなることを目的とするものであり、GSEP 鉄鋼 WG を ICEF とあわせて開催することで、両 会合間の相乗効果を見込んでいた。開催に向け、会場の確保・AV 機器等の備品準備、食事関連の準備、 参加者のフライト・宿泊手配等の国際会合開催等支援業務を進め、あわせて、各国官民主体参加メンバ ーへ出席確定の依頼を行っていた。しかしながら、同時期に鉄鋼に関する大規模な国際会議が開催され ることを受け、多くの鉄鋼関係者の参加が見込まれなくなったことから、GSEP 鉄鋼 WG を延期するこ とが決定された。 その後、GSEP 鉄鋼 WG メンバー各国との調整を経て、2016 年 2 月 3 日(水)を今次会合開催日と することが決定された。 4.2. 国際会合開催に向けた準備 会合開催に際しては、(1)会場設営、(2)参加者招請、(3)招聘者費用の負担および手続き、(4)資料作成・ 記録業務等の業務を行った。また、会合終了後は、参加各国からの問い合わせ等への対応業務を実施し た。 主な会合開催業務は以下のとおり: 各国メンバーあて招待レターの作成および案内に資する各種文案・資料作成 日本側からの発信内容整理 会合ラップアップ原稿等各種文章・スピーチおよび発表原稿ドラフトの作成 参加対象者のスケジュール調整 開催案内の発信および出欠確認 参加者の宿泊手配 会場設備手配 席次関連準備 会議資料準備 当日運営・進行支援 当日会合議事録の作成 また上記他、会合開催準備として、鉄鋼 WG 国内関係者との打ち合わせを複数回開催し、関係者への 準備状況説明等に務めるとともに、日本の官公庁主体・民間主体からの発信内容について調整を行った。 4.3. 会合当日 (1) 開催概要 本会合には、GSEP 主要参加国の官民主体が集い、編纂された Booklet を基に、参加者間での発表 および質疑応答が行われた。発表された内容としては、官公庁主体からは主にエネルギー管理政策の 最新動向と今後の見込みおよび課題について、民間主体からは主に省エネルギー・気候変動対策活動 と技術導入状況やニーズが発表された。 加えて、今次会合のまとめにあたり、今次会合をもって GSEP 鉄鋼 WG が終了することが日本から 14 言及され、今後は ICEF 等他会議や二カ国間交流を通して、参加国間の協力を続けることが確認され た。本年度の開催概要、官民主体の参加組織一覧、開催結果を以下に示す。 会合 GSEP Steel WG Meeting 実施日時 2016 年 2 月 3 日(水) 10:00-16:10 実施場所 経済産業省本館 17 階西 第一特別会議室 (2) 議事次第 Time Agenda Speaker 10:00-10:30 10:30-10:45 10:45-11:00 Registration Photo Session Opening Remarks 11:00-11:05 Booklet Introduction 11:05-12:10 Update of Energy Management Activities and the Achievement as GSEP Steel WG Part-1 Dr. Kozo Sakamoto, Chairman of Steel WG, Director of Iron and Steel Technology Office, Manufacturing Industries Bureau, METI-Japan Mr. Toshio Kosuge, Deputy Director, Iron and Steel Division, Manufacturing Industries Bureau, METI-Japan 1. IEA IEA’s latest analysis on the iron and steel sector and future project proposals Ms. Araceli Fernandez Pales, Senior Energy Technology Analyst, Energy Technology and Policy, International Energy Agency (IEA) 2. India Public- Energy management policy update Mr. Prabhat Kumar Nayak, General Manager (Energy & Utilities), Rashtria Ispat Nigam Limited (RINL) 3. China Private- Activities and technology needs 30 min 15 min 15 min 5 min 15 min 10 min Shri. Sunil Barthwal, Joint Secretary, Ministry of Steel (MoS), Government of India Mr. S.K. Bhatnagar, Deputy Industrial Adviser, Ministry of Steel (MoS), Government of India Private- Activities and technology needs Duration 10 min 15 min 15 min Mr. Dao Huang, Director, Development & Environmental Protection Department, China Iron and Steel Association (CISA) 12:10-12:25 12:25-12:35 12:35-14:05 14:05-14:15 14:15-15:15 QA Session Move to the Luncheon Venue Lunch Break Back to the Meeting Venue Update of Energy Management Activities and the Achievement as GSEP Steel WG Part-2 15 15 min 10 min 90 min 10 min Time Agenda Speaker 4 Korea Public- Energy management policy update Duration Mr. Seung-Ho Han, Senior Manager, Global Strategy Division, Korea Energy Agency (KEA, former KEMCO) 15 min Private- Activities and technology needs 15 min Dr. Yoon-Gih Ahn, Director, Management Research Center, POSCO Research Institute (POSRI) 5. Japan Public- Energy management policy update 15 min Mr. Toshio Kosuge, Deputy Director, Iron and Steel Division, Manufacturing Industries Bureau, METI-Japan Private- Activities and technology needs 15 min Dr. Kenichiro Fujimoto, General Manager, Head of Department Global Environmental Affairs Department Environment Division, Nippon Steel & Sumitomo Metal Corporation The Chair for International Environmental Strategic Committee, The Japan Iron and Steel Federation (JISF) 15:15-15:30 15:30-16:00 16:00-16:10 QA Session Coffee Break Wrap Up 16:10-16:20 16:20-18:00 Closing Remarks Move to the Reception Venue Reception Chairman: Dr. Kozo Sakamoto, Chairman of Steel WG, Director of Iron and Steel Technology Office, Manufacturing Industries Bureau, METI-Japan “Wrap up of GSEP Steel WG, and contents of the report to The Clean Energy Ministerial (CEM)” 15 min 30 min 10 min 10 min 100 min (3) 参加者 参加国 官 民 Ministry of Steel (Co-Chair) Rashtria Ispat (RINL)(国営)※ 韓国 Korea Energy Agency (KEA, former KEMCO) POSCO Research Institute 中国 欠席 China Iron and Steel Association (CISA) 日本 Korea Energy Management Corporation (KEMKO) POSCO Research Institute インド 国際機関 International Energy Agency (IEA) 表 4: GSEP 鉄鋼 WG への参加組織・参加者一覧 16 Nigam Limited ※インドに関しては、同時期に日印鉄鋼官民協力会合が開催されたため、Steel Authority of India (SAIL)(国営)、Tata Steel Limited、JSW Steel Limited、Essar Steel India Limited、Bhushan Steel Limited も聴講者として参加した。 (4) 協議内容 各国の発表に先んじて、Booklet 作成に係る支援への感謝および本冊子の作成背景、内容、および期 待される活用策について、小菅利男・経済産業省鉄鋼課製鉄企画室課長補佐から説明があった。 <Booklet 紹介の要旨> 2014 年 9 月 12 日に開催された前回の GSEP 鉄鋼 WG では、米国、EU、インド、中国、韓国、 日本、IEA から 30 名強が参加し、官民主体における最新動向、課題、技術ニーズについて、情報 の共有が行われた。 前会合では、最新の技術情報やエネルギー管理政策・活動に関する継続的な情報共有の重要性が 認識された。これらの情報を共有するため、まず現状動向や課題、ニーズ等を Booklet として取 りまとめることが同意された。 情報収集は、まず質問票への回答というアンケート形式で行われたが、この回答に加えて日本が 実施した各種調査結果に基づき Booklet の原稿案が作成された。 原稿案は各国により内容の確認がなされ、この結果に基づき加筆・修正が加えられた。なお、本 Booklet の完成にあたり、米国からは質問状への回答および日本の調査に基づくドラフト内容へ の確認も得られなかったことから、同国の章は含めないこととした。 本冊子は、GSEP 鉄鋼 WG メンバー間で各国の状況に資する情報を共有し、互いに学ぶことを趣 旨として作成された。今次会合において、本 Booklet に基づくプレゼンテーションがなされるこ とを期待する。また、鉄鋼 WG メンバー以外にも情報提供のために配布される可能性がある。 本会合では以降、作成された Booklet を基に、各国官民主体による発表が行われた。官公庁主体か らは主にエネルギー管理政策の最新情報と今後の鉄鋼産業成長の見込み、および想定される課題につ いて情報共有が行われた一方、民間主体からは当該国鉄鋼産業もしくは自社の、省エネルギー活動と 技術ニーズについての発表が行われ、この内容に対して参加者間の質疑応答・意見交換が行われた。 概要は以下の通り。 (a). インド ① スニル・バートワール・インド鉄鋼省局長 インド鉄鋼省のバートワール局長より、インドのエネルギー管理政策の方向性に関する説明が 行われた。 インドは、ベストプラクティスを共有し、グローバルエネルギー経済を促進するための国際 フォーラムである、CEM イニチアチブの加盟国である。インドは APP および GSEP 鉄鋼 WG における共同議長国としてこのパートナーシップを通し、多くの仕事がなされたと理解 している。今回、省エネルギーや気候変動についての Booklet が発行されたことを喜ばしく 思う。これはインド鉄鋼産業の役に立つであろう。 昨今のインド鉄鋼産業におけるエネルギー管理に関し、2 つの大きな変化があったと考える。 まず鉄鋼価格の世界的な劇的な低下である。過去 1、2 年の間にほぼ 40%の価格下落が見ら れ、これはインド企業の利益幅に多大な負荷をかけた。また、インドは各国が自主的に決定 17 する約束草案(Intended Nationally Determined Contributions: INDC)という温室効果ガス 排出削減公約を 2015 年 10 月 2 日に提出したことが挙げられる。本公約では、2030 年まで に国内総生産(Gross Domestic Product: GDP)比温室効果ガス排出を 2005 年比で 33-35%削 減し、発電における非化石燃料の使用を現在の 30%から 40%に増加させる目標を掲げてい る。これは製鉄所のエネルギー消費削減や廃ガス利用の増加なくしては成し遂げられない。 2015 年のインドの気候変動プログラムデータによると、インド企業によって報告された温 室効果ガス排出削減活動の約 75%が省エネルギー活動であった。 省エネルギー技術の導入には相当な費用が必要となる。INDC の 2030 年目標を達成するた めには、3,500 億インドルピー(Indian Rupee: INR)分の最新技術と、1,450 億 INR の国外 資源が必要となる。従いインド鉄鋼産業において技術を移転する資金援助のメカニズムが重 要であると考える。 この会合での対話や協議が技術移転の要件を満たす際に役立つと確信している。我々はエネ ルギー効率を高め、INDC 達成の手助けになるような施策を歓迎する。本日の協議を楽しみ にしている。 ② インド鉄鋼省 S.K.・バトナガール氏 インド鉄鋼省の S.K.・バトナガール氏より、インドのエネルギー管理政策に関する説明が行わ れた。 2014-2015 年においてインドの粗鋼生産量は 8,812 万トンであった。これは生産総能力(1 億 1,000 万 ト ン ) の うち 80% 程 度 を 占 め て い る 。世 界 鉄 鋼 協 会 (Worldsteel Association: Worldsteel)によると、インドは世界で 3 番目の鉄鋼生産国である。 また、鉄鋼はインドの将来の成長と発展における中心的産業である。特に、インド国内にお ける自動車製造、建設、耐久消費財、インフラストラクチャー産業等の成長が、鉄鋼の需要 な原動力となっている。鉄鋼生産における今後の課題としては、原料炭の備蓄不足や高い資 本コスト等が挙げられる。 政府は、インドへの直接投資案件について自由貿易体制のもと、外資出資比率 100%までの 認可を行っている。また、インド鉄鋼産業の研究開発投資比率が世界平均に比べ低いことを 受け、政府は研究開発を促進し投資への援助を行っている。例えば、革新的な製鋼ルートプ ログラム援助、廃エネルギー回収プログラムの資金援助、水素プラズマ炉を使った製鋼の研 究支援等が挙げられるが、これらの研究はまだ初期段階である。さらに、政府として廃棄規 制や不良鉄鋼製品の輸入規制も行っている。 インドの鉄鋼産業は需要の原動力、有利な政府政策、製鉄産業の追加生産能力に支えられ、 現在高成長の軌道に乗っており、2025 年までに年間 3 億トンの粗鋼生産能力を保有する目 標を立てている。現在の一人あたり鉄鋼消費量は 60kg と世界平均に比べまだ非常に低い状 況にあり、これから需要が確実に高まることが予想される。さらに人口の 80%が分布する広 大な地方市場も、鉄鋼需要を高め生産量を増やす原動力となる。 一方、インドのエネルギー効率は 6-6.8G 粗鋼生産量あたり消費熱量(Calories per Tonnes of 18 Crude Steel: cal/TCS)と世界に比べ低い。インド政府は INDC にて、2030 年までに国内 GDP 比温室効果ガス排出量を 2005 年レベル比で 33~35%減らす公約を掲げている。エネ ルギー消費削減に向けた課題としては、古い製鉄所の技術的退化、原材料の低い品質、廃エ ネルギー回収率の低さ、研究開発投資不足等がある。しかしながら、エネルギー効率は過去 数十年で着々と向上している。 インド政府は鉄鋼産業に対し、省エネルギー技術力向上に向けた様々な支援を行っている。 具体的には、鉄鋼省が研究開発に対する資金を供給する他、日本の NEDO 事業や国連開発 計画・インド鉄鋼省・豪州国際開発庁(United Nations Development Programme: UNDP, Ministry of Steel Government of India: MOS, Australian Agency for International Development: AUSAID)事業等に代表される海外との緊密な協業連携を維持している。鉄鋼 産業の持続可能な成長のための更なるイニチアチブとしては、インフラストラクチャー開発、 内閣投資委員会による高価値事業推進、事業監査グループやスマートシティ、Make in India 計画が挙げられる。 インド政府はクリーンおよびグリーン技術の調査、開発、共有、導入のための国際協力を歓 迎している。エネルギー効率向上や汚染削減のための開発途上国への技術導入を促進する国 際知的財産権枠組みや、エネルギー効率向上や汚染削減を目的にした特定の事業を援助する 資金メカニズムの構築も期待する。NEDO モデル事業は、参考になる成功例である。 ③ インド国営ラシュトリヤ・イスパット・ニガム社(Rashtriya Ispat Nigam Limited: RINL) RINL より、インド鉄鋼産業の活動と技術ニーズについて説明があった。 インド鉄鋼産業の技術発展のために必要なことは、エネルギー効率向上のための利用可能な 最善技術およびノウハウの導入、省エネルギー技術の国際資金援助、インドのロジスティク スおよびインフラストラクチャーへの投資、研究開発のための技術および資金援助、技能開 発である。 インド鉄鋼産業でニーズのある技術として、電気炉の排熱回収技術、焼結工場の排熱回収技 術、高炉スラグの排熱回収技術、転炉ガスの顕熱回収技術、炉の効率を高めるための蓄熱式 バーナー、コーク炉スタンプ装入技術、焼結工場・石炭工場・石炭荷役工場等の漏えい排出 物管理技術、製鋼スラグの利用とリサイクル技術、排水処理の次世代技術、水消費削減のた めの技術が挙げられる。 (b.) 中国 ① 中国鋼鉄工業協会(China Iron and Steel Association: CISA) CISA より、中国鉄鋼産業の活動と技術ニーズについて説明があった。 中国の省エネルギーと温室効果ガス排出削減水準は著しく向上した。第 12 次 5 ヵ年計画中 の昨年 11 月時点で、CISA 加盟企業の粗鋼 1 トンあたり総エネルギー消費量は 577.3 kgce(中 国にて利用している標準石炭換算単位、1kgce=7000kal)となった。この結果は、CISA 加盟 企業が目指す省エネルギー目標(2015 年までに 580kgce)が達成されたことを示す。中国政 府の定める産業界のエネルギー効率向上と環境保全活動を目的とした政策・制度は多数存在 する。 19 また GSEP 鉄鋼 WG のメンバーである CISA は省エネルギー活動の更なる促進を目指し、 国内主要 12 企業を対象に最新クリーン技術(The State-of-the-Art Clean Technologies: SOACT)の導入ニーズに関する調査・分析を行った。 調査の結果、以下の示唆が得られた: 調査対象の多くの企業は何らかの形で技術の高度化・再構成を行っており、保有する製鉄・ 製鋼の主要省エネルギー技術は既に高度な水準に達している。 多くの企業は単一工程のための技術ではなく、全ての工程に係る体系的、包括的な省エネル ギー技術に注目をしている。これは多くの企業が、技術の導入をコスト削減の手段と考えて いるためと考えられる。 コークス化、焼結、製鉄など、エネルギー消費量が多い工程について、企業の技術導入ニー ズが高い。 APP で作成された SOACT リスト内の、 「一般省エネルギーと環境施策」に区分される技術 および技術導入状況が明らかとなった。同リスト等を活用しつつ、環境問題への対応につい て共に取り組む必要があると考える。 中国における鉄鋼生産量は、2015 年に減少傾向に転じた(粗鋼生産量は前年比で 2.3%の減 少(約 8 億 380 万トン)、銑鉄生産量は前年比で 3.45%の減少(約 6 億 9140 万トン))。 この結果は中国政府と産業界の過剰生産能力削減の取組みによるものである。今後、中国に おける鉄鋼需要および消費を著しく増加させることは困難であることが想定される。中国鉄 鋼産業振興と過剰生産能力に対する抑制といった相反する課題に対し、短期間で解決するこ とは難しいことであるが、政府と CISA はこの課題に取り組む。 新環境保全法が履行に対する取組みも中国鉄鋼産業の課題の1つに挙げられる。 (c.) 韓国 ① Korea Energy Agency (KEA)のスンホ・ハン氏 KEA のスンホ・ハン氏より、韓国のエネルギー管理政策について説明があった。 韓国では、2009 年にグリーン成長戦略が発表され、2014 年よりグリーン成長 5 ヵ年計画が 始動している。更に、2014 年には第 2 次国家エネルギーマスタープランが策定された。グ リーン成長 5 ヵ年計画では、情報通信技術を土台とした省エネルギーおよび気候変動政策を 推進していることに特徴が挙げられる。 また韓国では現在、約 90%のエネルギーを輸入に依存しており、且つ、原子力発電の利用に 対し強い世論の反発があることから国内で生産可能な発電能力は限られている。更に、近年 国内において、温室効果ガス排出削減取り組みへのプレッシャーが高まっている。これらを 背景として政府は第 2 次国家エネルギーマスタープランにおいて、2035 年までにエネルギ ー需要を通常営業・操業(Business as usual: BAU)比で 13%削減する目標を掲げている。 20 省エネルギーに関する韓国政府の取り組みとしては、エネルギー管理システム(Energy Management Systems: EnMS)、エネルギー監査、Energy Service Company (ESCO)プロ グラム、排出量取引制度 (Emission Trading Scheme: ETS)等の整備が挙げられる。 韓国では、2011 年に EnMS 導入のための法的基盤を構築した。具体的には、産業通商資源 部が EnMS 支援内容を取りまとめた指令を発行し、また KEA は EnMS のパフォーマンス を評価するための規格および評価ガイドラインを策定した。このような取り組みを受け韓国 政府は、 特に産業部門での EnMS パフォーマンスが著しく向上することを期待しているが、 現状では EnMS を導入した企業は 13%に留まっている。このため、KEA が EnMS パフォ ーマンス分析に対する技術支援を行うなど、韓国政府は更なる支援取組みを提供する。 エネルギー集約型企業は、5 年毎にエネルギー監査を受けることが義務付けられており、 KEA はこれを管理する上で重要な役割を果たしている。 韓国政府は 2020 年までに温室効果ガス排出量を BAU 比で 30%削減するという目標を達成 するため、2011 年、エネルギーおよび温室効果ガス目標管理制度を始動した。これはエネ ルギー消費量および温室効果ガス排出量に上限を設ける仕組みであり、排出量の取引は認め られない。高エネルギー集約型と指定された企業は、政府と個別企業間の交渉で決定する定 められた目標を達成することが義務付けられている。しかし、本制度はわずか開始 3 年後に 縮小傾向となった。この理由は、多数の企業が 2015 年に始動した ETS 制度へ移行したこ とにある。現在、約 400 企業が ETS 制度に参加しており、現在エネルギーおよび温室効果 ガス目標管理制度に参加している企業の多くは中規模企業となっている。 韓国 ETS には、500 社の企業が参加しており、参加企業の温室効果ガス排出量は韓国全体 の 66%を占めている。 現在韓国政府は、エネルギー産業促進と気候変動対策を目的とした新しい取組みとして、新 エネルギー産業の開発を行っている。例えばネガワット市場は 2014 年 11 月に開かれてい る。また、エネルギー蓄積システムパッケージシステムは再生可能エネルギー義務割当制度 に含まれている。マイクログリッドシステムの開発も進んでおり、立証事業が鬱陵島(ウル ルン島)にて行われている。この他、家庭向け太陽光発電リース制度、電動式レンタルカーの 立証事業、製鉄所排水の排熱回収事業等が、取組み事例として挙げられる。 ② POSCO Research Institute (POSRI) POSRI より、POSCO の活動と技術ニーズについて説明があった。 POSCO は、2020 年までに粗鋼 1 トンあたり CO2 原単位を 2007-2009 年レベル比で 9%削 減するという目標を掲げている。また、2009 年には 4 項目のイニシアチブ(①グリーンスチ ール、②グリーンビジネス、③グリーンライフ、④グリーンパートナーシップ)を掲げた。ま た、2015 年 2 月に組織改編を行い、環境、エネルギー、気候変動関連等の所管を統一部署 で管理し経営層に直接報告する仕組みを構築した。 戦略的な炭素管理を行うため POSCO では、炭素関連リスクと機会を理解、特定するための プロセスを定義している。本プロセスは 5 段階に区分されており(①リスクと機会の発見、 21 ②炭素管理システムの構築、③気候変動対策活動の施行、④気候変動対策のチェックとレビ ュー、⑤最高管理者への報告)、POSCO はこの結果を戦略へ反映する。 POSCO 加盟企業への調査結果、最も温室効果ガス排出量の多い工程は製鉄工程(全排出量 の 82%)、次に製鋼と鋳造工程(7%)であり、残りはその他工程による排出である。このため、 POSCO や他の鉄鋼企業は、温室効果ガス排出削減において製鉄工程に焦点を置いている。 省エネルギー技術に関しては、POSCO は 13 項目の CO2 排出量削減技術を使用する他、革 新的にエネルギー効率を向上する新たな技術の開発を行っている。 (d.) 日本 ① 小菅利男・経済産業省鉄鋼課製鉄企画室課長補佐 経済産業省の小菅利男課長補佐より、日本のエネルギー管理政策について、説明があった。 日本政府によるエネルギー管理における全ての政策取組みは、今次会合に向けて作成された Booklet に記述されている。日本政府は 1979 年に省エネ法を制定し、企業や工場に毎年 1% のエネルギー使用量削減を自主的に行うよう規制した。本法律には罰則はない。 最近の動向として、日本政府は新戦略エネルギー計画を確立した。しかし、2011 年に起き た東日本大震災地震により全ての原子力発電所が停止し本計画は中座となり、以降、日本政 府は新たな計画策定を行うと共に、原子力管理事務所は全ての原子力発電所の安全を確認し ている。 一方、 国内における再生可能エネルギー使用率は 2030 年に 20%になる予定であり、 日本政府はこのため、ネット・ゼロ・エネルギー・ハウスロードマップ、ネット・ゼロ・エ ネルギー・ビルロードマップ等、複数の政策を導入している。 日本粗鋼生産量の需給状況は、リーマンショックのあった 2009 年以外は非常に安定してい る。 日本の鉄鋼産業における他国との協力には長い歴史がある。1991 年からは省エネルギーの 観点で中国・タイと、2000 年からはインドとの連携事業を実施しており、今後この他の国 との協力に期待する。本ワーキンググループはこのような考えのもと、情報や政策を共有す ることを目的に開催している。今回をもって GSEP 鉄鋼 WG は終了するが、日本はこれか らも 2 カ国間協力の形で協力を続けていくべきだと考える。 ② 日本鉄鋼連盟 日本鉄鋼連盟より、日本鉄鋼産業の活動と技術ニーズについて、説明があった。 日本の提出した INDC において、日本は 2030 年までに温室効果ガスを 2013 年比で 26% 削減する目標を公約している。 日本鉄鋼連盟の策定する低炭素社会実行計画フェーズ II において、日本鉄鋼連盟は、エコ プロセス、エコソリューション、エコプロダクトを通した温室効果ガス排出削減の定量的 目標を立て、長期的な努力としてコース 50 やフェロコークといった環境にやさしく、革新 的な製鉄・製鋼プロセスの開発を進めている。また、日本鉄鋼連盟の自主的温室効果ガス 22 排出削減取組みは、第三者からの評価を受けたり、ISO50001 を採用していたりと、透明 性があり、効率的である。 日本鉄鋼産業は 1970 年代から省エネルギー技術に投資をしており、現在日本の鉄鋼産業 では、主要な省エネルギーの普及率はほぼ 100%となっている。 2015 年 10 月に開催された ICEF 内で行われた鉄鋼セッションにおいて、政府、産業、学 術分野が、鉄鋼産業の基礎 GHG 削減を達成するために、イノベーションが重要な役割を 持つことで合意した。 APP と GSEP は利用可能な最善の技術の共有と参加国のネットワークの構築に重要な役割 を担った。日本鉄鋼連盟 は今後も、GSEP 鉄鋼ワーキンググループで培ったネットワーク を使い、省エネルギー活動や革新的省エネルギー技術の情報共有を続けていく。 (e.) IEA ① IEA のアラセリ・フェルナンデス・パレズ氏 IEA のアラセリ・フェルナンデス・パレズ氏より、鉄鋼産業の課題と機会について説明があっ た。 発展途上国の経済発展と共に、世界の粗鋼需要は伸び続けることが予想される。中国市場に おける需要は鈍化する可能性があるものの、経済協力開発機構(Organisation for Economic Co-operation and Development: OECD)国および非 OECD 国のいずれにおいても、2050 年 までに 2013 年以上の需要となることが予測されている。特にインドでの粗鋼需要の高まり が著しい。 エネルギー関連コストは企業経営上の課題でもあり、企業の競争力向上のためにも、関連コ ストの管理は重要である。 鉄鋼産業は長年にわたり、エネルギー省力化に資する技術導入・活動を推進しており、2015 年時点の銑鉄エネルギー原単位値は飛躍的に向上している。例えば、最新の高炉技術は、エ ネルギー原単位 12.0 GJ/t crude steel (1.2 tCO2/t steel)を可能とし、これは稼働にあたり最 低限必要なエネルギー原単位である 9.8 GJ/t crude steel (1.0 tCO2/t steel)に近い値である。 このように気候変動等の課題およびその解決に資する世界的規模での取組みが推進されて きたが、更なる取組みが求められ、また改善の可能性もある。IEA が提唱する 2°C Scenario (2DS) (「非エネルギー起源の CO2 排出量とその他の温室効果ガスも削減されるという条件 の下で、長期的な世界の気温上昇を 2°C 以内に抑える」1ためのシナリオ)によると、高炉 の平均エネルギー原単位は 2050 年までに 31%改善すると予測されている。なお、6°C Scenario (6DS)では、既に 28%の改善が見込まれている。産業から排出される CO2 の累計 削減量約 3 分の 1 が鉄鋼産業関連であると試算されている。 出所: OECD/IEA、Energy Technology Perspectives 2012: Pathways to a Clean Energy System、 2012 年、p.1 1 23 このようなシナリオに基づく CO2 排出量削減の達成は非常に困難であるが、一方で、製造 過程で発生する余熱の活用や回収等に係る技術等の改善策に資する調査が進められている。 世界鉄鋼産業全体としては技術導入により、粗鋼 1 トンあたり 1.3 GJ (または 2EJ)の熱回 収が可能であるとの分析もされている。ガスプロセスおよび化学関連分野で進展がみられて おり、今後更に分野横断的且つ長期的な視野に基づく革新的な技術の導入が求められている。 2050 年を視野に、幾つかの技術について議論はされている状況ではあるが、道のりは長い。 CO2 排出量削減は重要な課題であるが、分野や地域によっては経済的な制約がある。例えば 異なる地域間等の不均衡な炭素価格は、競争激化や炭素漏出のリスクをもたらす。政府はこ れらのリスクを認識しており、例えば、カーボンリーケージの影響の大きい産業部門につい て、EU 域内排出量取引制度(the EU Emissions Trasdign System: EU ETS)が作成したリ ストでは、製造コストが 30%増となりうる危機的な分野として、70 分野が挙げられている。 炭素価格は政府が主たる管理を行っている分野であるが、エネルギー多消費産業において、 自由な(またはほぼ自由な)許容量を付与することも検討に値する。政策立案者の選択肢とし ては、法の順守を担保した上で次善の解決策を打ち出すことが求められる国境における炭素 調整や、炭素コストに係る製造業者の負担を軽減するための、消費者や輸入市場への転嫁策 等の検討が挙げられる。一方で、これらは短期的なイノベーション誘発剤ともなりえないた め、共同研究開発のための安定的な資金源の確保および市場の変化に応じた新しい技術価値 を認識することが求められている。 本プレゼンテーションでは以下を結論とする: 鉄鋼産業はこれまでの省エネ活動によりエネルギー消費を大幅に削減し、また今後も同様で あることが想定される。一方で、既存のプロセスにおける差益は減少する一方である。 高炉一貫製鉄所で大量に消費される石炭は、環境政策や環境改善活動の推進を困難にする。 鉄鋼産業の CO2 排出について、早急な解決が求められているものではないが、革新的なプ ロセスを開発する。 IEA が提案する、将来的な低炭素にむけた鉄鋼業におけるロードマップは次の内容を含む: ・ 環境や貿易に資する革新的なプロセスを特定 ・ 新しいプロセスを構築するための技術発展プロジェクトの推進(試行プロジェクトの増加) ・ 酸素・水素生産、二酸化炭貯留、石油増進回収法等、他の関連研究開発との共同 (5) 開催結果 今回の GSEP 鉄鋼 WG には、インド、韓国、中国、日本の官民主体および IEA が参加した。今次 会合に向けて作成した、鉄鋼産業に資する各国の省エネ・気候変動に関する政策および民間としての 取り組みを取りまとめた「Booklet for Iron and Steel Industry – Action on Energy Saving and Climate Change」が会合冒頭に紹介された。参加者は、本冊子に基づき、各国・鉄鋼産業に資するエ ネルギー管理活動の最新動向について、情報を共有し、議論した。官公庁主体の参加者からは関連政 策について、また民間主体の参加者からは技術ニーズや活動について、講演された。IEA の参加者か らは、鉄鋼産業に係る IEA の最新研究および将来的なプロジェクト案について講演された。また、2015 年に開催された CEM にて、GSEP 傘下の WG は、イニシアチブへ格上げもしくは解散、の選択肢が 与えられ、GSEP 鉄鋼 WG は 2015 年度をもって解散することとなり、本会合が GSEP 鉄鋼会合の最 後となった旨が議長より言及された。しかし、各国からの参加者は、省エネ向上および気候変動に資 24 する活動に今後も従事することに合意した。日本政府は既存の多国間枠組みである ICEF(経済産業省 主管)および二国間協議等を通じて、関連する活動に取り組む予定である。 25 第5章. GSEP 鉄鋼 WG 以降の活動に向けた提案 5.1. 今次 GSEP 鉄鋼 WG 開催後の活動 2015 年に開催された CEM にて、GSEP 傘下の WG は、イニシアチブへ格上げもしくは解散、の選 択肢が与えられ、GSEP 鉄鋼 WG は 2015 年度をもって解散することとなった。よって、今次が GSEP 鉄鋼 WG の最終会合であった。 今次第 3 回 GSEP 鉄鋼 WG 会合はインド(官・民)、中華人民共和国(民)、大韓民国(官・民)、日本(官・ 民)および IEA から、合計 30 名の参加を得た。特にインドからは、スニル・バートワール鉄鋼省局長お よび 6 社の鉄鋼企業が参加した。 参加者は、各国・鉄鋼産業に資するエネルギー管理活動の最新動向について、情報を共有し、議論し た。官公庁主体の参加者からは関連政策について、また民間主体の参加者からは技術ニーズや活動につ いて、講演された。また、IEA からは、鉄鋼産業に係る IEA の最新研究および将来的なプロジェクト案 について講演があった。 さらに、今次会合に向けて、鉄鋼産業に資する各国の省エネ・気候変動に関する政策および民間とし ての取り組みを取りまとめた「Booklet for Iron and Steel Industry – Action on Energy Saving and Climate Change」を作成した。本 Booklet の作成は 2014 年の前回 GSEP 鉄鋼 WG における合意に基 づくものであり、Booklet の内容を基に参加国間で情報を共有し、ともに学び、協議することを趣旨と して作成され、今次会合では本冊子に基づき各国からプレゼンテーションがなされた。加えて、会合の 一部として開催された昼食会およびレセプションには全ての各国官公庁主体・民間主体が参加し、メン バー間の親睦を深めることができた。上記の取り組み・活動を背景とし、今次 GSEP 鉄鋼 WG は一定 の成果を得て、成功裡に終了した。 2011 年の APP の終了を受けて、同組織の活動を GSEP が引き継ぎ、あわせて、APP 鉄鋼タスクフ ォースは GSEP 鉄鋼 WG として、GSEP 傘下に設置された。GSEP 鉄鋼 WG は、2011 年の設立以降、 合計 3 回の会合を重ね、鉄鋼産業における省エネルギーや環境対策について、各国の知見をメンバー間 で共有した。また、主要国の官公庁主体と民間主体および国際機関が集い、特定分野のエネルギー・環 境政策や技術等について情報を共有し、また議論をする貴重な場であった。左記の場において、日本は 議長国としてメンバー国を取りまとめ、有意義な会合を開催するべく尽力した。 GSEP 鉄鋼 WG は解散するものの、各国からの参加者は、今次会合の締めに際し、省エネ向上および 気候変動に資する活動に今後も従事することに合意した。日本政府は既存の多国間枠組みである ICEF および二国間協議等を通じて、関連する活動に取り組む予定である。GSEP 鉄鋼 WG に代わる今後の日 本の取り組みについては、今次会合にて示され、参加国メンバーからの理解が得られた。 セクター別アプローチの一環として、多国間の枠組みとして機能してきた GSEP 鉄鋼 WG は終了の 運びとなった。今後は、日本政府が推奨する「二国間クレジット制度」等の二国間の枠組みを通じて、 日本の優れた環境・省エネ技術の普及等を進め、温室効果ガスの削減に貢献する仕組みを構築すること が求められる。また、GSEP 鉄鋼 WG の活動を含め、多国間の枠組みにおいてわが国が環境・省エネ関 連分野で担ってきた役割は、国際貢献や日本の技術の普及等の観点から重要である。更には、新興国の 経済発展等により当該分野への取り組みは、今後より一層、喫緊かつ重大な課題となりうる。これらの 背景をふまえ、今後は ICEF をはじめとする国際会議等の場を通じた活動を実施していくことが、有効 である。 26 第6章. Appendix 6.1. 質問表に添付された省エネルギー技術リスト Technologies listed in the Table 1 are considered to be significant countermeasures to tackle with energy conservation and environmental protection issues of iron and steel industry according to SOACT, NEDO, EU-BAT and EPA-BACT. Technologies Reference[*7] ID Title of Technology (SOACT base)[*1] SOAC EU EPA NEDO T -BAT -BACT Sintering ○ 1 Sinter Plant Heat Recovery (Steam Recovery from Sinter Cooler Waste Heat) 2 Sinter Plant Heat Recovery (Power Generation from Sinter Cooler Waste Heat) [*2] 3 District Heating Using Waste Heat ○ 4 Dust Emissions Control ○ 5 Exhaust Gas Treatment through Denitrification, Desulfurization, and Activated Coke Packed Bed Absorption ○ 6 Exhaust Gas Treatment through Selective Catalytic Reduction ○ 7 Exhaust Gas Treatment through Low-Temperature Plasma ○ 8 High Efficient (COG) Burner in Ignition Furnace for Sinter Plant [*3] ○ 9 Exhaust Gas Treatment Through Additive Injection and Bagfilter Dedusting ○ 10 Sintering machine ignition oven burner (NEDO) 11 Partial recycling of waste gas (EU-BAT) ○ ○ ○ ○ ○ Cokemaking 12 Coke Dry Quenching ○ ○ 13 Coal Moisture Control ○ ○ ○ ○ 14 High Pressure Ammonia Liquor Aspiration System ○ 15 Stripping of ammonia from the waste water (EU-BAT) 16 Waste water treatment (EU-BAT) 17 Modern Leak-proof Door 18 Cleaning of oven doors and frame seals (EU-BAT) 19 Reduction of SO2 by coke oven gas desulphurisation (EU-BAT) 20 Land Based Pushing Emission Control System 21 Variable pressure regulation of ovens during the coking process (EU-BAT) 22 VSD COG compressor (EPA-BACT) 23 Coke Plant – Automation and Process Control System ○ ○ ○ 24 COG-non-recovery Coke Battery [*3] ○ ○ ○ 25 Waste Plastics Recycling Process Using Coke Ovens [*4] - ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Ironmaking 26 Top Pressure Recovery Turbine ○ ○ ○ ○ 27 Pulverized Coal Injection (PCI) System ○ ○ ○ ○ 28 Pulverized coal injection to 225 kg/ton iron (EPA-BACT) 29 Oxy-oil injection (EU-BAT) ○ ○ 30 Gas injection (EU-BAT) ○ ○ 31 Injection of COG and BOF gas (EPA-BACT) 32 Plastic injection (EU-BAT) ○ 33 Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues (EU-BAT) ○ 34 Improve Blast Furnace Charge Distribution 35 Use of high quality ores (EU-BAT) 36 Charging carbon composite agglomerates (EPA-BACT) 37 Blast Furnace Gas and Cast House Dedusting 38 Blast furnace gas recycling (EPA-BACT) 39 B-gas (fueling) Regerenative Reheating Furnace [*5] - 40 B-gas (fueling) Ignition Burner of Sinter [*6] - 41 Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues (EU-BAT) 42 Cast House Dust Suppression 43 Treatment and reuse of scrubbing water (EU-BAT) 44 Hydrocyclonage of blast furnace sludge (EU-BAT) 45 Slag Odor Control 46 Slag heat recovery (EPA-BACT) 47 Blast Furnace – Increase Hot Blast Temperature (>1100 Deg C) ○ 48 Blast Furnace – Increase Blast Furnace Top Pressure (>0.5 Bar Gauge) ○ 49 Improvement of combustion in hot stove (EPA-BACT) 50 Blast Furnace Heat Recuperation ○ 51 Optimized Blast Furnace Process Control with Expert System ○ 52 Alternative Ironmaking: Direct Reduction (DRI/HBI) and Direct Smelting ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 27 ○ ○ ○ ○ Technologies Reference[*7] ID Title of Technology (SOACT base)[*1] SOAC EU EPA NEDO T -BAT -BACT 53 Smelting Reduction Processes ○ 54 Direct Reduction Processes ○ 55 Coal Based Rotary Hearth Furnace Type Ironmaking Process [*3] ○ 56 Paired Straight Hearth Furnace ○ 57 Coal and Lump Ore Based Smelting-Reduction Type Ironmaking Process [*3] ○ 58 Finex Process ○ 59 Rotary Kiln Direct Reduction ○ 60 Coal and Fine Ore Based DRI/HBI Production Process [*3] ○ 61 Natural Gas Based Zero-Reforming DRI/HBI Production Process using Fine Ore [*3] ○ 62 Coal Synthesis Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production Process [*3] ○ 63 Natural Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production Process with CO2 Removal System [*3] ○ 64 High-efficiency cupola (NEDO) ○ ○ ○ Steelmaking On-line Feedback Analyzer for Efficient Combustion [*3] ProVision Lance-based Camera System for Vacuum Degasser - Real-time Melt Temperature Measurement ○ 67 Hot Metal Pretreatment ○ 68 Programmed and efficient ladle heating (EPA-BACT) 69 Increase Thermal Efficiency by Using BOF Exhaust Gas as Fuel ○ 70 Use Enclosures for BOF ○ ○ 71 Control and Automization of Converter Operation ○ ○ ○ 72 OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher ○ 73 Exhaust Gas Cooling System (Combustion System) ○ ○ ○ 74 Converter gas recovery device (NEDO) 75 Laser Contouring System to Extend the Lifetime of BOF Refractory Lining ○ 76 BOF Bottom Stirring ○ 77 VSD on ventilation fans (EPA-BACT) 78 Dust hot briquetting and recycling with recovery of high zinc concentrated pellets for external reuse (EU-BAT) 79 Elimination of Radiation Sources in EAF Charge Scrap ○ 80 Improved Process Control (Neural Networks) ○ 81 Hot DRI/HBI Charging to the EAF ○ 82 Oxy-fuel Burners/Lancing ○ 83 Scrap Preheating ○ 84 New scrap-based steelmaking process predominantly using primary energy ○ 85 Twin-shell DC with scrap preheating (EPA-BACT) ○ 86 Bottom stirring/stirring gas injection (EPA-BACT) ○ 87 Eccentric bottom tapping on existing furnace (EPA-BACT) ○ 88 Post-combustion of the flue gases (EPA-BACT) ○ 89 Engineered refractories (EPA-BACT) ○ 90 Adjustable speed drives (ASDs) (EPA-BACT) ○ 91 Transformer efficiency—ultra-high power transformers (EPA-BACT) 92 Control and Automation for EAF Optimization ○ 93 Slag Foaming, Exchangeable Furnace and Injection Technology ○ 94 Airtight operation (EPA-BACT) 95 Exhaust Gas Treatment Through Gas Cooling, Carbon Injection and Bagfilter Dedusting ○ 96 Ecological and Economical Arc Furnace [*3][*9] ○ 97 Waste Heat Recovery from EAF [*2][*9] 98 DC arc furnace (NEDO) 99 Shaft-type Continuous EAF [*3] (EPA-BACT) 65 66 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Ladle Refining and Casting 100 ○ Efficient caster ladle/tundish heating (EPA-BACT) Casting 101 Strip Casting Technology [*3] ○ 102 Thin Slab Casting and Hot Rolling ○ ○ 103 Hot Charging to Reheat Furnace of Rolling Mills ○ ○ 28 6.2. GSEP 鉄鋼 WG 各国への主な連絡・調整 年 2014 2015 2015 月 11 2 8 調査内容 質問票を送付※昨年度事業内容 質問票未回答者への提出催促※昨年度事業内容 質問票未回答者への提出催促および 10 月 GSEP 開催 について連絡 9 9 日 上旬 中旬 中旬 ~ 下旬 上旬 中旬 2015 2015 2015 10 上旬 質問票未回答者への提出催促 2015 2015 10 11 中旬 中旬 質問票未回答者への提出催促 質問票未回答者への提出催促 2015 11 中旬 2015 11 下旬 2015 2015 12 12 2016 2016 1 1 中旬 上旬 ~ 下旬 上旬 上旬 GSEP 鉄鋼 WG 候補日に関する打診(2 月 15-19 の間 での開催について案内、都合伺い) GSEP 鉄鋼 WG 候補日に関する打診(2 月 1-4、または 8-10 が候補日であることを案内、都合伺い) GSEP 鉄鋼 WG 開催日通知・出欠連絡依頼 Booklet 内容確認依頼 2016 1 2016 1 上旬 ~ 下旬 中旬 2016 2016 2016 1 1 1 中旬 中旬 下旬 2016 2016 2016 1 1 1 下旬 下旬 下旬 第 3 回 GSEP 鉄鋼 WG 開催延期連絡 質問票未回答者への提出催促 宛先 全員 中国官、韓国官・民、米国 官、欧州官・民 中国官、米国官、欧州官・ 民 韓国官・民、中国官 中国官、米国官、欧州官・ 民 全員 全員 全員 日本官・民、インド官・民、 中国官・民、韓国官・民 GSEP 鉄鋼 WG 会合出欠連絡催促 VISA 申請やプレゼンテーション資料等詳細について 確認 参加予定者と宿泊や旅程関連について調整 全員 (該当者欠席の連絡を受けて)同組織の他の方、もしく は在京関係者の派遣について打診・依頼 Booklet 内容確認依頼・出欠連絡催促 会合における発表関連事項の詳細確認・連絡 (該当者欠席の連絡を受けて)同組織の他の方、もしく は在京関係者の派遣について打診・依頼 Booklet 内容確認御礼・会合出欠連絡催促 Booklet 内容確認催促・出欠連絡催促 (該当者欠席の連絡を受けて)同組織の他の方、もしく は、在京関係者の派遣について打診・依頼 Booklet 内容確認依頼・出欠連絡催促 米国官 米国官、欧州官・民 欧州民 欧州官 米国官 欧州官 2016 1 下旬 米国官 【補足】 2015 年 12 月~2016 年 1 月にかけて、Booklet の内容確認を各国に依頼し、回答を得た箇所について、 加筆・修正を実施した。 2016 年 1 月中に、米国官の参加を得るべく、合計 10 回以上の連絡(E メールおよび電話)を試みた。 2016 年 1 月中に、欧州官・民の参加を得るべく、20 回程度の連絡(E メールおよび電話)を試みた。 上記の E メールでの連絡・調整以外、電話連絡により密な連携を行った。 29 6.3. 略語表 略語 APP AUSAID BAU BEE CDM CEM CISA CO2 EC EJ EnMS ESCO ETS EU EU ETS Eurofer cal/TCS GDP GJ GSEP ICEF IEA INDC INR IPEEC KEA MOP MOS NCSC NEDO OECD PAT POSRI RINL SAIL SOACT TF UNDP US-DOE WG Worldsteel 2DS 6DS 英語 (日本語) The Asia-Pacific Partnership on Clean Development and Climate (クリーン開発と気 候に関するアジア太平洋パートナーシップ) Australian Agency for International Development (豪州国際開発庁) Business as usual (通常営業・操業) Bureau pf Energy Efficiency, Ministry of Power, Government of India (インド電力 省エネルギー効率局) Clean Development Mechanism (クリーン開発メカニズム) Clean Energy Ministerial (クリーンエネルギー大臣会合) China Iron and Steel Association (中国鋼鉄工業協会) Carbon Dioxide (二酸化炭素) European Commission (欧州委員会) Exa Joule (エクサジュール) Energy Management Systems (エネルギー管理システム) Energy Service Company Emission Trading Scheme (排出量取引制度) European Union (欧州連合) The EU emissions trading system (EU 域内排出量取引制度) The European Steel Association (欧州鉄鋼協会) Calories per Tonnes of Crude Steel (粗鋼生産量あたり消費熱量) Gross Domestic Product (国内総生産量) Giga Joule (ギガジュール) Global Superior Energy Performance Partnership (エネルギー効率向上に関する国 際パートナーシップ) Innovation for Cool Earth Forum International Energy Agency (国際エネルギー機関) Intended Nationally Determined Contribution (各国が自主的に決定する約束草案) Indian Rupee (インドルピー) International Partnership for Energy Efficiency Cooperation (国際省エネ協力パー トナーシップ) Korea Energy Angency Ministry of Power, Government of India (インド電力省) Ministry of Steel, Government of India (インド鉄鋼省) National Center for Climate Change Strategy and International Cooperation (中国国家気候変動戦略研究・国際協力センター) New Energy and Industrial Technology Development Organization (独立行政法人 新エネルギー・産業技術総合開発機構) Organisation for Economic Co-operation and Development (経済協力開発機構) Perform, Achieve and Trade (インド、省エネ達成認証スキーム) POSCO Research Institute Rashtriya Ispat Nigam Limited (インド国営ラシュトリヤ・イスパット・ニガム社) Steel Authority of India. Ltd (国営インド鉄鋼公社) The State-of-the-Art Clean Technologies (最新クリーン技術) Task Force (タスクフォース) United Nations Development Programme (国連開発計画) United States Department of Energy (米国エネルギー省) Working Group(作業部会) Worldsteel Association(世界鉄鋼協会) 2°C Scenario 6°C Scenario 以上 30 GSEP Steel Working Group Table of Contents 1. Overview ....................................................................................................................................................... 6 1.1. Purpose .......................................................................................................................................................... 6 1.2. Background.................................................................................................................................................... 7 1.2.1. Transition from APP to GSEP ....................................................................................................................... 7 1.2.2. Activities of GSEP Steel WG ........................................................................................................................ 9 1.2.3. Action Plan and the Creation of the Booklet ............................................................................................... 10 2. European Union (EU) .................................................................................................................................. 13 2.1. Overview of Action on Energy Saving and Climate Change in the EU ...................................................... 13 2.2. Government ................................................................................................................................................. 13 2.2.1. The Targets and Plans of Action on Energy Saving and Climate Change in the EU ................................... 13 2.2.2. Legal Measures to Support the Targets and Plans ....................................................................................... 15 2.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 22 2.3. Iron and Steel Industry................................................................................................................................. 23 2.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 23 2.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 24 3. Japan ............................................................................................................................................................ 27 3.1. Overview of Action on Energy Saving and Climate Change in Japan ........................................................ 27 3.2. Government ................................................................................................................................................. 29 3.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in Japan ...................... 29 3.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 30 3.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 31 3.3. Iron and Steel Industry................................................................................................................................. 32 3.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 32 3.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 38 4. People’s Republic of China (China) ............................................................................................................ 42 4.1. Overview of Action on Energy Saving and Climate Change in China ........................................................ 42 4.2. Government ................................................................................................................................................. 43 4.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in China ...................... 43 4.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 50 4.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 52 4.3. Iron and Steel Industry................................................................................................................................. 52 4.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 52 4.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 53 5. Republic of India (India) ............................................................................................................................. 56 5.1. Overview of Action on Energy Saving and Climate Change in India ......................................................... 56 1 GSEP Steel Working Group 5.2. Government ................................................................................................................................................. 56 5.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in India ....................... 56 5.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 59 5.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 60 5.2.4. Collaborative Action with the International Society .................................................................................... 61 5.2.5. Collaborative Action within the Country with the Iron and Steel Industry ................................................. 64 5.3. Iron and Steel Industry................................................................................................................................. 65 5.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 65 5.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 65 6. Republic of Korea (Korea) .......................................................................................................................... 67 6.1. Overview of Action on Energy Saving and Climate Change in Korea ........................................................ 67 6.2. Government ................................................................................................................................................. 67 6.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in Korea ...................... 67 6.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 69 6.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 75 6.3. Iron and Steel Industry................................................................................................................................. 75 6.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 75 6.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 76 Appendix ................................................................................................................................................................. 78 2 GSEP Steel Working Group List of Figures Figure 1. World Total Production of Crude Oil ................................................................................................. 6 Figure 2. Members of APP Iron and Steel Task Force ....................................................................................... 7 Figure 3. Transition from APP ........................................................................................................................... 8 Figure 4. Members of GSEP Steel WG ............................................................................................................. 9 Figure 5. GSEP Steel WG Action Plan ............................................................................................................ 10 Figure 6. Overview of EU Policies and Laws Related to Energy Saving and Climate Change ...................... 13 Figure 7. Energy Targets toward 2020, 2030, and 2050 .................................................................................. 14 Figure 8. Examples of Provisions .................................................................................................................... 15 Figure 9. Summary of EU ETS........................................................................................................................ 16 Figure 10. Monitoring Methodologies of MRR............................................................................................... 18 Figure 11. Overview of FprEN 19694-2 .......................................................................................................... 19 Figure 12. SPIRE Roadmap ............................................................................................................................. 21 Figure 13. Summary of TASIO ........................................................................................................................ 21 Figure 14. Research Results and Achievements of ESTEP WG7 .................................................................... 24 Figure 15. Projection of Energy Saving Potential............................................................................................ 25 Figure 16. Projected Energy Saving Potential of Industry Specific Energy Saving Technologies .................. 25 Figure 17. Overview of Japanese Policies and Laws Related to Energy Saving and Climate Change............ 28 Figure 18. Summary of ACE ........................................................................................................................... 29 Figure 19. Summary of the Energy Saving Act’s Regulation for Plants .......................................................... 30 Figure 20. Summary of the GHG Emissions Reporting Rule under the Act on Promotion of Global Warming Countermeasures...................................................................................................................................... 31 Figure 21. Summary of JISF’s Voluntary Action Plan ..................................................................................... 33 Figure 22. Summary of JISF’s Commitment to a Low Carbon Society .......................................................... 34 Figure 23. Development Process of ISO14404................................................................................................ 35 Figure 24. Boundary Approach of ISO14404 .................................................................................................. 35 Figure 25. Calculation Formula of ISO14404 ................................................................................................. 36 Figure 26. Upstream Concept of ISO14404 .................................................................................................... 37 Figure 27. PDCA Framework with ISO14404 and TCL ................................................................................. 38 Figure 28. Utilization Rates of Major Energy Conservation Equipment in the Japanese Iron and Steel Industry .................................................................................................................................................... 39 Figure 29. Commonly Installed and Actively Used Energy Saving Technologies in the Japanese Iron and Steel Industry ........................................................................................................................................... 39 Figure 30. (*1) Illustration of Coke Dry Quenching ....................................................................................... 40 Figure 31. (*2) Illustration of Regenerative Burner Total System for Reheating Furnace .............................. 40 Figure 32. (*3) Illustration of Cogeneration (Include Gas Turbine Combined Cycle (GTCC)) ...................... 41 Figure 33. Overview of Chinese Policies and Laws Related to Energy Saving and Climate Change ............. 42 Figure 34. Contents of the 12th Five Year Plan ................................................................................................ 43 Figure 35. Energy Saving Target in the 12th Five Year Plan ........................................................................... 44 3 GSEP Steel Working Group Figure 36. Overview of the Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan Period .................................................................................................... 45 Figure 37. Major Concerns Addressed in the Energy Development Plan of the 12th Five Year Plan ............. 46 Figure 38. Transition from the Top 1,000 Energy Consuming Enterprises Program to the Top 10,000 EnergyConsuming Enterprises Program ............................................................................................................. 47 Figure 39. Overview of the Top 10,000 Energy-Consuming Enterprises Program ......................................... 48 Figure 40. Overview of the Action Plan on Clean and Highly Efficient Use of Coal ..................................... 50 Figure 41. Overview of the Law of the People's Republic of China on Energy Conservation ........................ 51 Figure 42. Percentage of Companies Having Needs for Each SOACT Technology (Based on questionnaire targeted at 12 major iron and steel companies in China) ......................................................................... 53 Figure 43. Technologies Listed on SOACT Handbook under the Category of “General Energy Saving & Environmental Measures” and Diffusion Situation of Each Technology ................................................ 54 Figure 44. Technologies Strong Needs Are Shown by Major 12 Steel Companies in China (“Yes” means interested, “No” means not interested) .................................................................................................... 55 Figure 45. National Missions under National Action Plan on Climate Change............................................... 57 Figure 46. Four Initiatives under NMEEE....................................................................................................... 58 Figure 47. Details of PAT ................................................................................................................................ 58 Figure 48. Major Initiatives under the Energy Conservation Act .................................................................... 59 Figure 49. Summary of the Sinter Cooler Waste Heat Recovery Model Project ............................................. 63 Figure 50. Summary of the Coke Dry Quenching Model Project ................................................................... 63 Figure 51. Summary of the Blast Furnace Stove Waste Heat Recovery Model Project .................................. 64 Figure 52. Energy Saving Technologies to Adopt and the Challenges ............................................................ 66 Figure 53. Six Major Tasks and Objectives of the Second Energy Master Plan .............................................. 68 Figure 54. Directions of the Green Growth National Strategy ........................................................................ 68 Figure 55. The EnMS Program of KEA .......................................................................................................... 70 Figure 56. Flowchart of the ESCO Program.................................................................................................... 71 Figure 57. Overview of the ESCO Program .................................................................................................... 71 Figure 58. Flowchart of the Energy Audit System Program ............................................................................ 72 Figure 59. Flowchart of TMS .......................................................................................................................... 73 Figure 60. Standards of Controlled Entities..................................................................................................... 74 Figure 61. Highlights of KETS ........................................................................................................................ 74 Figure 62. POSCO’s Target to Reduce CO2 Emission Intensity ..................................................................... 76 4 GSEP Steel Working Group I. Introduction 5 GSEP Steel Working Group 1. Overview 1.1. Purpose Steel products are used to create various products, such as automobile, industrial machinery, information and electronics, and construction, and continue to be valuable and indispensable for manufacturing and constructions. The steel industry is the second largest industry in the world after oil and gas with average world steel use per capita being increased from 150kg in 2001 to 217 kg in 2014. The demand and the production are continue to grow, and by 2050, steel use is expected to increase to be 1.5 times higher than present levels as well.1 Crude steel production in the world is also expected to grow steadily, by almost 2% per year.2 Figure 1. World Total Production of Crude Oil (million tonnes) 1,800 1,600 1,400 1,200 1,000 800 600 400 200 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 (year) The iron and steel sector is an energy intensive industry. It has the second-largest energy consumption of all industrial sectors, after chemicals and petrochemicals. It accounts for 22% of total industrial energy use and 31% of industrial direct CO2 emissions in 2012.3 It is estimated that 1.8 tonnes of CO2 on average are emitted for every tonne of steel produced.4 In 2012, the world average of aggregated energy intensity in the iron and steel industry remained at 20.7 GJ/t, 5% lower than 2000 levels. While the amount of steel production increases, the introduction of technologies has contributed to the improvement. Reduction of energy use is also an important managerial factor for companies, as energy use relates to the cost. According to a study by the World Steel Association, “energy costs represent around 20 to 25 % of the total input of steel producers and is one of the most important items to manage by steel producers.”5 Therefore, it has always been important for both public and private sectors that involve in the iron and steel industry, to always tackle issues to improve energy efficiency and climate change. This booklet is compiled, under 6 GSEP Steel Working Group the agreement made in the previous GSEP Steel Working Group (GSEP Steel WG), to share updated technology information including its benefits and barriers, and to share updated energy management policies and relevant activities. 1.2. Background 1.2.1. Transition from APP to GSEP Asia Pacific Partnership on Clean Development and Climate (APP), established in July 2005 under the initiative by the United States of America (US), was a public-private and multilateral scheme to cover environmental related issues. Its secretariat was established in United States Department of State and worked together with APP member countries, US, Canada, Australia, Republic of India (India), People’s Republic of China (China), Republic of Korea (Korea), and Japan, of which activities included Ministerial Meetings. APP held 8 Task Forces, including a Task Force on Iron and Steel, and worked closely among the members to take action to gain energy efficiency and reduce CO2 emissions. APP Iron and Steel Task Force, of which chair country was Japan, held meetings among its member countries, annually. APP also issued useful information and tools for the iron and steel industry. One of its achievements is to compile a hand book, The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (SOACT Handbook) in 2010, as one of flagship projects of APP Iron and Steel Task Force. SOACT Handbook contains affluent information on technologies relevant to energy saving and the environment in the iron and steel industry. SOACT Handbook (2nd version) could be obtained via website (http://www.jisf.or.jp/business/ondanka/eco/docs/SOACT-Handbook-2nd-Edition.pdf). Figure 2. Members of APP Iron and Steel Task Force Country Public Private US − − − Department of Commerce Department of Energy Department of State − American Iron and Steel Institute and its member companies Canada − Industry Canada, Environment Canada − Canadian Steel Producers Association and its member companies Australia − Department of Resources, Energy and Tourism, Department of the Environment, Water, Heritage and the Arts − − Hismelt Corporation Bluescope Steel India − Ministry of Steel − Steel Authority of India Ltd., Rashtriya Ispat Nigam Limited (RINL) , Tata Steel Limited, Jindal Steel Works, Jindal Steel and Power Limited, Essar Steel Limited, Ispat Industries Limited China − National Development and Reform Commission − China Iron and Steel Association and its member companies Korea − Ministry of Knowledge Economy − Korea Iron & Steel Association and its member companies 7 GSEP Steel Working Group Country Japan Public − Private − Ministry of Economy, Trade and Industry The Japan Iron and Steel Federation and its member companies Global Superior Energy Performance Partnership (GSEP) was established in 2010, under Clean Energy Ministerial (CEM) and International Partnership for Energy Efficiency Cooperation (IPEEC). The mission of GSEP is to aim “to reduce global energy use in industrial facilities and commercial buildings in order to improve energy security,” under collaborations between the public and private.6 By the establishment, most of the APP function was succeeded to GSEP, which included some of APP Task Forces to GSEP sectorial groups. APP Iron and Steel Task Force was succeeded to GSEP Steel WG under this movement. Figure 3. Transition from APP (Extracted from Kono, T. (2012). Objective and overview of Global Superior Energy Performance Partnership. In Ministry of Economy, Trade and Industry, Japan, the Federation of Electric Power Companies of Japan, the Japan Iron and Steel Federation, & Japan Cement Association. (Eds.), Sectoral approach in GSEP: GSEP: Global Superior Energy Performance Partnership: Power, steel and cement sector. (pp. 1-3). Retrieved from https://www.fepc.or.jp/english/environment/global_warming/sectoral_approach/gsep.pdf) Given that the needs to tackle the environmental related issues globally, there are many international schemes including COP meetings that aim to reduce greenhouse gas (GHG) emissions and improve energy efficiency. GSEP 8 GSEP Steel Working Group is one of such international fora, in which member countries share their insights and take relevant action. One of GSEP Working Groups, GSEP Steel WG focuses on improving the energy efficiency and environmental performance of the iron and steel sector. Participants from public and private sectors of the GSEP Steel WG member countries, US, European Union (EU), India, China, Korea, and Japan, as well as multilateral organizations such as International Energy Agency (IEA) work together to tackle the issues relevant to improving energy efficiency and reducing environmentally negative impacts in the iron and steel sector. Its annual meeting, hosted by the Japanese government as the chairing country, has been utilized as an opportunity to exchange information and to discuss relevant issues among the member countries. It is a unique and only scheme in which representatives from both public and private sectors in the iron and steel industry gather, exchange opinions and information, and take action to deal with the environmental related issues. 1.2.2. Activities of GSEP Steel WG GSEP Steel WG focuses on improving the energy efficiency and environmental performance of the iron and steel sector as one of the most energy-intensive industrial sectors. Following the GSEP Workshop, the GSEP’s first meeting held in September 2011, GSEP Steel WG’s first meeting was held in March 2012 in Tokyo. In the meeting, participants including new participants from the EU that was not the member of APP, reviewed the achievements under APP and discussed the future activities under the GSEP scheme. 68 participants from 13 economies participated, and together with other sectoral WGs, such as Power WG and Cement WG, Steel WG had a joint plenary session. At the second meeting which was held on September 12, 2014, in Paris, participants from 5 member countries, India, China, Korea, Europe, and Japan, as well as international organizations such as IEA, shared their insights and activities on energy management and discussed the future activities of GSEP Steel WG. It was decided at CEM Meeting in 2015, that GSEP Working Groups are to be either moved to “Initiative” level or to dissolve. GSEP Steel Working Group then has decided to close its group in 2015 FY. Figure 4. Members of GSEP Steel WG Country Public Private US − Department of Energy − American Iron and Steel Institute and its member companies EU − European Commission (EC) − The European Steel Association (EUROFER) India − − Ministry of Steel Bureau of Energy Efficiency (BEE), Ministry of Power (MOP) − Steel Authority of India Ltd., Rashtriya Ispat Nigam Limited (RINL) , Tata Steel Limited, Jindal Steel Works, Jindal Steel and Power Limited, Essar Steel Limited, Ispat Industries Limited China − National Development and Reform Commission − China Iron and Steel Association and its member companies 9 GSEP Steel Working Group Country Public Private Korea − Korea Energy Agency (KEA) − Korea Iron & Steel Association and its member companies Japan − Ministry of Economy, Trade and Industry − The Japan Iron and Steel Federation and its member companies 1.2.3. Action Plan and the Creation of the Booklet In the meeting on September 12, 2014, over 30 participants from public and private sectors in the US, the EC, India, China, Korea, Japan, and IEA, gathered and exchanged the latest information on the current status and challenges in the public and private sectors and necessity of technology introduction etc. As the result of the meeting, participants agreed to have the Action Plan as below. Figure 5. GSEP Steel WG Action Plan Action plan a the 1st GSEP Steel WG 1 2 Energy Management • Energy management system • Capacity building / improvement in energy efficiency SOACT handbook “improved edition” • Further information on cost / benefit related information • Additional technologies Technology deployment 3 • Barrier analysis • MAC / Cost curve for countermeasures Breakthrough R&D 4 • Longer-term vision • Break through technology information sharing • (Technology handbook) Proposal of Policies, PR 5 • Appropriate national / international scheme for promoting technology diffusion • PR ~Contribution to an energy saving society~ Proposed focus area for the 3rd GSEP Steel WG Action Plan 2&4 “Technology” Share updated technology information including its benefits and barriers Action Plan 1&5 “Energy Management Policies” Share updated energy management policies and relevant activities In order to share information based on Action Plans, it was also decided to compile a booklet that contains relevant information, such as on technology and energy management policies. For collecting necessary information, a questionnaire (refer to Appendix) was made, and sent to the member countries. In the questionnaire, the private sector was asked to describe the current situation and future prospect of adopting technologies regarding energy saving and environmental protection and implementing energy management activities, and the public sector was asked to provide the latest policies/activities and issues in order to promote efficient technology introduction and energy management. The contents of the booklet were drafted based on the collected information and data by the questionnaire and 10 GSEP Steel Working Group researches conducted by Japan. The draft was then reviewed by the members of respective countries to confirm the contents. The booklet contains information that was reviewed by each country/region, namely, EU, Japan, China, India, and Korea. The booklet will be also utilized at the next GSEP Steel WG in 2016, as the members are to discuss and share information relevant to energy management and environmental performance at the meeting. 11 GSEP Steel Working Group II. Action on Energy Saving and Climate Change 12 GSEP Steel Working Group 2. European Union (EU) 2.1. Overview of Action on Energy Saving and Climate Change in the EU The EU has been taking action on energy security since the 1960’s and climate change since 1990. It recently has developed progressive energy efficiency and GHG emissions reduction targets toward 2020, 2030, and 2050 as well as systems and rules to help the targets be met. Figure 6. Overview of EU Policies and Laws Related to Energy Saving and Climate Change Year 1960’s ~ 1997 1998 2001 2005 2006 2007 2008 Dec. 1997 Kyoto Protocol Adoption International Society GHG emissions reduction by 8% compared to 1999 levels by 2012 2009 2010 COP15 COP16 2011 2012 20 or 30% reduction by 2020 2013 2015 EU achieved 12.2% reduction, which exceeded its target. 2008~2012 Phase I (Nonparticipation: US, China) Started taking actions for energy security in the 1960s, stating to increase lowcarbon energy sources. 2014 Oct. 2009 Oct. 2014 2020 Climate and Energy Package GHG emissions reduction target toward 2050 2030 Framework EU Action ~2030 COP21 2020~ 2013~2020 Phase II (Nonparticipation: US, JP, Russia, NZ) Jan. 2008 At least 20% lower GHG emissions than 1990 levels 2020 80-95% lower GHG emissions than 1990 levels At least 40% lower than 1990 levels Nov. 2010 Mar. 2011 2020 Energy Strategy Roadmap 2050 (2050 Energy Strategy) 2030 Energy Strategy Oct. 2012 Energy Efficiency Directive Jan. 2005 A set of binding measures for EU nations to achieve 20% energy efficiency target by 2020. EU-ETS ■ System ■ Policy Strategy □ Directive Phase I Phase II Phase III 2005~2007 2008~2012 2013~2020 (Created by Deloitte Tohmatsu Consulting LLC (DTC)) 2.2. Government 2.2.1. The Targets and Plans of Action on Energy Saving and Climate Change in the EU Following the European treaties for coal and steel and atomic energy after the Second World War, the EU counties started to collaborate to tackle energy supply problems in the 1960’s. The EU explains that it imports over a half of its energy from outside of the EU, which is a risk because the energy costs can change due to uncontrollable factors such as political events in exporter countries. The EU also states that it needs to increase use of low-carbon 13 GSEP Steel Working Group energy sources instead of fossil fuels, which are currently 80% of the energy sector’s source.7 On the other hand, EU’s action on climate change started in 1990 when the EU pledged to stabilize its CO2 emissions level at 1990 levels by 2000. Since then, the EU has applied policies to reduce GHG emissions, and each Member State has taken action. Action on climate change seems to be one of the highest priorities for the EU, considering the EU leaders’ decision on spending at least 20% of the 2014-2020 EU budget on climate-related measures.8 As of 2015, the EU is committed to the following climate and energy targets toward 2020, 2030, and 2050. Figure 7. Energy Targets toward 2020, 2030, and 2050 Toward Target GHG Emissions Reduction Renewable Energy Energy Efficiency 2020 At least 20% lower than 1990 levels 20% share of EU energy consumption 20% improvement compared with BAU levels 2030 At least 40% lower than 1990 levels 27% share of EU energy consumption 27% improvement compared with BAU levels* 2050 80-95% lower than 1990 levels - - *To be reviewed in 2020 in consideration of a 30% target (Created by DTC based on European Union. (n.d.). Climate action. Retrieved from http://europa.eu/pol/clim/index_en.htm; European Commission. (n.d.). Energy: 2030 Energy Strategy. Retrieved from http://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy); European Commission. (n.d.). Climate action: 2030 climate & energy framework. Retrieved from http://ec.europa.eu/clima/policies/strategies/2030/index_en.htm) i. Targets Toward 2020 The targets toward 2020 were originally adopted as the 20-20-20 targets in 2008, as part of the 2020 Climate and Energy Package, and once again included to the Europe 2020, an EU’s growth strategy, in 2010. In the 2020 Energy Strategy, which was adopted in 2010 to achieve the targets, the EU set five priorities: improvement of energy efficiency; development of an integrated EU energy market; strengthening of consumer rights and top-class energy safety/supply security; enhancement of the EU leadership in energy technologies and innovations; and development of foreign relationships in the energy market.9 The targets for GHG emissions reduction and renewable energy are legally binding.10 ii. Targets toward 2030 The targets toward 2030 were adopted in 2014 as part of the 2030 Climate and Energy Framework to support the ongoing action and show EU’s commitment to the world. The GHG emissions reduction target is binding, and a reformed EU Emissions Trading Scheme (EU ETS), which will be discussed later, is expected to become the main driver to achieve the target.11 Other than EU ETS, “new indicators for the competitiveness and security of the energy system” and “ideas on a new governance system based on national plans for competitive, secure, and 14 GSEP Steel Working Group sustainable energy” have been proposed in the 2030 Energy Strategy to achieve the targets.12 iii. Target Toward 2050 The EU set the GHG emissions reduction target toward 2050 in 2009. 13 The Roadmap 2050, which was published in 2011 after thorough research, presents a possible way to achieve the target in a cost-efficient way while keeping EU’s competitiveness. 1415 It includes milestones to evaluate the progress and information about what different sectors can do to contribute to the effort.16 2.2.2. Legal Measures to Support the Targets and Plans The EU has developed various measures to achieve the targets both in the field of energy and climate change. The following are some examples. i. Energy Efficiency Directive The Energy Efficiency Directive was adopted in 2012 by the European Parliament and of the Council with a set of binding measures to achieve the energy efficiency target toward 2020.1718 It requires all EU countries to promote energy efficiency on the demand side and in all stages of supply chain and also includes requirements to take concrete action in various sectors.19 Each country has to set an energy efficiency target for 2020 and report progress toward the target every year. Also, it has to develop National Energy Efficiency Action Plans every three years.20 At the same time, EU countries had to implement national laws incorporating the directive’s provisions by June 2014.21 The examples of provisions are shown below. Figure 8. Examples of Provisions Contents 1 Energy distributors or retail energy sales companies have to achieve 1.5% energy savings per year through the implementation of energy efficiency measures. 2 EU countries can opt to achieve the same level of savings through other means such as improving the efficiency of heating systems, installing double glazed windows or insulating roofs. 3 The public sector in EU countries should purchase energy efficient buildings, products and services. 4 Every year, EU governments will carry out energy efficient renovations on at least 3% of the buildings they own and occupy by floor area. 5 Empowering energy consumers to better manage consumption. This includes easy and free access to data on consumption through individual metering. 6 National incentives for Small and Medium Enterprises (SMEs) to undergo energy audits. 7 Large companies will make audits of their energy consumption to help them identify ways to reduce it. 15 GSEP Steel Working Group Contents 8 Monitoring efficiency levels in new energy generation capacities. (Created by DTC based on European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficiency-directive) ii. Energy Performance of Buildings Directive The Energy Performance of Buildings Directive was adopted in 2010 by the European Parliament and of the Council.22 It requires countries to set minimum efficiency standards for buildings and publish certificates informing consumers about the efficiency of buildings they purchase or rent.23 iii. Ecodesign Directive and Energy Labeling Directive The Ecodesign Directive and Energy Labelling Directive were adopted in 2009 and 2010 respectively by the European Parliament and of the Council.2425 The directives drive the product market towards greater efficiency by removing the least efficient products from the market and informing consumers about the energy performance of products. More than 20 product groups are covered at present.26 iv. The EU Emissions Trading Scheme (EU ETS) Since its launch in 2005, EU ETS has been the core of EU’s action on climate change.27 EU ETS targets energy- intensive facilities such as those in the power generating, oil refining, iron and steel, cement, and aviation industries of the EU countries, Iceland, Liechtenstein, and Norway. It takes a cap-and-trade system, and the cap becomes stricter overtime.28 In this system, there is a limit or “cap” on emissions, and participants can sell and buy the allowances depending on their emissions levels. Applying EU ETS, the emissions from ETS target sectors are expected to become 21% lower than 2005 levels by 2020.29 The summary of EU ETS in each of three phases is below: Figure 9. Summary of EU ETS Cap Phase I Phase II Phase III 2005-2007 2008-2012 2013-2020 8.3% above 2005 levels 5.6% below 2005 levels (avg. 2005-2007) (avg. 2008-2012) 21% below 2005 levels in 2020 (The cap amount annually decreases by 1.74% in a linear way from the medium amount between 2008 and 2012.) Actual Reduction 0.98% above 2005 levels in 2007 3.06% below 2007 levels in 2008 11.6% below 2008 levels in 2009 3.16% above 2009 levels in 16 2% below 2011 levels in 2012 3% below 2012 levels in 2013 (estimated) GSEP Steel Working Group Phase I Phase II Phase III 2005-2007 2008-2012 2013-2020 2010 2.09% below 2010 levels in 2011 Allowances Across the countries: Across the countries: Across the countries: Allocation National Allocation Plan (NAP)*1 National Allocation Plan (NAP) A single EU-wide cap instead of NAP Method Within countries: Within countries: Mainly grandfathering*2 Mainly grandfathering (Benchmarks increased in some countries.) (The EU-wide cap annually decreases by 1.74% in linear way from the year-average total quantity of allowances given during 2008-2012.) Within countries: Gradually transfers into auctions, staring from the power generating sector.*3 Target CO2 CO2 CO2, N2O, PFC Power generators and energyintensive industrial sectors (Iron and Steel, Oil refining, Cement, etc.) The aviation sector was added in 2012. More sectors were added. €100/t-CO2 €100/t-CO2 GHG Target Sector (e.g. aluminum, chemicals) (approx. 11,500 facilities) Penalty €40/t-CO2 *1 A national cap for which each country has to get an approval from the EC Method to decide allocation based on the actual emissions in the past *3 Manufacturing industry will receive 80% of its allowances for free in 2013, a proportion that will decrease in linear fashion each year to 30% in 2020. Sectors and sub-sectors facing competition from industries outside the EU which are not subject to comparable climate legislation will receive a higher share of free allowances than those which are not at risk of such ‘carbon leakage’ (i.e; 100% free allowances for carbon leakage sectors like steel). (Created by DTC based on Office of Market Mechanisms, Ministry of the Environment. (2014). 諸外国における排出量取引の実施・検討状況 [The operation and examination status of Energy Trading Scheme in other countries] [PDF document]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/jokyo.pdf; European Commission. (n.d.). Climate action: Allowances and caps: Policy. Retrieved from http://ec.europa.eu/clima/policies/ets/cap/index_en.htm; European Commission. (n.d.). Climate action: Free allocation based on benchmarks: Policy. Retrieved from http://ec.europa.eu/clima/policies/ets/cap/allocation/index_en.htm; European Commission. (2014). Commission Decision of 27 October 2014 determining, pursuant to Directive 2003/87/EC of the European Parliament and of the Council, a list of sectors and subsectors which are deemed to be exposed to a significant risk of carbon leakage, for the period 2015 to 2019. Retrieved from http://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX%3A32014D0746) *2 EU ETS requires the participant operators of facilities to have approved monitoring plans and monitor and report their annual emissions in accordance with the Monitoring and Reporting Regulation (MRR).30 MRR offers multiple monitoring methodologies from which operators select for their monitoring plans.31 17 GSEP Steel Working Group Figure 10. Monitoring Methodologies of MRR Methodology Calculation Standard − Based Methodology − Mass − − Balance − Approach Methodology Measurement Based Approach − − − − − Fall-back Approach Key Point Calculation of emissions by means of activity data (e.g. amount of fuel or process input material consumed) times an emission factor Calculation Equations Combustion emissions [t CO2]: Em = AD ⋅ EF ⋅ OF Em ......Emissions [t CO2] AD.......Activity data [TJ, t or Nm3] EF .......Emission factor [t CO2/TJ, t CO2/t or t CO2/Nm3] OF.......Oxidation factor [dimensionless] Process emissions [t CO2]: Em = AD ⋅ EF ⋅ CF Em ......Emissions [t CO2] AD.......Activity data [t or Nm3] EF .......Emission factor [t CO2/t or t CO2/Nm3] CF.......Conversion factor [dimensionless] Activity data [TJ, t or Nm3] = Fuel quantity [t or Nm3] * Net Calorific Value [TJ/t or TJ/Nm3] Activity data may refer to either an input material or to the resulting output of the process. Products and waste are accounted for by Oxidation factor/Conversion factor. Suitable for relatively simple processes Calculation of a complete balance of carbon entering and leaving the installation Calculation Equation EmMB = Σ( f ⋅ ADi ⋅ CCi ) − i EMMB...Emissions from all source streams included in the mass balance [t CO2] f........... factor for converting the molar mass of carbon to CO2. The value of f is 3.664 t CO2/t C i ........... index for the material or fuel under consideration. ADi ......Activity data (i.e. the mass in tonnes) of the material or fuel under consideration. CCi ......The carbon content of the component under consideration. Always dimensionless and positive. In terms of Activity data, ingoing materials or fuels taken into account as positive, outgoing materials or fuels have negative. Mass streams to and from stock piles must be taken into account appropriately in order to give correct results for the calendar year. Suitable for relatively complex processes Method to measure GHGs directly Apply a continuous emission measurement system Measure the hourly average concentration and the hourly average flow rate of GHGs Sum up the hourly data of each emission points to get the yearly total emissions of all emission sources Operators are allowed to use non-tier methodology (Fall-back Methodology) if applying the tier system is technically not feasible or leads to unreasonable costs for the operator. (Ties refer to different data quality levels of each parameter needed for the determination of emissions. The MRR indicates which tier an operator must select.) (Created by DTC based on European Commission. (2012). Guidance document: The monitoring and reporting regulation – General guidance for installations. Retrieved from http://ec.europa.eu/clima/policies/ets/monitoring/docs/gd1_guidance_installations_en.pdf) EU ETS covers 45% of GHG emissions in the EU, and the EU has an agreement to address the rest of the 18 GSEP Steel Working Group emissions as well. The rest of 55% of emissions, which EU ETS does not cover, comes from sectors such as transport, buildings, agriculture, and waste.32 In 2009, EU countries had an “effort-sharing” agreement, which sets binding national targets to reduce non-ETS emissions for the period of 2013-2020.333435 The national targets for non-ETS emissions reduction vary from a 20% reduction for the richest countries to a 20% increase for the poorest. The EU plans to cut 10% of emissions from non-ETS sectors by 2020 as a whole. The base year for these targets is 2005.36 Although the world recognizes the actual reduction of GHG emissions that EU ETS has achieved, the volatility of carbon prices is causing concerns because it would discourage the investments into low-carbon facilities and technologies.37 Since the economic crisis decreased GHG emissions in 2009, the surplus of emission allowances has been increasing. The EU observes that it resulted in low carbon prices and a weaker incentive to reduce GHG emissions. As a short-term countermeasure for this issue, the EU decided to postpone €900 million allowance auctions originally scheduled in 2014-2016 to 2019-2020. As a long-term solution, a market stability reserve will be established in 2018.38 In the market stability reserve system, when the total number of allowances in circulation in the previous year is over 830 million tCO2, “an amount of allowances corresponding to 12 % of the number of allowances in circulation…should be deducted from the auction volumes and placed in the reserve.” Then, “a corresponding number of allowances should be released from the reserve…and should be added to auction volumes if the relevant total number of allowances in circulation is less than 400 million” in any year.3940 v. Standard for GHG Emissions Calculation in Steel Production - FprEN 19694-2 The EU is developing a standard for GHG emissions calculation in iron and steel production. European Committee for Standardization (CEN) is a private international non-profit organization officially recognized by the EU which develops and defines voluntary standards for various sectors at European level with other two organizations. 4142 In 2014, CEN started the project of Stationary source emissions - Greenhouse Gas (GHG) emissions in energy-intensive industries - Part 2: Iron and steel industry, referred as FprEN 19694-2. 43 The overview of the standard is shown below.4445 Figure 11. Overview of FprEN 19694-2 Title Stationary source emissions - Greenhouse Gas (GHG) emissions in energy-intensive industries - Part 2: Iron and steel industry Reference FprEN 19694-2 Status Under Approval Target Sector Iron and steel industry Summary This standard provides a methodology for: − Measuring, testing and quantifying methods for the determination of greenhouse gas (GHG) emissions − Assessing the level of GHG emissions performance of production processes over time, at production sites The establishment and provision of reliable and accurate information of proper quality for 19 GSEP Steel Working Group reporting and verification purposes Key Point − The determination of the direct and indirect CO2 emissions of a steel facility − A strong focus on performance assessment which it strives to address through the following aspects: Assessment of CO2 impact, including process emissions: Evaluates the total CO2 emission of a steel facility, with the carbon content of the waste gases burdened as CO2 to the processes giving rise to them Assessment of the actual CO2 impact: Evaluates the total CO2 emissions released by a steel facility, but considers waste gases exported or used in a power plant as equal to natural gas in terms of CO2 emissions Carbon input CO2 performance at facility level: Delivers an indicator comparing the facility performance with best practice, on the basis of the carbon input to the system CO2 performance assessment at process level: Delivers a set of indicators comparing process performance with best practice at unit level. These indicators are then combined as a consolidated figure for the whole facility. A theoretical assessment of the CO2 saving potential up to best practice (Created by DTC based on European Committee for Standardization. (n.d.). CEN/TC 264 - Air quality: FprEN 19694-2. Retrieved from http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_LANG_ID:38640,25&cs=13F4A3EB327B0157B4E7F2D3A272DA6C2) vi. Financial Instruments The EU offers various financial instruments to encourage and support action on energy saving and climate change. Examples are below: ① Sustainable Process Industry through Resource and Energy Efficiency (SPIRE) SPIRE is “a contractual Public-Private Partnership (PPP) dedicated to innovation in resource and energy efficiency enabled by the process industries.”46 It was launched in the end of 2013 in a framework of Horizon 2020.47 Horizon 2020 is the EU’s biggest programme for Research and Innovation, which implements Innovation Union, a flagship initiative of the Europe 2020.48 SPIRE covers the EU process industrial sectors of iron and steel, ceramics, chemicals, engineering, non-ferrous metals, minerals, water, and cement. They are the core of the European economy. The process industry has a high interest in improving their energy efficiency especially because it has high dependency on resources, such as energy, raw materials, and water, and seeks for long-term sustainability. 49 However, efficiency improvement takes high risks and long-term investments, which makes it difficult for the industry to face the challenge alone.50 SPIRE is expected to bring back the innovation trend to the EU manufacturing industry by uniting the process industrial sectors across the value chains and letting them cooperate with the public sector.5152 It is expected to alternately contribute to the sustainable growth and jobs of the Europe.53 The initiative is to last for 7 years, and the EC budget is secured up to €1 billion.54 The following is the roadmap of SPIRE. 20 GSEP Steel Working Group Figure 12. SPIRE Roadmap Vision − A Sustainable Process Industry for a resource-efficient and low-carbon economy: Rejuvenate the European process industry base and help decoupling economic growth from resource impact Research and − 6 Key-components: Innovation 1. Feed: Increased energy and resource efficiency through optimal valorisation and smarter use and management of existing, alternative and renewable feedstock 2. Process: Solutions for more efficient processing and energy systems for the process industry, including industrial symbiosis 3. Applications: New processes to produce materials for market applications that boost energy and resource efficiency up and down the value chain 4. Waste2Resource: Avoidance, valorisation and re-use of waste streams within and across sectors, including recycling of post-consumer waste streams and new business models for eco-innovation 5. Horizontal: Underpinning the accelerated deployment of the R&D&I opportunities identified within SPIRE through sustainability evaluation tools and skills and education programmes as well as enhancing the sharing of knowledge, best practices and cross-sectorial technology transfer 6. Outreach: Reach out to the process industry, policy makers and citizens to support the realisation of impact through awareness, stimulating societal responsible behaviour − Up to 30% reduction in fossil energy intensity from current levels − Up to 20% reduction in non-renewable, primary raw material intensity compared to current levels − Up to 40% improvement in CO2-equivalent footprints − Leveraging additional investments Strategy Expected Impacts (Created by DTC based on Sustainable Process Industry through Resource and Energy Efficiency. (n.d.). SPIRE PPP - Sustainable Process Industries through Resource & Energy Efficiency - [PDF document].) One example of SPIRE projects is “Waste Heat Recovery for Power Valorisation with Organic Rankine Cycle Technology in Energy Intensive Industries (TASIO).”55 The summary of TASIO is below. Figure 13. Summary of TASIO Consortium Member To develop solutions to recover the waste heat produced in energetic intensive processes and transform it into useful energy − Development of advanced Waste Heat Recovery Systems based on Organic Rankine Cycle (ORC) − Recovery and transformation of the thermal energy of the flue Gases of Energy Intensive Industries into mechanical energy for internal use (compressors) − Direct Heat Exchange concept aimed at heat recovery for electricity generation through an ORC − Application of new materials and coatings to improve heat transfer and avoid heat exchanger corrosion 8 companies and organizations from 4 European countries Period December 1, 2014 – May 31, 2018 Objective 21 GSEP Steel Working Group Budget €3,989,247.50 Impact Foreseen increase in the efficiency of the process 15-20% Technology Image (Created by DTC based on TASIO. (n.d.). Objectives of the project. Retrieved from http://www.tasioh2020.eu/objectives;jsessionid=7e0f7aa179afb9ec14ff5604eafd; TASIO. (n.d.). Waste Heat Recovery for Power Valorisation with Organic Rankine Cycle Technology in Energy Intensive Industries. Retrieved from http://www.tasio-h2020.eu/; Success story: Participation of the steel sector in H2020 projects. (n.d.). [PDF document].) ② NER300 NER300 is the world-largest funding programme for the development of innovative renewable energy sources (RES) and carbon capture and storage (CCS) technologies. The programme is funded from the sale of 300 million EU ETS allowances.56 Under two calls for proposals in 2012 and 2014, €2.1 billion was awarded in funding to 39 projects of RES and CCS.5758 It is also estimated that the funding by NER300 will attract additional €2.8 billion from private sources.59 ③ LIFE The LIFE programme is a finance instrument to support projects for the environment and climate protection. It has supported over 4,000 projects with €3.4 billion of contribution since its launch in 1992. As one of the subprogrammes of the LIFE programme, the Climate Action sub- programme will provide €864 million to co-finance projects between 2014 and 2020.60 It seeks for the ideas and technologies to reduce GHG emissions, adapt climate change, and enhance climate governance and raise awareness of climate change. 61 The programme calls for proposals annually from public authorities, non-profit organizations, and private actors, especially SMEs. In addition to this grant opportunity, people could finance their projects through loans and guarantees with the two pilot programmes called Natural Capital Financing Facility and Private Finance for Energy Efficiency.62 2.2.3. Emissions Reduction Target toward 2030 The EC submitted the Intended Nationally Determined Contribution (INDC) to the United Nations Framework Convention on Climate Change (UNFCCC) in March 2015 and declared that “the EU and its Member States are committed to a binding target of an at least 40% domestic reduction in greenhouse gas emissions by 2030 compared 22 GSEP Steel Working Group to 1990.”6364 2.3. Iron and Steel Industry 2.3.1. i. Voluntary Action on Energy Saving and Climate Change EUROFER – The European Steel Association (EUROFER) EUROFER was founded in 1976. The members consist of steel companies and national federations in the EU countries, representing 100% of steel production in the EU. It currently has 55 member organizations throughout the EU and 7 associate members in Switzerland and Turkey.656667 The European steel industry has been contributing to the action on climate change as seen in its GHG emissions reduction by 25% from 1990 to 2010.68 However, EUROFER concluded that the EU’s target toward 2050 was technologically and economically unachievable and that the European steel sector could cut CO2 intensity by 15% at best during 2010 to 2050. EUROFER insists that in order to achieve the EU’s target toward 2050, the European steel sector needs policy makers’ support to install innovative technologies to reduce significant amount of CO2 emissions and keep the competitiveness of the sector.69 The EU has unveiled its action plan in June 2013 to develop a political framework to support the steel sector from economic, social, and environmental perspectives.70 EUROFER has expressed its opinions and suggestions about the government policies such as the EU targets toward 2050 and EU ETS from the perspective of the European steel industry. In November 2015, EUROFER published a statement which called on the policy makers to make sure that the Paris agreement at COP21 would include incentives for investments in Europe.71 ii. The European Steel Technology Platform Working Group 7 (ESTEP WG7) ESTEP WG7 was launched in 2010 by EUROFER and the European Steel Technology Platform (ESTEP) in order to investigate energy saving potential in the European steel industry.72 It intended to provide the ESTEP community with the accurate information on energy consumption of the European steel industry, potential of improvement in energy efficiency, and the link between energy consumption and CO2 emissions. 73 Through its activities, ESTEP WG7 developed a data collection methodology, identified the existing and new energy savings technologies, and also found out new ideas for Research & Innovation for energy savings in steel production.74 In 2014, the final report was published as a result of the investigation of ESTEP WG7.75 According to the final report, ESTEP WG7 gained the following research results and achievements. 23 GSEP Steel Working Group Figure 14. Research Results and Achievements of ESTEP WG7 Research Topic Accurate information on energy consumption of the European steel industry Potential of improvement in energy efficiency Research Result and Achievement of ESTEP WG7 − Collected information confidentially from 6 integrated steel mills and 4 EAF steel mills based on the data collection methodology that it developed − Analyzed the information by comparing it to a reference benchmark taken from the best mills in Europe − Concluded that steel mills’ potential of improving their energy efficiency is 8% on the average although it would be lower for some plants − Noted that the figure would raise to 10-12% if the study extends to all steel mills in the EU − Investigated the areas of improvement and suggested R&D directions for the coming years which included recommendations on: energy savings, energy recovery, use of alternative energy sources, incremental or radical process changes and diversifying input of raw materials (Created by DTC based on De Lamberterie, B. (2014). Steel production - energy efficiency working group: Final report, January 2014.) 2.3.2. The Status of Energy Saving Technology Implementation The iron and steel industry in the EU has been improving the energy efficiency overtime. The drastic improvement in the energy efficiency happened in the 1970’s and 1980’s due to the shift from the open-hearth production route to the more efficient blast furnace-basic oxygen furnace (BF-BOF) and electric arc furnace (EAF) production route. The improvement trend has been more moderate since the 1990’s up to the present.76 According to a research done on behalf of the EC, if all the energy saving technologies that are feasible for the EU iron and steel industry are implemented (Technical Scenario), they would reduce the industry’s annual energy consumption by 16.3 million toe (24%) in 2030 and 18.9 million toe (26%) in 2050 compared to the business-asusual (BAU) projections.77 24 GSEP Steel Working Group Figure 15. Projection of Energy Saving Potential Annual Energy Consumption (kTOE) 90,000 80,000 70,000 60,000 50,000 40,000 30,000 2011 2015 2020 BAU Consumption 2025 2030 2035 2040 2045 2050 Technical Scenario Consumption (Created by DTC based on ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20report_clean_stc.p df) Out of the 94 technologies that were found to be feasible for the EU iron and steel industry, 9 are specific to the iron and steel industry. The following are the industry specific energy saving technologies and their energy saving potential.78 Figure 16. Projected Energy Saving Potential of Industry Specific Energy Saving Technologies State-of-the-Art Power Plant 1621 4314 % of Total Energy Saving Potential of the Technical Scenario (2030/2050) 10%/23% BOF Waste Heat and Gas Recovery 1227 1180 8%/6% Coke Dry Quenching 523 509 3.2%/2.7% Continuous Casting 403 533 2.5%/2.8% Sinter Plant Waste Heat Recovery 251 241 1.5%/1.3% Optimized Sinter Pellet Ratio (Iron Ore) 173 170 1.1%/0.9% Top Gas Recovery Turbine 43 56 0.3%/0.3% Stove Waste Gas Heat Recovery 73 70 0.4%/0.4% Scrap Pre-Heating 36 46 0.2%/0.2% Industry Specific Energy Saving Technology Energy Saving Potential in 2030 (ktoe/a) 25 Energy Saving Potential in 2050 (ktoe/a) GSEP Steel Working Group (Created by DTC based on ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20report_clean_stc.p df) On the other hand, the report predicted that some emerging technologies would improve the energy efficiency of the iron and steel industry in the EU from 2011 to 2030.79 Some initiatives are contributing to the development of such new technologies. For example, Ultra-Low Carbon dioxide Steelmaking, a consortium of 48 steel companies and other organizations from 15 EU countries supported by the EC, runs a programme to develop innovative technologies to reduce CO2 emissions from steel production by 50%.80 So far four technologies were found to have a potential to reduce more than 50% of CO2 emissions in the long term: blast furnace with top gas recycling, bath smelting, direct reduction, and, electrolysis. These technologies will be investigated further.81 Finally, the spread of breakthrough technologies are expected to enhance the energy efficiency even further from 2030 to 2040.82 26 GSEP Steel Working Group 3. Japan 3.1. Overview of Action on Energy Saving and Climate Change in Japan The Japanese government has been promoting energy saving activities since the oil crisis in the 1970’s and developing plans and laws to tackle climate change since the 1990’s.8384 Meanwhile, the iron and steel industry, mainly the Japan Iron and Steel Federation (JISF), has developed plans and technologies for energy saving and GHG emissions reduction. 27 GSEP Steel Working Group Figure 17. Overview of Japanese Policies and Laws Related to Energy Saving and Climate Change Year 1970’s 1980’s 1990~ 1995~ 2000~ 2005~ 2010~ 2015~ 2020~ 1988~: IPCC 1970’s~80’s: Oil Crisis ●1992: Earth Summit UNFCC ●1997:COP3 (Kyoto) Kyoto Protocol ● 2005: Kyoto Protocol Effectuation 業務プロセスフロー (5/5) 2008~2012: Kyoto Protocol Commitment Period 1 2013~2020: Kyoto Protocol Commitment Period 2 ● 2009: COP15 (Copenhagen) International Society ● 2010: COP16 (Cancun) Efforts according to the Cancun Agreement 2020~: New Framework ● 2011: COP17 (Durban) ADP ● 2015: COP21(Paris) Plans to make an agreement on a new framework ▼ 1979 ▼ 1993 ▼ 1997 Energy Saving Act Enactment Amendment Amendment ▼ 2006 ▼ 1998 ▼ 2002 Act on Promotion of Global Warming Countermeasures Enactment ▼ 1990 ▼ 2008 Conclusions of the new framework from each country ▼ 2013 Amendment Amendment 2005 2006 ▼ 2008 ▼ ▼ Amendment Amendment Amendment Amendment Amendment 1991~2010 Action Program for Prevention of Global Warming Announcement ▼ 1999 Basic Policies for Global Warming Countermeasures Announcement 1998 ▼ 2002 ▼ Japanese Government 1998~2012 Climate Change New Climate Change Policy Program Policy Program 2008 Cabinet Approval Cabinet Approval 2005 2006 ▼ Kyoto Protocol ▼ ▼ Target 2005~2012 Achievement Plan Revision Cabinet Approval Revision ACE was developed to achieve the goals that were proposed in Cool Earth 50 as a new incentive of Japan. 2013 ▼ ▼2007 Cool Earth 50 Announcement 2013~2050 ACE Announcement 2013 2014 2015 ▼ ● ● ICEF1 ICEF2 ICEF Announcement Since the Oil Crisis in 1970’s, the Japanese iron and steel industry has been actively developing energy saving technologies. 2008 ▼ 1996 1997 ▼ ▼ Industry-Wise Voluntary Action Plans Announcement Keidanren Voluntary Action Plan on the Environment Announcement 1996~2012 Base Year Change (2010⇒avg.2008~2012) Phase I revision Phase I & Announcement Phase II 2009 2013 Announcement ▼ ▼ ▼ 2015 Basic Policy of Commitment to a Low Carbon Society 2013~2020: (Phase I) Announcement Commitment to a Low Carbon Society (Phase I) Japanese Private Sector (JISF) ▼ 2009 ISO14404 Proposal (JISF) ▼ 2013 ISO14404-01 (for BF-BOF) ISO14404-02 (for EAF) ▼2014 TCLs 2006~2010: APP Task Force APP Steel Task Force & GSEP Steel Working Group The Second ICEP was held on October 7 and 8 this year. 2010~: GSEP Steel WG Worldsteel 2007~: CO2 Emissions Data Collection APP Task Force SOACT Handbook ■ Law □ Plan ■ Deliverable Calculation method of CO2 emission intensity from iron and steel production (Created by DTC) 28 2020~2030: Commitment to a Low Carbon Society (Phase I) GSEP Steel Working Group 3.2. Government The Japanese government has developed several plans overtime to tackle climate change, and the plans were followed by the latest plan called Actions for Cool Earth (ACE). On the other hand, the government has developed the Act on the Rational Use of Energy (Energy Saving Act) for energy saving action and Act on Promotion of Global Warming Countermeasures for action on climate change. 3.2.1. i. The National Targets and Plans of Action on Energy Saving and Climate Change in Japan Kyoto Protocol Target Achievement Plan The Japanese government has promoted various countermeasure plans for climate change since the 1990’s. Following previous plans, the Kyoto Protocol Target Achievement Plan was established in 2005 right after the effectuation of the Kyoto Protocol. The Kyoto Protocol Target Achievement Plan claimed goals and set target GHG emission amounts for different chemicals and functions of the society in Japan (e.g. industry, household).85 The following are the goals of the plan. − − Achieving a 6% reduction of GHG emissions within 2008 to 2012 compared to 1990 as it was promised in the Kyoto Protocol Contributing to the global reduction of GHG emissions in a long term (Created by DTC based on Government of Japan. (2008). 京都議定書目標達成計画 [Kyoto Protocol Target Achievement Plan]. Retrieved from http://www.env.go.jp/earth/ondanka/kptap/plan080328/full.pdf) ii. Cool Earth 50 As a post Kyoto Protocol initiative of the Japanese government, in 2007, Prime Minister Abe proposed a strategy called Cool Earth 50. It suggested setting a global goal of halving GHG emissions of 2007 levels in the world as a whole by 2050.86 To realize the goal, in 2013, the government announced the ACE, which consists of “innovation of low carbon technologies,” “application of existing technologies,” and “partnership with various stakeholders.”87 Figure 18. Summary of ACE Action Innovation Application − − − − − Partnership − − − Summary Invest USD110 billion into energy and environment over five years Implement Low Carbon Technology Plan (created to realize the low-carbon society in 2008) Host an annual innovation forum with the participation of world innovation leaders Double the number of member countries for the Joint Crediting Mechanisms in the next three years Facilitate intentional standardization of low-carbon technologies developed in Japan such as LED lightings Launch a satellite to observe GHG emissions in 2017 Invest USD 16 billion in developing countries to support their disaster prevention and private finance regarding climate change in the next three years (2013-2015) Lead the international discussion to develop the new international framework against climate change (Created by DTC based on ACE: Actions for Cool Earth: Japan’s diplomatic strategy for countering global warming. (n.d.). [PDF document].; Cabinet Office, Government of Japan. (n.d.). 環境エネルギー技術革新計画 [Low Carbon Technology Plan]. Retrieved from http://www8.cao.go.jp/cstp/sonota/kankyoene/kankyoene.html; Ministry of Foreign Affairs, Government of Japan, Ministry of Economy, Trade and Industry, Government of Japan, & Ministry of the Environment, Government of Japan. (2013). ACE(エース):「Actions for Cool Earth(美しい 29 GSEP Steel Working Group 星への行動)」: 攻めの地球温暖化外交戦略 [Ace: “Action for Cool Earth (Actions for Cool Earth)”: Offensive diplomatic strategy regarding global warming] [PDF document]. Retrieved from http://www.kantei.go.jp/jp/singi/ondanka/kaisai/dai27/siryou2_1.pdf) In 2013, as part of ACE, the government decided to host Innovation for Cool Earth Forum (ICEF) annually.88 ICEF aims to use innovation to address climate change by investigating “what innovative measures should be developed, how the innovation should be promoted, and how cooperation should be enhanced among the stakeholders.”89 The forum has been successfully held twice so far.9091 The latest ICEF was held on October 7 and 8, 2015, welcoming approximately 1,000 experts from all over the world.92 3.2.2. Legal Measures to Support the National Targets and Plans In Japan, the Energy Saving Act is the main legal function to facilitate energy saving efforts, and the Act on Promotion of Global Warming Countermeasures is the one to facilitate action on climate change. While the Energy Saving Act is not based on any particular master plan, the Act on Promotion of Global Warming Countermeasures plays a role to support national plans. Both of them are recognized as the most fundamental laws in Japan for action on energy saving and climate change respectively. i. Act on the Rational Use of Energy (Energy Saving Act) The Japanese government’s main policy for energy saving is the Energy Saving Act, which was enacted in 1979 during the oil crisis.93 The purpose of the Act is “with the aim to contribute to securing the effective utilization of fuel resources according to the economic and social environment concerning energy in and outside Japan, to take the measures required for the rational use of energy with regard to factories, etc., transportation, buildings, and machinery and equipment as well as other necessary measures, etc. for comprehensively promoting the rational use of energy, thereby contributing to the sound development of the national economy.”94 For example, the Energy Saving Act adopted a regulation for plants as described below. Figure 19. Summary of the Energy Saving Act’s Regulation for Plants Target Companies which use more than 1,500kg of energy (in a crude oil equivalent) per year Requirement − File an energy consumption report and get recognized as specified business operators or specified chain business operators − Appoint Energy Management Control Officer and Energy Management Planning Promoter and report any appointments and dismissals of Energy Managers − Submit periodical reports and medium and long-term plans Penalty A fine can be imposed to companies in the case of failed or false reporting and rejection of inspection. (Created by DTC based on Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry, Government of Japan. (2014). エネ ルギーの使用の合理化等に関する法律: 省エネ法の概要 [Act on the Rational Use of Energy: Summary of Energy Saving Act]. Retrieved from 30 GSEP Steel Working Group http://www.enecho.meti.go.jp/category/saving_and_new/saving/summary/pdf/2014_gaiyo.pdf). ii. Act on Promotion of Global Warming Countermeasures Act on Promotion of Global Warming Countermeasures was enacted in 1998 as the first step of global warming countermeasures in Japan in response to the adoption of the Kyoto Protocol in 1997. It sets a framework under which the national government, local governments, businesses, and citizens can take action to tackle global warming all together. In 2005, when the Kyoto Protocol came into effect, the law was amended to introduce the system of GHG emissions calculation, reporting, and announcement. In the system, large GHG emitters have to calculate and report their emission amounts to the national government, and the government collects and announces the result to the public.95 The summary of the reporting rule of the system is below. Figure 20. Summary of the GHG Emissions Reporting Rule under the Act on Promotion of Global Warming Countermeasures Target GHG Target Emitter (“Specified Emitter”) Requirement Penalty Energy-originated CO2 Non energy-oriented CO2, CH4, N2O, HFC, PFC, and SF6 Parties which use more than 1,500kl of energy Either of parties which: (in a crude oil equivalent) per year emit more than 3,000t of a target GHG (in a CO2 equivalent) per year use always 21 employees or more “Specified emitters” have to report the GHG emission amounts etc. every fiscal year to the minister who has jurisdiction over the business. A fine can be imposed to specified emitters in the case of failed or false reporting. (Created by DTC based on The Ministry of the Environment, Government of Japan., & Ministry of Economy, Trade and Industry, Government of Japan. (2015). 地球温暖化対策の推進に関する法律に基づく温室効果ガス排出量算定・報告・公表制度による平成 24(2012)年度温室 効果ガス排出量の集計結果 [Collected results of GHG emissions in 2012 with the system of GHS emissions calculation, reporting, and announcement based on the Act on Promotion of Global Warming Countermeasures]. Retrieved from https://www.env.go.jp/press/files/jp/27440.pdf; Ministry of Justice, Government of Japan. (2009). 地球温暖化対策の推進に関する法律: Act on Promotion of Global Warming Countermeasures [Act on Promotion of Global Warming Countermeasures: Act on Promotion of Global Warming Countermeasures]. Retrieved from http://www.japaneselawtranslation.go.jp/law/detail/?ft=1&re=01&dn=1&co=01&ia=03&x=0&y=0&ky=%E5%9C%B0%E7%90%83%E6%B8%A9 %E6%9A%96%E5%8C%96&page=13) 3.2.3. Emissions Reduction Target toward 2030 Japan submitted the INDC to UNFCCC in July 2015.96 The GHG emissions reduction target is “at the level of a reduction of 26.0% by fiscal year (FY) 2030 compared to FY 2013.”97 To achieve the target, Japan prepared measures for the following areas. − − − − Energy-originated CO2 from: the industry sector, commercial and other sectors, residential sector, transport sector, energy conversion sector Non energy-oriented CO2, CH4, and N2O Fluorinated gases The land use, land-use change and forestry sector (Created by DTC based on Japan. (2015). Submission of Japan’s Intended Nationally Determined Contribution (INDC). Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/Japan/1/20150717_Japan's%20INDC.pdf) 31 GSEP Steel Working Group 3.3. Iron and Steel Industry 3.3.1. i. Voluntary Action on Energy Saving and Climate Change Voluntary Action Plan and Commitment to a Low Carbon Society The energy saving history of the Japanese iron and steel industry dates back to the 1970’s.98 The two oil crises in the 1970’s made the Japanese iron and steel industry realize the importance of energy conservation. It has thus invested proactively in developing and adopting energy saving technologies, especially through the industrygovernment-academia collaboration.99 For energy saving and environmental technologies, the Japanese iron and steel industry invested ¥3 trillion and achieved 20% energy saving between 1971 and 1989. From 1990 to 2012, ¥1.8 trillion was invested to achieve 12% energy saving.100 In order to address energy saving as the whole Japanese iron and steel industry, JISF has settled several voluntary targets to reduce energy consumption and CO2 emissions since the 1990’s. In 1997, as a master plan of the iron and steel industry, JISF announced the Voluntary Action Plan under the Keidanren Voluntary Action Plan on the Environment. The Keidanren Voluntary Action Plan on the Environment was developed by Keidanren, the Japan Business Federation, based on the voluntary action plans of 36 industry sectors.101 The action plans adopted the Plan Do-Check-Act (PDCA) cycle in the system in which industries kept improving their plans based on annual public reviews.102103 Also, the Japanese government (Ministry of Economy, Trade and Industry (METI) since 1998 and Ministry of the Environment since 2007) participated in the reviewing process for each industry’s progress in order to increase the transparency, credibility, and probability of the voluntary plans.104 The government recognized the Keidanren Voluntary Action Plan on the Environment as one of the major pillars for global warming countermeasures in the industry field.105 Under the Keidanren Voluntary Action Plan on the Environment, 34 industries were committed to the target of reducing the average GHG emissions of 2008 to 2012 less than 1990 levels. The target was met with the GHG emissions cut by 12.1% from 1990 levels.106 In 2012, Keidanren announced a new action plan called Keidanren’s Commitment to a Low Carbon Society. The plan targets 2013 to 2020 based on the long-term vision of contributing technologies of the Japanese industries for the target of halving the world GHG emissions by 2050. As a successor of the Keidanren Voluntary Action Plan on the Environment, the plan expands the focus to the international GHG emissions reduction.107 Also, it strengthens the PDCA cycle with the reviews from the third party, including the government.108 Keidanren recently announced the second phase of the plan targeting 2020 to 2030.109 JISF has been developing plans as one of the participant industries in both first and second phases of the Keidanren’s Commitment to a Low Carbon Society.110111 Throughout the Voluntary Action Plan (2008-2012) and the first and second phase of Commitment to a Low Carbon Society (2013-2020; 2020-2030), JISF has set goals for three major activities: Eco Process (“efficiency improvement of production process”), Eco Solution (“global contribution from the use of energy conservation technologies and equipment”), and Eco Product (“contribution from use of high-grade steel in finished products”).112 In addition, as long-term efforts, JISF has set goals for activities to develop innovative technologies such as COURSE50 and ferro coke.113 Summaries of the Voluntary Action Plan and Commitment to a Low Carbon Society Phase I and II are below. 32 GSEP Steel Working Group Figure 21. Summary of JISF’s Voluntary Action Plan Voluntary Action Plan (2008~2012) • JISF set a voluntary target to reduce energy consumption by 10% as 2008-2012 average compared to 1990 (Eco Process). • Participation: 85 steel companies = 97% of crude steel production in Japan • Achieved 10.7% reduction in total energy consumption as 2008-2012 average compared with 1990. Total Energy Consumption in the Japanese Steel Industry* Target (FY) Clued steel Unit Energy Consumption* (Based on FY1990) FY 12 -8.0% Avg.FY8-12 91.8 (-8.2) (FY) *Conversion factor of electricity is calculated as generating end. (Created by DTC based on Fujimoto, K. (2015). Current status and future prospect of Japanese steel industry [PowerPoint slides].) 33 GSEP Steel Working Group Figure 22. Summary of JISF’s Commitment to a Low Carbon Society JISF’s Commitment to a Low Carbon Society (Phase I: 2013~2020, Phase II: 2020~2030) Short-Term Plan (Toward 2020 for Phase I and 2030 for Phase II) Eco Process Target CO2 reduction vs. BAU emission Phase I: 5 million-tons Phase II: 9 million-tons Eco Solution Eco Product Target CO2 reduction Target CO2 reduction Phase I: 70 million-tons (Actual ⇒ 50 million-tons) Phase II: 80 million-tons Phase I: 34 million-tons (Actual ⇒ 26 million-tons) Phase II: 42 million-tons Long-Term Plan Development of: COURSE50 (from Phase I): 30% cut of CO2 emissions from production processes; operations by 2030; widespread use of these processes by 2050 Ferro Coke (from Phase II) (Created by DTC based on the Japan Iron and Steel Federation. (2015). Steel industry measures to combat global warming: Report of “Commitment to a Low Carbon Society” [PDF document]. Retrieved from http://www.jisf.or.jp/en/activity/climate/documents/Reportofcommitmenttoalowcarbonsociety.pdf; the Japan Iron and Steel Federation. (2014). Overview of energy saving activities in Japanese steel industry and ISO14404 [PowerPoint slides].) ii. ISO14404 Along with developing the Voluntary Action Plan and the Commitment to a Low Carbon Society and putting them into practice, JISF has developed tools for an energy management system by collaborating with global initiatives. The tools can increase the energy efficiency in iron and steel production. ISO14404 is a calculation method of CO2/energy intensity of iron and steel production. Indexes to evaluate energy efficiency in the iron and steel industry had been discussed among multiple countries for years. APP, in which Australia, China, India, Japan, Korea, and the US participated, developed an evaluation method for energy intensity in plants as a sectorial approach for climate change.114 By applying the APP method, World Steel Association has been managing the “CO2 Data Collection” which collects and analyzes energy data of steel companies since 2007.115116 ISO14404 was developed based on such methods and efforts in a way that the calculation becomes simpler and more versatile. JISF took the leadership to develop an international standard to calculate CO2/energy intensity, and ISO14404-01 (for BF-BOF) and ISO14404-02 (for EAF) were officially published as ISO standards in 2013.117 34 GSEP Steel Working Group Figure 23. Development Process of ISO14404 ISO14404, simple and more versatile analytical tool for emission and energy intensity, was developed. World Steel has been managing the “CO2 Data Collection” based on APP method. APP has developed an evaluation method for energy intensity in plants as a sectorial approach for global warming countermeasures. (Created by DTC based on Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度 エネルギー使用合理化国際標 準化推進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方法)に 関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international standardization promotion project (Joint research and development and foundation development project for dissemination of energy-saving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2 emissions amount and intensity)): Research report].) ISO14404 enables steel plants in the world to evaluate CO2 intensity by a universally common indicator and thereby contributes to CO2 emissions reduction globally. Users are allowed to apply their own conversion factors if they are credible. ISO14404 defines the whole steel plant as the CO2 emission boundary. This type of boundary enables users to assess CO2 performance regardless of the configuration of the site. Steel production processes are comprised of a lot of processes and include energy interchanges among the facilities in the site. In order to optimize the energy use in the site, it is crucial to manage and evaluate the energy use as a whole steel plant, not by a process-by-process basis. Figure 24. Boundary Approach of ISO14404 (Extracted from Kitaguchi, H. (2015). ISO14404: Calculation methodology for energy consumption and CO2 emission from a steel plant [PowerPoint slides], p. 3.) The calculation does not require any measurement hardware. Instead, ISO14404 simply requires three kinds of 35 GSEP Steel Working Group data that all the steel companies record regularly: − − − Input CO2: CO2 emissions that arise from energy source or materials which are supplied to the steel plant Output CO2: CO2 emissions that correspond to exported material and electricity or steam Crude steel production data CO2 emissions are calculated by multiplying energy consumption by CO2 emissions factors. By subtracting output CO2 from input CO2, the total CO2 emissions in a whole plant are calculated. CO2 intensity is calculated by dividing the total CO2 emissions by crude steel production. Energy conversion factors are also available to calculate total energy consumption and energy intensity. Figure 25. Calculation Formula of ISO14404 ISO14404 provides default conversion factors for each CO2 emission source. For electricity, ISO14404 applies a conversion factor that is equivalent to the world average electricity since CO2 emissions factors of electricity depend on power supply composition of the area, which is not directly related to energy saving activities of the plant. ISO14404 applies three types of CO2 emission sources – direct, credit, and upstream. Direct emissions are CO2 emissions from carbon contents of the emission sources. Credit emissions are CO2 emissions of sold materials, which will be exempted from the total CO2 emissions. ISO14404 also calculates CO2 emissions used to produce purchased materials, such as coke, oxygen etc. as “upstream emission.” By applying upstream emission, CO2 intensity relating to steel production is accurately evaluated regardless of quality of low material or site configuration, for example whether the plant owns oxygen plant or purchase oxygen. 36 GSEP Steel Working Group Figure 26. Upstream Concept of ISO14404 B: Outsource the oxygen production A: Oxygen Plant locates inside the steel plant Direct Emission Direct Emission CO2 Upstream Emission Steel Plant Oxyg en Oxygen Plant CO2 Electric Arc Furnace Oxygen Oxygen Plant Electricity CO2 Steel Plant Electric Arc Furnace Electricity CO2 = CO2 + CO2 (Extracted from Kitaguchi, H. (2015). ISO14404: Calculation methodology for energy consumption and CO2 emission from a steel plant [PowerPoint slides], p. 6.) Once steel plants adopt ISO14404, plants will be able to regularly review the energy saving condition and thereby establish an energy management structure. In addition, by combining ISO and technology references that illustrate reduction potential of energy saving technologies, steel plants will be able to simulate energy saving potential of technology introduction. iii. Technologies Customized List (TCL) JISF has been actively involved in the development of TCL, a “technology reference of energy saving technologies suitable for each country/region,” with METI.118119 Experienced experts compile the list with affluent research and include technologies for energy saving, environmental protection, and recycling. TCLs are customized for each country as well.120 TCLs for ASEAN countries were created in ASEAN Japan Steel Initiative, which JISF participates. Also, a TCL for India was created in the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry with a collaborative effort of the Japanese and Indian iron and steel industries. JISF suggests that more efficient and cost competitive steel production processes can be realized by applying ISO14404 as software and TCL as hardware to the PDCA framework and facilitating self-improvement of steel plants. JISF tries to contribute to sound and sustainable growth of the global steel market by promoting this general approach to other countries.121 37 GSEP Steel Working Group Figure 27. PDCA Framework with ISO14404 and TCL (Extracted from Kitaguchi, H. (2015). ISO14404: Calculation methodology for energy consumption and CO2 emission from a steel plant [PowerPoint slides], p. 6.) Under the sponsorship of METI, JISF has been introducing an energy management method using ISO14404 to the iron and steel industry in India and ASEAN countries since the 2010’s. Japanese experts demonstrate how to use ISO14404 by using the original data of each plant. In addition, experts conduct plant diagnosis to find opportunities for energy saving and recommend several energy efficient technologies. 3.3.2. The Status of Energy Saving Technology Implementation As mentioned earlier, the Japanese iron and steel industry has been making significant investment in energy saving technologies and introducing them since the oil crisis in the 1970’s. As a result, the current utilization rates of major energy saving technologies are almost 100% as shown below.122 38 GSEP Steel Working Group Figure 28. Utilization Rates of Major Energy Conservation Equipment in the Japanese Iron and Steel Industry (%) 100 80 60 40 20 0 Continuous Coke Oven Converter Gas Coke Dry Casting Gas Recovery Recovery Quenching (CDQ) Top Pressure Recovery Turbine (TRT) (Figure created by DTC, Data by the Japan Iron and Steel Federation.) In addition, according to the questionnaire that was distributed to JISF based on the agreement made in the GSEP Steel WG last year, the following technologies have been commonly installed and actively used in the Japanese iron and steel industry. They are considered to be significantly effective for energy conservation and environmental protection.123 Figure 29. Commonly Installed and Actively Used Energy Saving Technologies in the Japanese Iron and Steel Industry Technology Coke Dry Quenching*1 Coal Moisture Control Top Pressure Recovery Turbine Pulverized Coal Injection System Regenerative Burner Total System for reheating furnace*2 Energy Monitoring and Management Systems Cogeneration (include Gas Turbine Combined Cycle)*3 Description The heat recovered by inert gas is used to produce steam, which may be used on-site or to generate electricity. Coal moisture control uses the waste heat from the coke oven gas to dry the coal used for coke making. This system generates electric power by employing blast furnace top gas to drive a turbinegenerator. This system comprises a technology and equipment for injecting pulverized coal directly through the blast furnace tuyeres as a partial substitute for the coke used in the blast furnace. A unit, Burner with Regenerator, ensures highly efficient and selectable thermal storage. This measure includes site energy management systems for optimal energy recovery and distribution between various processes and plants. This equipment is a high-efficiency (47.5%, HHV Base) combined generator set using the by-product gas produced during iron and steel manufacturing process as the fuel. (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.; the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies Customized List & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy- 39 GSEP Steel Working Group saving and environmental protection.) Figure 30. (*1) Illustration of Coke Dry Quenching (Extracted from the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies customized list & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-saving and environmental protection.) Figure 31. (*2) Illustration of Regenerative Burner Total System for Reheating Furnace (Extracted from the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies customized list & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-saving and environmental protection.) 40 GSEP Steel Working Group Figure 32. (*3) Illustration of Cogeneration (Include Gas Turbine Combined Cycle (GTCC)) (Extracted from the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies customized list & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-saving and environmental protection.) 41 GSEP Steel Working Group 4. People’s Republic of China (China) 4.1. Overview of Action on Energy Saving and Climate Change in China China attaches high importance to addressing climate change. China has been one of the countries to formulate and implement a national climate change program. Recently, China adopted the National Plan on Climate Change for 2014-2020 to make sure that it meets the target of cutting carbon intensity by 40% to 45% by 2020 from 2005 levels. In 2013, carbon intensity in China was down by 28.5% from 2005 levels. That was equivalent to a reduction of 2.5 billion tons of CO2 emissions. In terms of the iron and steel industry, between 2006 and 2013, China made a huge amount of backward production capacity. China’s recent energy saving and climate change policies and activities are basically defined and directed in the 12th Five-Year Plan for National Economic and Social Development and its associated plans as well as the recently adopted national master plan, the National Plan on Climate Change for 2014-2020. Meanwhile, as legally binding measures, China has adopted the Law of the People’s Republic of China on Energy Conservation in 1997 and Renewable Energy Law of the People’s Republic of China in 2005. Figure 33 shows the overview of Chinese policies and laws related to energy saving and climate change. Figure 33. Overview of Chinese Policies and Laws Related to Energy Saving and Climate Change 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Law of the People's Republic of China on Energy Conservation (Adopted in 1997 and Amended in 2007) Amen ded Laws and Regulations Renewable Energy Law of the People's Republic of China (Adopted in 2005 and Amended in 2009) Amen ded National Development Plan Climate Change Policies The 12th Five-Year Plan for National Economic and Social Development The 11th Five Year Plan for National Economic and Social Development China’s National Climate Change Programme The 13th-Five Year Plan for National Economic and Social Development China’s National Plan on Climate Change for 2014-2020 The Work Plan for Controlling Greenhouse Gas Emissions During the 12th Five-Year Plan Period The Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan Period Climate Change & Energy Saving policies The 2014-2015 Action Plan for Energy Conservation, Emissions Reduction and Low Carbon Development Energy Development Plan of the 12th Five Year Plan Energy Development Strategy Action Plan Energy Saving Policies Action Plan on Clean and Highly Efficient Use of Coal Top-1,000 Energy-Consuming Enterprises Program Top-10,000 Energy-Consuming Enterprises Program Medium and Long-Term Development Plan for Renewable Energy in China Industrial Policies The Plan for Industrial Transformation and Upgrading (2011-2015) Blueprint for the Adjustment and Revitalization of the Steel Industry 42 2021~ GSEP Steel Working Group 4.2. Government 4.2.1. i. The National Targets and Plans of Action on Energy Saving and Climate Change in China 12th Five-Year Plan for National Economic and Social Development (12th Five-Year Plan) The 12th Five Year Plan was adopted in the 11th National People's Congress fourth meeting which was held in March 2011, and it was valid from 2011 until 2015. This plan aimed at solving issues being left as the result of the 11th Five Year Plan for National Economic and Social Development (2006-2010) (11th Five-Year Plan). In particular, the following are the issues mentioned in the plan. − − − The increasing income gap between urban areas and rural areas The critical state of economical sustainability resulting from waste of resources and environmental destruction Obstruction of domestic demand expansion due to a higher rate of savings (51.3% in 2008; world average is 19.7%) caused by the unsatisfactory social security system (Created by DTC based on Mitsui Global Strategic Studies Institute. (2011). 世界・地域分析レポート [World and region analysis report]. Retrieved from http://mitsui.mgssi.com/issues/report/r1104c_baatarkimura.pdf) To address those issues, in the 12th Fiver Year Plan, the government of China upheld a transformation of the economic development model by “Expansion of domestic demand” and “structural adjustment”. This policy meant that China was heading for a shift from investment-led growth to consumption-led growth.124 As the specific economic growth target, the government of China set a 7.0% of average GDP growth rate during the 12th Five Year Plan period (2011-2015). The contents of the 12th Five Year Plan are shown below. Figure 34. Contents of the 12th Five Year Plan Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 Part 11 Part 12 Part 13 Part 14 Part 15 Part 16 Contents Transforming growth pattern, create a new scenario for scientific development Strengthen and benefit the farmers, accelerating the construction of socialist new Transformation and upgrading, enhancing the competitiveness of industrial core Creating the environment necessary for extensive development in the services industry Optimizing the structure, accelerating the coordinated regional development and sound urbanization development Green development, construct energy conservation and environment friendly society Innovation driven, implementing the strategy of reinvigorating the country through science and education and the strategy of strengthening the country through human resource development Improve people's wellbeing, establish and improve basic public service system Cure the symptoms and the roots, strengthen and innovate social management Inherit and innovate, promoting the big development and prosperous of culture Reform in difficult areas, improving socialism institution of market economy Mutual beneficial and win-win, improving the opening up Develop democracy; promote the construction of socialism political civilization Deepen cooperation; construct the common homeland for Chinese nation Civil-military integration, strengthen the construction of national defense and army modernization Strengthen implementation, achieve the grand development blueprint 43 GSEP Steel Working Group In regard to energy saving, a specific energy saving goal was mentioned in Chapter.3 of Part1. The target was being set based on the target average GDP growth rate during 2011-2015 (7.0%). Figure 35. Energy Saving Target in the 12th Five Year Plan Target 2010 Farmland reserves (billion mu) 2015 1818 Decrease in water consumption per unit of value-added industrial output (%) 1818 - Change over Forecast/binding 5 years (%) 0 binding 30 binding Increase of water efficiency coefficient in aguricultural irrigation 0.5 0.53 0.03 forecast Increase of non-fossil fuel usage in primary energy consumption (%) 8.3 11.4 3.1 binding Decrease in energy consumption per unit of GDP (%) - - 16 binding Decrease in CO2 emissions per unit of GDP (%) Chemical Oxygen Demand (COD) Total decrease in emissions Sulphur Dioxide (SO2) of major pollutants (%) Ammonia Nitrogen - - 17 binding - - 8 - - 8 - - 10 - - 10 Nitrous Oxides Forest Increase Forest coverage rate (%) 3 Forest stock (m ) 20.36 21.66 1.3 137 143 6 binding binding (Created by DTC based on the 12th Five Year Plan) 13th Five-Year Plan for National Economic and Social Development will be issued in March 2016.125 ii. Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan Period On August 31, 2011, China’s State Council released the Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan Period. While energy saving targets and emissions reduction targets for major pollutants were mentioned in the 12th Five-Year Plan, the Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan Period defined the following targets for the local governments. − − − − Energy saving targets Chemical Oxygen Demand emissions reduction target NH3 emissions reduction targets SO2 emissions reduction targets NO emissions reduction targets − (Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-2: Energy and carbon intensity targets of the 12th Five Year Plan. Retrieved from http://iepd.iipnetwork.org/policy/energy-and-carbon-intensity-targets-12th-five-year-plan) The Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year 44 GSEP Steel Working Group Plan Period consisted of twelve chapters which described overall requirements and major objectives of the plan and main measures for promoting energy saving and pollutants emissions reduction in China. The overview of the plan is shown in Figure 36. Figure 36. Overview of the Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan Period 1 Main Contents Overall requirements and main targets 2 Enhancement of energy saving/emissions reduction target responsibilities 3 Optimization of industrial structure 4 Implementation of energy saving/emissions reduction important projects 5 Enhancement of energy saving/emissions reduction management For the iron and steel industry: − Thoroughly applying stack gas desulfurization of sintering machines − Attaching Desulfurization/Denitration Apparatus to all newly placed sintering machines Acceleration of recycling economic system development 6 7 8 9 10 11 12 Acceleration of energy saving/emissions reduction technologies development and application and diffusion Provision of economic policies for energy saving/emissions reduction Enhancement of monitoring and inspection of energy saving/emissions reduction progress Dissemination of market mechanism in energy saving/emissions reduction field Improvement of fundamental work and capacity building for energy saving/emissions reduction Promotion of entire society’s participation to energy saving/emissions reduction (Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-2:Energy and Carbon Intensity Targets of the 12th Five Year Plan. Retrieved from http://iepd.iipnetwork.org/policy/energy-and-carbon-intensity-targets-12th-five-year-plan etc.) iii. Energy Development Plan of the 12th Five Year Plan On January 1, 2013, the Energy Development Plan of the 12th Five Year Plan was released by China’s State Council with the focus on energy supply in China. The plan aimed to develop the Chinese energy supply system into the one with more security and environmental considerations. Emerging international and domestic concerns regarding energy supply were addressed in the plan as shown in Figure 37. 45 GSEP Steel Working Group Figure 37. Major Concerns Addressed in the Energy Development Plan of the 12th Five Year Plan Major Concerns Addressed in the Plan International Increasing international competition for energy resources Major shifts in energy supply globally The maintained or increasing volatility of energy markets The “complex game” of climate change Domestic A difficult energy security situation (57% reliance on foreign oil), whereby national production will be difficult to increase Increasing pressure on the ecological environment, including air, land, and water resources A continued state of economic development A lagging energy infrastructure Lack of energy innovation Institutional constraints becoming increasingly apparent, highlighting the need for deepened reform in the energy industry (Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-6:Energy Development Plan of the 12th Five Year Plan. Retrieved from http://iepd.iipnetwork.org/policy/energy-development-plan-12th-five-year-plan) Based on these concerns in mind, the plan also mentioned principles and goals. For principles, the plan prioritized the following. − − − − − − − Energy conservation Reduce reliance on foreign energy supply as much as possible Diversify development of energy supply sources Emphasize environmental protection Deepen the reform of energy pricing and market mechanisms Increase innovation and international cooperation Improve people’s livelihoods (Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-6:Energy Development Plan of the 12th Five Year Plan. Retrieved from http://iepd.iipnetwork.org/policy/energy-development-plan-12th-five-year-plan) Also the plan set high level binding goals such as the following. − − − − Energy intensity Carbon intensity Non-fossil fuel energy Coal-fired power emissions index targets (Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-6:Energy Development Plan of the 12th Five Year Plan. Retrieved from http://iepd.iipnetwork.org/policy/energy-development-plan-12th-five-year-plan) 46 GSEP Steel Working Group iv. Top-10,000 Energy-Consuming Enterprises Program The Top-10,000 Energy-Consuming Enterprises Program was a mandatory program to target on 250Mtce energy saving by 2015, focusing on largest energy consuming enterprises in China. The program was a successor of Top1,000 Energy-Consuming Enterprises Program which had been conducted during the 11th Five-Year Plan period and achieved 150Mtce against the original target of 100Mtce. Figure 38 illustrates the transition between the two programs. Among Top-1,000 enterprises, the majority were from the iron and steel and chemical industries. Also, the iron and steel enterprises accounted for a large amount of the energy consumption. The overview of the program is shown in Figure 39. Figure 38. Transition from the Top 1,000 Energy Consuming Enterprises Program to the Top 10,000 Energy-Consuming Enterprises Program The 11th Five Year Plan Gradually expanded at the local level during 11th FYP The 12th Five Year Plan Covers total 17,000 companies including (≒2/3 of China’s total energy consumption); − more than 15,000 industrial enterprises using more than 10,000 tce/y − about 160 large transportation enterprises − public buildings using more than 5,000 tce/y Targeting largest 1,000 companies Energy saving target: of the Program: 250 Mtce Achieve 150 Mtce energy saving against original target of 100 Mtce. Top 1,000 EnergyConsuming Enterprises Program 37% of China’s total energy saving target of 670 Mtce by 2015 Top 10,000 Energy-Consuming Enterprises Program 47 GSEP Steel Working Group Figure 39. Overview of the Top 10,000 Energy-Consuming Enterprises Program Mandatory system of the Program Evaluation of the progress by local governments Publicize the results If enterprises do not meet the target… Local governments are authorized to supervise; − the progress of local Enterprises, and − centrally owned StateOwned Enterprises • Mandatory energy audits will be conducted • Adjustment/retrofits will be required Key elements of the Program Establishment of energy audit systems Implementation of the target responsibility and accounting system, allocating targets to companies, plants and workshops Conducting energy audits and developing energy conservation plans, based on the Technical Principle of Energy Audits in Enterprises Implementation of energy audit systems Conducting energy efficiency benchmarking Establishment of energy management systems following China’s energy management standard Expansion of the energy managers training pilots Implementation of energy utilization reporting system Continuation of phasing-out of backward technologies Acceleration of energy conservation retrofits by allocating special funding for annual retrofits and cooperating with Energy Service Companies (ESCOs) Improvement of energy measurement and measuring instrument, encouraging companies to build energy management and control centers and to use automation and IT Establishment of energy conservation incentive mechanisms 48 GSEP Steel Working Group v. Work Plan for Controlling Greenhouse Gas Emissions during the 12th Five-Year Plan Period The Work Plan for Controlling Greenhouse Gas Emissions during the 12th Five-Year Plan Period was adopted by China’s State Council in December 2011. This plan aimed at realizing the target for reducing CO2 emissions per unit of GDP by 17% by 2015 from 2010 levels by engaging in the following activities and measures; − − − − − − − vi. Controlling CO2 emissions in non-energy activities Controlling the emissions of GHGs such as methane, nitrous oxide, HFCs, perfluorocarbon and sulfur hexafluoride Improve climate change policy systems and mechanisms, basically establish systems for the statistical accounting of GHG emissions Gradually create a carbon emission trading market Form a group of low carbon provinces Establish a group of model low carbon parks and communities Popularize numerous low carbon technologies and products with sound emissions reduction effects China's National Plan on Climate Change for 2014-2020 China’s National Plan on Climate Change for 2014-2020 was released by China’s National Development and Reform Commission in November 2014. This plan outlines China’s goals related to GHG emissions, climate change adaptability, and a national emission trading scheme among others. A noteworthy fact is that the plan insists that the total GHG emissions from the steel and cement sectors should stabilize at 2015 levels by 2020. This is because the emissions from Chinese steel and cement producers currently make up about 20% of the country’s total CO2 emissions and therefore the progress in those industries would have a huge impact on CO2 emissions reduction. However, at same time, it is not clear how emissions reduction in the steel and construction sectors will be realized or what will happen in case those industries fail to stabilize the GHG emissions by 2020. vii. Action Plan on Clean and Highly Efficient Use of Coal The Action Plan on Clean and Highly Efficient Use of Coal was released by China’s National Energy Administration in May 2015. It provides detailed action plans to address the coal quality upgrading, retrofitting of coal-fired thermal plants, industrial boilers, coal chemical operations, and the scattered use of coal for residential purposes.126 49 GSEP Steel Working Group Figure 40. Overview of the Action Plan on Clean and Highly Efficient Use of Coal Pillars of “Action Plan on Clean and Highly Efficient Use of Coal” Coal upgrading Thermal plants & boilers retrofitting Coal chemicals upgrading Residential coal use Wastes More than 70% of the raw coal will be washed in China by 2017, and over 80% by 2020. By 2020, China will have 11 large coal storage and blending bases and 30 coal logistics parks each with annual circulation at 20 million tonnes or above. Breakthrough should be achieved in low-rank coal upgrading technology by 2017 and a group of 1 Mtpa demonstration projects will be built by 2020. Coal used by power generation should account for over 60% of the country’s total coal consumption. For industrial boilers, by 2020, China will phase out all the coal-fired boilers with capacity of 600,000 T/h. Under the action plan, coal-fired industrial boilers will all shift to burn natural gas or clean coal by 2020 in the Beijing-Tianjin-Hebei city clusters, Pearl River delta and Yangtze River delta area. Efficient utilization of coke oven gas, coal tar and other by products. Steadily advance modern coal chemical operations through demonstration projects to improve the technological level and energy conversion efficiency. Expanding bans on coal burning to include suburban areas. Promote centralized heating and power supply by natural gas and renewables. Bans of sale and burning of high-ash coal and high-sulphur coal in the worst affected regions. Cut coal consumption by over 80 million tonnes by 2017 and more than 160 million tonnes by 2020. By 2020, more than 80% of coal gangue should be utilized comprehensively; coal mine gas extraction and utilization reaches 60%. (Created by DTC based on China Coal Resource. (2015). China releases clean coal action plan 2015-2020. H. Huo (Ed.). Retrieved from http://en.sxcoal.com/117736/NewsShow.html) 4.2.2. Legal Measures to Support the National Targets and Plans In China, two major laws regarding energy issues (the Law of the People's Republic of China on Energy Conservation and Renewable Energy Law of the People's Republic of China) were adopted and became the foundation of other policies and activities in the energy saving sphere. i. Law of the People's Republic of China on Energy Conservation The Law of the People's Republic of China on Energy Conservation was adopted in the 8th National People's Congress twenty-eighth meeting which was held in November 1997. It was modified in the 10th National People’s Congress thirtieth meeting which was held in October 2007. The current law was enforced in April 2008. After the amendment in October 2007, the law became the groundwork for other various policies and activities to promote GHG emissions reduction and energy saving and develop renewable energy. The overview of the law is shown in Figure 41. 50 GSEP Steel Working Group Figure 41. Overview of the Law of the People's Republic of China on Energy Conservation The law is about; − − − − Energy management Efficient energy use Development of energy saving technologies Legal responsibilities regarding energy saving The law defines and sets; − − − − Promotion of energy saving in energy field such as coal and power sector Acceleration of investment into highly efficient projects Growing specialists in energy field Promotion of energy saving technologies development such as cogeneration − Penalties to control excessive energy consumption Points of the law after amendment Before amendment “Energy conservation constitutes a long-term strategic policy in the nation's economic development.”(Article 4) 6 Chapters 50 Articles Amendment Oct. 2007 Improved contents of the regulation such as; • Strengthening legal responsibility, and • Promoting energy saving in specific sectors. Adoption of progress status as evaluation standards of local government Each government have to include energy saving activities into its mid/long-term plans and report to the General Assembly local levels. Introduction of target responsibility system and examination evaluation system It is defined that progress status of the energy saving target become part of evaluation standards for top of each local government. Local governments have to report the progress status to State Council every year. Including more broad measures to promote energy saving Preferential tax scheme, subsidies, public procurement, financial support and price policy are included into the law. After amendment “Energy conservation is a basic national policy of China. The State implements an energy development strategy of giving consideration to conservation and development simultaneously, and placing top priority on conservation.”(Article 4) 7 Chapters 87 Articles ii. Renewable Energy Law of the People's Republic of China The Renewable Energy Law of the People's Republic of China is the law putting more focus on the development of renewable energy. Objectives of the law are the following. − − − − − − Promoting the development and utilization of renewable energy Increasing the supply of energy Improving the structure of energy Safeguarding the safety of energy Protecting environment Realizing a sustainable economic and social development 51 GSEP Steel Working Group 4.2.3. Emissions Reduction Target toward 2030 China has submitted the INDC to UNFCCC in June 2015 and pledged to “lower carbon dioxide emissions per unit of GDP by 60% to 65% from the 2005 level” as its emissions reduction target toward 2030.127128 In addition to the emissions reduction target, China declared the following targets. − − − To achieve the peaking of CO2 emissions around 2030 and making best efforts to peak early To increase the share of non-fossil fuels in primary energy consumption to around 20% To increase the forest stock volume by around 4.5 billion cubic meters on the 2005 level. (Created by DTC based on People’s Republic of China. (2015). Enhanced actions on climate change: China’s Intended Nationally Determined Contributions. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20-%20on%2030%20June%202015.pdf) China plans to meet the targets through the following action. − − − − − − − − − − − − − − − Implementing Proactive National Strategies on Climate Change Improving Regional Strategies on Climate Change Building Low-Carbon Energy System Building Energy Efficient and Low-Carbon Industrial System Controlling Emissions from Building and Transportation Sectors Increasing Carbon Sinks Promoting the Low-Carbon Way of Life Enhancing Overall Climate Resilience Innovating Low-Carbon Development Growth Pattern Enhancing Support in terms of Science and Technology Increasing Financial and Policy Support Promoting Carbon Emission Trading Market Improving Statistical and Accounting System for GHG Emissions Broad Participation of Stakeholders Promoting International Cooperation on Climate Change (Created by DTC based on People’s Republic of China. (2015). Enhanced actions on climate change: China’s Intended Nationally Determined Contributions. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20-%20on%2030%20June%202015.pdf) In addition, the targets of the peak of CO2 emissions and use of non-fossil fuels were primarily included into the US-China Joint Announcement on Climate Change in 2014.129 Such joint announcements with US and a few other countries such as EU and France are considered to be the flag to lead the future policy making in China. 4.3. Iron and Steel Industry 4.3.1. Voluntary Action on Energy Saving and Climate Change During the GSEP Steel WG held in Paris last year, the following 4 technologies lists were introduced as a case of specific activities for energy management improvement in China by Mr. XU of NCSC (National Center for Climate Change Strategy and International Cooperation). − − − National key sector clean production technology orientation list, issued by State Economic and Trade Commission, since 2000 National key energy saving technology list for promotion, issued by National Development and Reform Commission, since 2008 Energy-saving and emission-reduction technology list in iron and steel industry, issued by the Ministry of 52 GSEP Steel Working Group − 4.3.2. Science and Technology, the Ministry of Industry and Information Technology Energy-saving and low-carbon technology list for transfer and promotion, issued by the Ministry of Science and Technology The Status of Energy Saving Technology Implementation According to the result of the questionnaires distributed and collected based on the agreement in the last GSEP Steel WG, 12 major Chinese steel companies have needs for SOACT as shown below. Figure 42. Percentage of Companies Having Needs for Each SOACT Technology (Based on questionnaire targeted at 12 major iron and steel companies in China) # Title of Technology (SOACT base) A Steelmaking Ratio of companies being interested in the Technology 44% B Cokemaking 55% C Ironmaking 31% D Steelmaking 44% E Ladle Refining and Casting 17% F Casting 15% G Recycling and Waste Reduction 56% H Common Systems 28% I General Energy Savings & Environmental Measures 60% (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) Among technologies listed on the SOACT Handbook, # I in Figure 42 (General Energy Savings & Environmental Measures) was the category of the most needed technologies. The technologies included in the category are listed in Figure 43. 53 GSEP Steel Working Group Figure 43. Technologies Listed on SOACT Handbook under the Category of “General Energy Saving & Environmental Measures” and Diffusion Situation of Each Technology 125 Energy Monitoring and Management Systems Ratio of installed mills in China about 50% 126 Cogeneration (include Gas Turbine Combined Cycle (GTCC)) about 30% 127 Technology for Effective Use of Slag about 70% 128 Hydrogen Production about 2% 129 Carbonation of Steel Slag N/A 130 about 80% 134 By-product generator set (NEDO) Ironworks by-product gas, single-fuel-firing, high-efficiency, combined generator set (NEDO) Management of steam traps in steam piping and drain water recovery (NEDO) Power recovery by installation of steam turbine in steam pressure reducing line (NEDO) Management of Compressed Air Delivery Pressure Optimization (NEDO) 135 Improving thermal insulation in industrial furnace (NEDO) about 30% 136 Preventive Maintenance (EPA-BACT) about 10% ID 131 132 133 General Energy Savings & Environmental Measures about 85% about 60% about 10% about 10% (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) Among all the technologies listed on SOACT Handbook, steel companies in China showed strong needs for the technologies shown in Figure 44. 54 GSEP Steel Working Group Figure 44. Technologies Strong Needs Are Shown by Major 12 Steel Companies in China (“Yes” means interested, “No” means not interested) # a b c d e f g h i j k l 1 Sinter Plant Heat Recovery (Steam Recovery from Sinter Cooler Waste Heat) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 4 Dust Emissions Control Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 5 Exhaust Gas Treatment through Denitrification, Desulfurization, and Activated Coke Packed Bed Absorption Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 10 Sintering machine ignition oven burner (NEDO) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 12 Coke Dry Quenching Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes 15 Stripping of ammonia from the waste water (EU-BAT) Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes 16 Waste water treatment (EU-BAT) Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes 17 Modern Leak-proof Door Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes 18 Cleaning of oven doors and frame seals (EU-BAT) Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Reduction of SO2 by coke oven gas desulphurisation (EUBAT) Variable pressure regulation of ovens during the coking 21 process (EU-BAT) Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes 26 Top Pressure Recovery Turbine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 27 Pulverized Coal Injection (PCI) System Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 34 Improve Blast Furnace Charge Distribution Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 35 Use of high quality ores (EU-BAT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 37 Blast Furnace Gas and Cast House Dedusting Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 39 B-gas (fueling) Regerenative Reheating Furnace Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 42 Cast House Dust Suppression Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 43 Treatment and reuse of scrubbing water (EU-BAT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Blast Furnace – Increase Hot Blast Temperature (>1100 Deg C) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 49 Improvement of combustion in hot stove (EPA-BACT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 50 Blast Furnace Heat Recuperation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ID A B Title of Technology (SOACT base) 19 C 47 Optimized Blast Furnace Process Control with Expert System Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 67 Hot Metal Pretreatment Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 68 Programmed and efficient ladle heating (EPA-BACT) Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 70 Use Enclosures for BOF Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 71 Control and Automization of Converter Operation Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 73 Exhaust Gas Cooling System (Combustion System) Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 74 Converter gas recovery device (NEDO) Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 77 VSD on ventilation fans (EPA-BACT) Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 79 Elimination of Radiation Sources in EAF Charge Scrap No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes 82 Oxy-fuel Burners/Lancing Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 88 Post-combustion of the flue gases (EPA-BACT) Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes 106 Reducing Fresh Water Use Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 107 Slag Recycling Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Bag filter – combined or integrated reduction of solid and gaseous pollutants (EU-BAT) Process Heating Assessment and Survey Tool – Identify 119 Heat Efficiency Improvement Opportunities Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes 123 Regenerative Burner Total System for reheating furnace Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 124 Techniques to improve heat recovery (EU-BAT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 125 Energy Monitoring and Management Systems Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 127 Technology for Effective Use of Slag Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 130 By-product generator set (NEDO) Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Ironworks by-product gas, single-fuel-firing, high-efficiency, combined generator set (NEDO) Management of steam traps in steam piping and drain water 132 recovery (NEDO) Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes 136 Preventive Maintenance (EPA-BACT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 51 72 OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher D 95 G Exhaust Gas Treatment Through Gas Cooling, Carbon Injection and Bagfilter Dedusting 112 H I 131 (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 &2015.) 55 GSEP Steel Working Group 5. Republic of India (India) 5.1. Overview of Action on Energy Saving and Climate Change in India India started taking action on energy saving in 1963 when the government started giving greater focus on the energy sector. 130 Meanwhile, India announced the National Action Plan on Climate Change in 2008 to tackle climate change at the national level while participating in international movements such as the Kyoto Protocol.131 Furthermore, it should be noted that India is actively involved in international cooperative initiatives to improve energy efficiency and reduce GHG emissions. 5.2. Government 5.2.1. i. The National Targets and Plans of Action on Energy Saving and Climate Change in India Twelfth Five Year Plan Even though energy planning was recognized as essential for the development of India since independence, the full-scale energy planning started in 1963 with the launch of Energy Survey of India Committee (ESIC). ESIC researched the energy demand and supply in India and developed the basis of energy development planning for the government until 1981. Soon after, the government’s Forth Five Year Plan for 1969 to 1974 for the first time categorized power as a separate focused area for the development of India.132 The latest Twelfth Five Year Plan for 2012 to 2017 points out the importance of active promotion of energy efficiency in industries for the sustainable growth of India.133 In addition, the Expert Group on Low Carbon Strategies for Inclusive (Expert Group), appointed by the government to support the development of Twelfth Five Year Plan, has identified major sources of industrial emissions. The Expert Group gave specific recommendations for sectors such as the iron and steel and cement (accounting for over 60 per cent of industrial process emissions). It also recommended that green-field plants install best available technology and that existing plants, SMEs in particular, update and install green technology at an accelerated phase.134 ii. National Action Plan on Climate Change (NAPCC) The master plan for action on climate change in India is NAPCC, which was launched by the Prime Minister’s Council in 2008 to address climate change in the national level. 135136 NAPCC consists of the following eight National Missions. 56 GSEP Steel Working Group Figure 45. National Missions under National Action Plan on Climate Change National Solar Mission National Mission for Enhanced Energy Efficiency National Mission on Sustainable Habitat National Water Mission National Mission for Sustaining the Himalayan Ecosystem National Mission for a Green India National Mission for Sustainable Agriculture National Mission on Strategic Knowledge for Climate Change (Created by DTC based on Prime Minister’s Council on Climate Change, Government of India. (n.d.). National Action Plan on Climate Change. Retrieved from http://www.moef.nic.in/downloads/home/Pg01-52.pdf) Among the eight National Missions of NAPCC, National Solar Mission and National Mission for Enhanced Energy Efficiency are especially related to energy and the industry sector. ① National Solar Mission (NSM) NSM tries to promote solar energy for power generation and other means. Their objectives forward 2017 include the following. − − − Delivering at least 80% coverage for all low temperature and at least 60% coverage for medium temperature applications of solar energy in all urban areas, industries, and commercial establishments Producing local Photovoltaic from integrated facilities at a level of 1000 MW/annum Establishing at least 1000 MW of Concentrating Solar Power generation capacity (Created by DTC based on Prime Minister’s Council on Climate Change, Government of India. (n.d.). National Action Plan on Climate Change. Retrieved from http://www.moef.nic.in/downloads/home/Pg01-52.pdf) NSM are responsible for the following. − − − − − Deploying commercial and near commercial solar technologies in the country Establishing a solar research facility Realizing integrated private sector manufacturing capacity for solar material, equipment, cells and modules Networking of Indian research efforts with international initiatives Providing funding support for the activities foreseen under the responsibilities above (Created by DTC based on Prime Minister’s Council on Climate Change, Government of India. (n.d.). National Action Plan on Climate Change. Retrieved from http://www.moef.nic.in/downloads/home/Pg01-52.pdf) ② National Mission for Enhanced Energy Efficiency (NMEEE) NMEEE consists of four initiatives to enhance energy efficiency in India. The initiatives are summarized below. 57 GSEP Steel Working Group Figure 46. Four Initiatives under NMEEE Initiatives Summary Perform Achieve and Trade Scheme (PAT) A market based mechanism to enhance the cost effectiveness in improving the Energy Efficiency in Energy Intensive industries through certification of energy saving which can be traded Market Transformation for Energy Efficiency Accelerating the shift to energy efficient appliances in designated sectors through innovative measures to make the products more affordable Energy Platform Creation of mechanisms that would help finance demand side management programme in all sectors by capturing future energy savings Efficiency Financing Framework for Energy Efficient Economic Development Development of fiscal instruments to promote energy efficiency (Created by DTC based on Ministry of Power, Government of India. (n.d.). Energy Efficiency. Retrieved from http://powermin.nic.in/EnergyEfficiency) Especially, PAT is the flagship scheme under NMEEE.137 PAT has become effective in April 2012, having the target of an average 5% reduction in energy consumption in the next 3 years. From the iron and steel sector, 67 units with minimum annual energy consumption of 30,000 toe have been notified as the objects of the programme.138 Phase I of the programme has just finished, and the analysis and evaluation of Phase I’s result and the planning of Phase II are in progress.139 The following provides more details. Figure 47. Details of PAT Phase I .April 2012-March 2015 Target Sector 478 Designated Consumers (DCs) in Thermal Power, Iron and Steel, Fertiliser, Cement, Aluminum, Pulp and Paper, Textile, and Chlor-Alkali sectors Authority Bureau of Energy Efficiency (BEE): A governmental agency to implement the Energy Conservation Act Energy Target Specific Energy Consumption (kcal/kWh, toe/t of product) is set for each Designated Consumer based on actual data during 2007-2010. Reduction Target Reduction target per sector: − Iron and steel: 1.49 (million toe) − Thermal Power: 3.21 − Cement: 0.82 − Fertiliser:0.48 − Aluminum: 0.46 − Pulp and Paper: 0.12 − Textile:0.07 − Chlor-Alkali: 0.05 Total: 6.69 58 GSEP Steel Working Group Phase I .April 2012-March 2015 Auditor Incentive and Penalty − Energy Auditors, accredited by BEE, carry out Mandatory Energy Audits. − Empanelled Energy Auditing Agencies carry out the monitoring and verification process. In case DCs achieve their reduction targets, they can receive Energy Saving Certificates (ESCerts) for the saved energy and sell them to other units which did not achieve their reduction targets. In case DCs fail to achieve their reduction targets, they have to choose one of the options below for compliance of the targets: 1. Payment of penalty 2. Purchase of ESCerts 3. Combination of above (Created by DTC based on the Institute of Energy Economics, Japan. (2014). 平成 25 年度 国際エネルギー使用合理化対策事業 インドにお ける省エネルギー等政策共同研究事業 報告書 [Report of FY2013 Indian energy saving policy joint research project, international energy use rationalization project]. Retrieved from http://www.meti.go.jp/meti_lib/report/2014fy/E003925.pdf; Ministry of Power, Government of India. (n.d.). Energy Efficiency. Retrieved from http://powermin.nic.in/Energy-Efficiency; Bureau of Energy Efficiency, Ministry of Power, Government of India, personal communication, January 27, 2016) 5.2.2. i. Legal Measures to Support the National Targets and Plans Energy Conservation Act The Energy Conservation Act was enacted in 2001. This Act aims to provide the legal framework and institutional arrangements for promoting energy efficiency measures for the designated sectors in the country. 140 Major initiatives under the Act are shown below. Figure 48. Major Initiatives under the Energy Conservation Act Initiatives Energy Conservation Building Code (ECBC) Standards & Labelling Programme Summary − Launched in 2007 to improve energy efficiency of new commercial buildings − New commercial buildings, which have a connected load of 100 KW or contract demand of 120 KVA and above have to meet the ECBC’s minimum energy standards. − Each state can adjust the code to fit the local situations. − Presently 8 states have notified, and 12 states have amended and likely to notify. − Energy efficiency improvement in existing buildings is taken care by giving star rating of commercial buildings which include office buildings, BPO, shopping malls, and hospitals. − Started in 2006 to help consumers make informed energy-saving decisions by giving labels − 21 equipment and appliances are object to labeling. Labeling has been mandatory for room air conditioners, fluorescent tube lights, frost free refrigerators, and distribution transformers since 2010 and recently became mandatory for cassette and floor standing air conditioners as well with effect from 2016. The rest is voluntary. 59 GSEP Steel Working Group Initiatives Demand Side Management (DSM)* Scheme Designated Consumers (DCs) Certification of Energy Managers & Energy Auditors Summary BEE facilitates projects for: − Agriculture DSM − Municipal DSM − Capacity Building of Distribution Companies − Energy Efficiency in SMEs sector − The government notified the criteria for DCs in 2007 according to the Energy Conservation Act. − Industrial units from 9 energy intensive sectors (Aluminum, Cement, Chlor-Alkali, Fertiliser, Iron and Steel, Paper and Pulp, Railways, Thermal Power, and Textile) have been notified as Designated Consumers. − DCs have to go through Mandatory Energy Audit to identify various energy saving opportunities since 27th May, 2014. − New Sectors- Discoms and refineries have been notified. − PAT Cycle-1 notified 478 units. − PAT Cycle-11 identified 447 new units. − BEE runs a certification programme (training modules and regular National level examination) to increase energy managers and auditors who are professionally qualified with expertise in policy analysis, project management, financing and implementation of energy efficiency projects. − Accredited energy auditors, who were recommended by “Accreditation Advisory Committee,” would undertake mandatory energy audits in energy intensive industry as mandated in the Energy Conservation Act. *DSM is an energy stabilization approach to reduce energy consumption instead of increasing power generation. (Created by DTC based on Ministry of Power, Government of India. (n.d.). Energy Efficiency. Retrieved from http://powermin.nic.in/EnergyEfficiency; Bureau of Energy Efficiency, Ministry of Power, Government of India. (n.d.). Designated Consumers. Retrieved from https://beeindia.gov.in/content/designated-consumers; Bureau of Energy Efficiency, Ministry of Power, Government of India, personal communication, January 27, 2016) 5.2.3. Emissions Reduction Target toward 2030 India is a signatory to the Kyoto Protocol linked to UNFCCC. It is actively engaged in the multilateral negotiations in the UNFCCC in a positive and constructive manner to tackle climate change with other countries.141 In October 2015, India submitted the INDC and pledged to “reduce the emissions intensity of its GDP by 33 to 35 percent by 2030 from 2005 level.”142143 In addition to the emissions reduction target, India declared the following targets. − − − To put forward and further propagate a healthy and sustainable way of living based on traditions and values of conservation and moderation To adopt a climate friendly and a cleaner path than the one followed hitherto by others at corresponding level of economic development To achieve about 40 percent cumulative electric power installed capacity from non-fossil fuel based 60 GSEP Steel Working Group − − − − energy resources by 2030 with the help of transfer of technology and low cost international finance including from Green Climate Fund To create an additional carbon sink of 2.5 to 3 billion tonnes of CO2 equivalent through additional forest and tree cover by 2030 To better adapt to climate change by enhancing investments in development programmes in sectors vulnerable to climate change, particularly agriculture, water resources, Himalayan region, coastal regions, health and disaster management To mobilize domestic and new & additional funds from developed countries to implement the above mitigation and adaptation actions in view of the resource required and the resource gap To build capacities, create domestic framework and international architecture for quick diffusion of cutting edge climate technology in India and for joint collaborative Research and Development (R&D) for such future technologies (Created by DTC based on India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf) As well as continuing the current interventions and sophisticating the existing policies, India will introduce the following measures to achieve the national targets.144 − − − − − − − − Introducing new, more efficient and cleaner technologies in thermal power generation Promoting renewable energy generation and increasing the share of alternative fuels in overall fuel mix Reducing emissions from transportation sector Promoting energy efficiency in the economy, notably in industry, transportation, buildings and appliances. Reducing emissions from waste Developing climate resilient infrastructure Full implementation of Green India Mission and other programmes of afforestation Planning and implementation of actions to enhance climate resilience and reduce vulnerability to climate change (Created by DTC based on India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf) 5.2.4. Collaborative Action with the International Society India has developed systems and took opportunities to collaborate with other countries and the international initiatives to run projects for energy saving and GHG emissions reduction. i. The Clean Development Mechanism (CDM) Projects CDM, defined in Article 12 of the Kyoto Protocol, allows a country with emissions reduction or emissions limitation commitment to implement emissions reduction projects in developing countries. Such projects can earn saleable Certified Emission Reduction credits. Each credit is equivalent to one tonne of CO2. National Clean Development Mechanism Authority (NCDMA) evaluates CDM project proposals and gives Host Country Approval (HCA) at the national level.145 NCDMA assesses projects based on the probability of successful implementation and consistency with sustainable development objectives and national priorities. 146 After NCDMA’s HCA, the Executive Board in Bonn, Germany, gives the final approval to CDM projects. Ministry of Steel is a member of the NCDMA and coordinates the approval of CDM projects in the iron and steel sector in the country.147 Previous CDM Projects in India includes the following. − Top Gas Pressure Recovery based Power Generation from ‘G’ Blast Furnace 61 GSEP Steel Working Group − Location: Jamshedpur, Jharkhand Company: Tata Steel Limited Crediting Period: April 2010-November 2019 Operational Period: December 2009 – November 2029 Greenhouse gas abatement through waste heat recovery power based generation Location: Orissa Company: Seven Star Steels Ltd. Period: December 2011-November 2012 (Created by DTC based on Tata Steel Limited, personal communication, January 16, 2016; National CDM Authority, Ministry of Environment, Forests and Climate Change, Government of India. (n.d.). Previous project. Retrieved from http://www.ncdmaindia.gov.in/PreviousProjects.aspx) ii. United Nations Development Programme (UNDP) Projects The government of India promotes energy efficiency in SMEs sector. One example is the projects for the Steel Re-rolling Mills (SRRMs) sector, which are being run by the government in collaboration with UNDP. ① United Nations Development Programme-Global Environment Facility-Ministry of Energy Project India is the 4th largest steel producer in the world and is expected to become the 2nd after China every soon. India has set an ambitious target of production capacity of 300 million tonne by 2025.148 At the same time, in the Indian iron and steel industry, the majority of SRRMs still use obsolete technology, and their high energy intensity has negatively impacted the energy supply and the environment in India. To improve the situation, the United Nations Development Programme-Global Environment Facility (UNDP-GEF) and Ministry of Steel (MoS) in India launched a project called “Removal of Barriers to Energy Efficiency in the Steel Re-Rolling Mill Sector in India” in 2004.149 The project’s major accomplishments by 2013 are the following. − − Successful implementation of energy efficient technologies in 34 model units In the model unites: Reductions of specific thermal energy consumption by 20%–50% and specific electrical energy consumption by 10%–30% Annual monetary savings of between USD 200,000 to USD 500,000 Influence on the implementation of energy efficient technologies in other SRRMs (Created by DTC based on Srinivas, S. N., Das, A. C. R., & Iyer, S. (Eds.). (2013). Energy-efficient steel re-rolling: How a pioneering project is transforming the Indian secondary steel sector. Retrieved from http://in.one.un.org/img/uploads/STEEL_BOOK_Low_res_for_upload.pdf) ② United Nations Development Programme-Ministry of Energy-Australian Agency for International Development Project Recognizing the success of the first project, in 2013, UNDP and MoS launched a new project to extend the support for SRRMs to install energy efficient technologies across the country. This project is also supported by Australian Agency for International Development (AusAID).150 The project’s activities include the following. − − Implementing energy efficient technologies in 300 units from SRRM sector. These interventions are expected to save INR 1000 to 1250 million (USD 20-25 million) annually in energy costs Implementing energy efficient technologies in five units in other subsectors of small scale steel industry 62 GSEP Steel Working Group − − such as Induction furnace units Developing knowledge products to propagate widespread replication of the technologies in the target sector Accelerating awareness in the sector about energy efficiency intervention that leads to huge savings in GHG emissions and improve productivity (Created by DTC based on United Nations Development Programme. (n.d.). Upscaling energy efficient production in small scale steel industry in India: What is the project about. Retrieved from http://www.in.undp.org/content/india/en/home/operations/projects/environment_and_energy/upscaling-energy-efficient-production-in-small-scalesteel-indus.html) iii. NEDO Projects New Energy and Industrial Technology Development Organization (NEDO) is one of the major public R&D management organizations in Japan. 151 NEDO aims to solve energy issues and raise the level of industrial technology by managing technology development projects in Japan and other countries.152 India collaborated with NEDO through projects such as the following. Figure 49. Summary of the Sinter Cooler Waste Heat Recovery Model Project Technology Sinter Cooler Waste Heat Recovery Location Visakhapatnam, Andhra Pradesh Company Rastriya Ispat Nigam Limited Period 2008-2014 Impact − Observed energy saving by 6% in the plant which the system was installed − Expected energy saving by approx. 34,000 toe/year and approx. 104,000 t CO2/year (Created by DTC based on New Energy and Industrial Technology Development Organization. (2014). インドの製鉄所で排熱回収発電設備を実 証―消費電力 6%削減が可能に― [Verified sinter cooler waste heat recovery facility in an Indian plant: Made it possible to save 6% of energy use]. Retrieved from http://www.nedo.go.jp/news/press/AA5_100295.html) Figure 50. Summary of the Coke Dry Quenching Model Project Technology Coke Dry Quenching Location Jamshedpur, Jharkhand Company Tata Steel Limited Period 2006-2011 Impact − Expected waste heat recovery by 84% − Expected energy saving by approx. 50,000 toe/year and approx. 137,000 t CO2/year 63 GSEP Steel Working Group (Created by DTC based on New Energy and Industrial Technology Development Organization. (2011). インドにおける製鉄所のエネルギー効率 を大幅に改善―コークスの排熱利用をインド政府と共同で実証― [Major improvement in energy intensity in an Indian plant: Verified coke dry quenching technology with the government of India]. Retrieved from http://www.nedo.go.jp/news/press/AA5_100069.html) Figure 51. Summary of the Blast Furnace Stove Waste Heat Recovery Model Project Technology Blast Furnace Stove Waste Heat Recovery Location Jamshedpur, Jharkhand Company Tata Steel Limited Period 2001-2004 Impact − Observed cokes intensity reduction in blast furnaces (Created by DTC based on New Energy and Industrial Technology Development Organization. (n.d.). インドにおける NEDO 事業例 [NEDO Project Cases in India]. Retrieved from http://www.nedo.go.jp/content/100522921.pdf; 表-2.6.1 [Table-2.6.1]. (n.d.). Retrieved from http://www.enecho.meti.go.jp/interface/enecho/search?q=%E9%AB%98%E7%82%89%E7%86%B1%E9%A2%A8%E7%82%89%E6%8E%92%E3 %82%AC%E3%82%B9%E9%A1%95%E7%86%B1%E6%9C%89%E5%8A%B9%E5%88%A9%E7%94%A8%E3%83%A2%E3%83%87%E3%83 %AB%E4%BA%8B%E6%A5%AD&client=enecho&output=xml_no_dtd&proxystylesheet=enecho&sort=date%3AD%3AL%3Ad1&oe=utf8&ie=utf-8&ud=1&exclude_apps=1&site=enecho_meti) 5.2.5. Collaborative Action within the Country with the Iron and Steel Industry In addition, the Indian government encourages the iron and steel industry to reduce energy consumption and develop energy-efficient technologies through incentives such as the following. i. Charter on Corporate Responsibility for Environment Protection (CREP) Ministry of Environment and Forests, Government of India, launched CREP in 2003 with the purpose to go beyond the compliance of regulatory norms for prevention and control of pollution through various measures, including waste minimization, in-plant process control, and adoption of clean technologies.153154 The government interacted with highly polluting industries to include mutually agreed targets and action points for each industry in the charter.155156 The iron and steel industry has targets and action points regarding reducing environment pollution, water consumption, and energy consumption.157 This initiative is voluntary for industries; however, task forces of experts and members from institutions and industry associations monitor the progress of the implement of action plans.158159 ii. Support for R&D to Address Raw Material Constraints One of the constraints in lowering energy consumption in Indian steel plants is the higher gangue (alumina and Silica) content of iron ore and high ash in Indian Coal. There are some available technologies for beneficiation of iron ore and coal. However, R&D interventions are required to develop relevant technologies for beneficiating low grade/lean ores as well as coal with an optimum yield.160 The Indian government is facilitating R&D in this sector through various means such as financial assistance through Steel Development Fund and a scheme called Promotion of R&D in Iron and Steel Sector and the establishment of Steel Research and Technology Mission of India.161 64 GSEP Steel Working Group 5.3. Iron and Steel Industry Based on the agreement made in the GSEP Steel WG last year, some questions regarding energy saving were asked to the participants in different countries. The following are based on the information given by Tata Steel Limited (Tata Steel), a world-leading Indian steel company. 5.3.1. i. Voluntary Action on Energy Saving and Climate Change Energy Saving Measures In addition to participating in PAT that the government operates under the Energy Conservation Act, Tata Steel is taking the following voluntary measures for energy saving.162 − − − − Regular energy audit of process and equipment Waste heat recovery Energy efficient projects Improvement projects under Kar Vijay Har Shikhar – Continuous improvement programme* *KVHS is an analytical process with review systems. The process includes six steps that involves TQM and statistical tools. Energy efficiency is one of the focuses of improvement projects under KVHS. (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.; Tata Steel Limited. (n.d.). 106th Annual report 2012-2013. Retrieved from http://www.tatasteel.com/investors/annual-report-2012-13/html/pdf/Tata%20Steel%20Annual%20Report%2012-13.pdf) 5.3.2. i. The Status of Energy Saving Technology Implementation Installed Technologies The following technologies have been installed and actively used in Tata Steel’s plants. They were picked up in the questionnaire from the list of technologies that are considered to be significantly effective for energy conservation and environmental protection. − − − − − − − − − − − − High Efficient Burner in Ignition Furnace for Sinter Plant Coke Dry Quenching. Coke Plant – Automation and Process Control System Top Pressure Recovery Turbine Pulverized Coal Injection System Hot Metal Pretreatment Converter gas recovery device BOF Bottom Stirring Thin Slab Casting and Hot Rolling Regenerative Burner Total System for reheating furnace Energy Monitoring and Management Systems Power recovery by installation of steam turbine in steam pressure reducing line (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) In addition to the technologies on the list, Tata Steel has also installed the following energy saving technologies. − − VVF drive in energy consuming equipment LED Lights (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) 65 GSEP Steel Working Group ii. Technologies to Install and the Challenges The following are the energy saving technologies that Tata Steel would like to adopt in the future and the challenges for installation. Figure 52. Energy Saving Technologies to Adopt and the Challenges Technology Sinter Plant Heat Recovery (Steam Recovery from Sinter Cooler Waste Heat) Sinter Plant Heat Recovery (Power Generation from Sinter Cooler Waste Heat) OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher Cogeneration (include GTCC) Challenge Financial, Retrofitting Financial, Retrofitting Financial, Technical, Retrofitting Financial, Technical, Infrastructure (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) 66 GSEP Steel Working Group 6. Republic of Korea (Korea) 6.1. Overview of Action on Energy Saving and Climate Change in Korea Korea has experienced the incredibly rapid economic growth in the past few decades. For example, the Korean government notes that the GDP per capita in Korea increased from US$60 in 1948 to US$26,205 in 2013. 163 However, the country is recently facing a challenge to keep the high competitiveness due to various factors such as climate change, international environmental regulations, and the high energy prices. Considering those factors, the Korean government realized that the inefficient and high energy consuming structure of its economy was not feasible in the competitive world anymore. In 2008, the President declared a new vision called Low-carbon Green Growth that aims to shift the society that depends on fossil fuel to the one that utilizes clean energy.164 Since then, the government has developed national strategies and plans, created and amended laws, and implemented useful syestems. Those efforts have contributed to the world movement against global warming while securing the country’s growth. 6.2. Government 6.2.1. i. The National Targets and Plans of Action on Energy Saving and Climate Change in Korea Low-Carbon Green Growth In order to address the current problems such as energy crisis and unemployment and realize sustainable growth of Korea, in 2008, the President announced the Low-carbon Green Growth vision for the next 60 years.165166 The vision aims to shift the current growth paradigm that depends on fossil fuels to the one that bases on clean energy and technologies. The President claimed that clean energy and technologies would create employment, change the lack of oil sources to a chance for Korea, and enable Korea to lead the environmental revolution of the world.167 ii. Energy Master Plan The government developed the First Energy Master Plan as “a backbone support for ‘Low-Carbon, Green Growth’ paradigm in the energy sector” in 2008.168 This plan was the first long-term plan for the next 20 years in Korea, and it was supposed to be revised in every five years.169 As the implementation strategy for the vision, the master plan set the following targets. − Rationalize energy intensity* to 0.185 in 2031 from 0.341 in 2007 *Energy volume (toe) consumed for production per each US$1,000 in GDP − − − Reduce fossil energy rate to 61% from 83% while increasing the new and renewable energy rate 4.6 times Upgrade green technology to the world-class level Expand self-development rate in oil and gas to 40% by 2030 (Created by DTC based on Blue-Ocean Content and Strategy. (n.d.). National Basic Energy Plan, Korea (2008-2030). Retrieved from http://www.energyplus.or.kr/pdf/11_ing/110207_t2.pdf) To achieve the targets, for example, the government supports R&D in high energy consuming industries to enhance their energy efficiency.170 The master plan was revised in 2014 as the Second Energy Master Plan.171 The 67 GSEP Steel Working Group government set six main tasks and specific objectives for the plan. Figure 53. Six Major Tasks and Objectives of the Second Energy Master Plan # Major Task Transition to energy policies focused on demand management Objective Reduce electricity demand by 15% by 2035 2 Build a distributed generation system Supply more than 15% of power from distributed generation by 2035 3 Strike a balance with environmental and safety concerns Apply the latest GHG reduction technology to new power plants 4 Enhance energy security and energy supply stability 5 Establish a stable supply system for each energy source Build overseas resource development capacity and achieve a renewable energy deployment rate of 11% by 2035 Secure a stable supply of conventional energy sources, such as oil and gas 6 Shape energy policy to reflect public opinion Introduce an “Energy Voucher System” in 2015 1 (Created by DTC based on Ministry of Trade, Industry and Energy (2014). Korea Energy Master Plan: Outlook & Policies to 2035. Retrieved from http://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi3jsX1wezJAhXEIaYKHcm_AuEQFggeMAA&url=http% 3A%2F%2Fwww.motie.go.kr%2Fcommon%2Fdownload.do%3Ffid%3Dbbs%26bbs_cd_n%3D72%26bbs_seq_n%3D209286%26file_seq_n%3D2& usg=AFQjCNFKJUFmTUVh7ZoRQ0OkDLjnsyUYbw) iii. Green Growth National Strategy and Five-Year Plans Meanwhile, in accordance with the Low-carbon Green Growth vision, the government of Korea also presented the Green Growth National Strategy and the First Five-Year Plan in 2009. While the Green Growth National Strategy presents a long-term vision of the country’s growth, the First Five-Year Plan was a mid-term plan for 2009 to 2013. The core aim of the Green Growth National Strategy is to assure both the environmental security and sustainable economic growth in Korea.172 The Green Growth National Strategy consists of 3 strategic directions and subdivided 10 policy directions.173 Figure 54. Directions of the Green Growth National Strategy 3 Strategic Directions Adaptation to climate change and energy independence Creation of new engines of growth 1. 2. 3. 4. Improvement in quality of life and enhancement of national prestige 5. 6. 7. 8. 9. 10 Policy Directions Efficient reduction of GHGs Strengthening energy independence from fossil fuels Enhancing capacity for climate change adaptation Development of green technologies and utilizing them as new growth engines Greening of industries and fostering green businesses Advancement of industrial structure Formation of a foundation for green economy Launching of green transportation Green revolution in daily life 68 GSEP Steel Working Group 3 Strategic Directions 10 Policy Directions 10. Realization of a model, world-class nation of green growth (Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure].) The major concept of the First Five-Year Plan was to establish an institutional foundation for the Green Growth National Strategy. The Second Five-Year Plan was established in 2014 to produce substantial outcomes by using the institutional foundation that had been developed.174 The plan is to be implemented from 2014 to 2018 with the objectives of “establishing a low-carbon socioeconomic infrastructure,” “achieving a creative economy through the convergence of green technology and ICT,” and “building a pleasant living environment safe from the harms of climate change.”175 6.2.2. Legal Measures to Support the National Targets and Plans The Energy Use Rationalization Act has been playing the role of developing rules to encourage energy efficiency in Korea. 176 Meanwhile, the Framework Act on Low Carbon Green Growth has been the legal basis of the implementation measures of the Green Growth National Strategy.177 i. Energy Use Rationalization Act The Energy Use Rationalization Act was established in 1979, and it has been the legal basis of policies for energy demand management such as the following systems and program.178 ① Energy Management System (EnMS) EnMS, “a standard or an energy management protocol” for energy saving and GHG emissions reduction, became part of the national policies when the plans to promote the system were included in the Fourth Basic Plan for Rational Energy Utilization and the First Energy Master Plan in 2008.179180 Since then the government has been facilitating the implementation of the system and development of the national standard such as KS A 4000 and KS A ISO 50001.181 The EnMS encouragement program, which is managed by a government agency called Korean Energy Agency (KEA), is summarized below. 69 GSEP Steel Working Group Figure 55. The EnMS Program of KEA Objective Activity Phase I 2006-2011 Build foundation for EnMS Introduce EnMS to Korea − − − − − Created KS A ISO 50002 (Oct. ’11) Laid foundation for Korean ISO 50001 certification system Run pilot EnMS certification programs (’08~’11) Developed and operated training courses for EnMS auditors and working-level staffs (’08~’13) Developed and distributed materials on technology (run a homepage) Phase II 2011-2014 Conduct more detailed programs for the introduction of EnMS (Quantify the results of EnMS) − Implemented Korean ISO 50001 certification system (Nov. ’12) − Designated the first certification institution in Korea by KS A ISO 50001 (May ’13) − Conducted a feasibility assessment of adopting international standards for energy management performance evaluation (’13) (the assessment was conducted on 8 industrial facilities and 2 commercial buildings) − Developed Korean national standards for energy management evaluation and a related software − Participated in ISO TC 242 to develop international standards and establish foundation for GSEP − Developed and operated EnMS experts training courses (’14~) − Built infrastructure of EnMS and provided supports to energy management evaluation of SMEs (’14) Phase III 2015Implement government support programs for EnMS − − − Implements government support programs for EnMS Offers supports and incentives to companies partnered with the governments Work on EnMS international cooperation projects (ISO TC 242 and GSEP) (Created by DTC based on Korea Energy Agency. (n.d.). Energy Management System (EnMS). Retrieved from http://www.energy.or.kr/renew_eng/energy/industry/enms.aspx) ② Financial Loan Assistance Program The Energy Use Rationalization Act provides support for energy saving efforts such as subsidies and tax breaks to investments in energy-saving facilities.182 One notable example is the Energy Service Company (ESCO) program. Through this program, the government has been offering loans to ESCOs’ energy-efficient facility implementation projects since 1991, having the Energy Use Rationalization Act as a legal basis.183 Figure 56 illustrates the flowchart of the program, and the overview of the program is shown in Figure 57. 70 GSEP Steel Working Group Figure 56. Flowchart of the ESCO Program Government Budget Allocation Reporting Implementing Agency (KEA) Loan, Guideline, Commission Report on Financing Status Documentation/ Request for Loan Financial Institution Repayment Loan Project development and implementation End User ESCO Payment (Created by DTC based on Morgado, D. (2014). Energy service companies and financing [PDF document]. Retrieved from https://www.iea.org/media/training/presentations/latinamerica2014/8A_Energy_Service_Companies_and_Financing.pdf) Figure 57. Overview of the ESCO Program Purpose Project Conductor Eligible Project Covered Cost Loan Term Program Benefit To bring in more voluntary participation of private entities, shifting the initiative from the government to the private sector − ESCO—a company equipped with required facilities, capital and technology and registered to the Ministry of Trade, Industry and Energy − ESCOs obtain financing for the installation of energy-saving facilities, execute the project, guarantee energy savings and share the energy cost savings with energy users. − Management services for energy conservation − Investments in energy-saving facilities − R&D of energy-saving facilities and equipment Costs of: − the facility and equipment − construction and installation − design and supervision − start-up − Interest rate: Quarterly adjustable rate linked to average rate of return of 3 year negotiable Korean treasury bond or fixed-rate − Terms of repayment: Payable in installments in five years with a three-year grace period − Limit: Maximum 30 billion won Energy Users can: − install energy-saving facilities and reduce energy costs − reduce technological risks for the investment in the energy-saving facilities − receive systematic and expert service on energy-saving facilities provided by ESCO − receive financial supports and Tax incentives in connection with ESCO projects (Created by DTC based on Korea Energy Agency. (n.d.). Energy Service Companies (ESCO). Retrieved from 71 GSEP Steel Working Group http://www.energy.or.kr/renew_eng/energy/industry/esco.aspx) ③ Energy Audit System The Energy Audit System was created in 2007 based on the Energy Use Rationalization Act in response to the oil price and climate change.184 It aims to reduce energy consumption and GHG emissions of the industrial and building sectors by examining businesses with excessive energy consumption.185 From 2007 to 2014, energy audits were done for 4,111 companies, and the potential energy-saving amount was reported as 3,944ktoe/year, which is 4.9% of total energy consumption.186 The flowchart of the system is below. Figure 58. Flowchart of the Energy Audit System Program Ministry of Trade, Industry & Energy KEA • A report on areas of improvement • A feasibility study to the company Notification of the requirements for an audit Application for an audit Energy Intensive Company Energy Intensive Companies— Companies whose annual energy consumption exceeds 2,000 toe per year Every 5 years • Audit Inspections of Facilities Processes Operating conditions To determine Energy loss factors Areas of improvement Energy Audit Company Energy Audit Companies— Registered companies with expertise and experience • Post Audit Technical advice Support to implement proposals reported (Created by DTC based on Korea Energy Management Corporation. (n.d.). Energy audit. Retrieved from http://www.kemco.or.kr/new_eng/pg02/pg02060000.asp) ii. Framework Act on Low Carbon Green Growth The Framework Act on Low Carbon Green Growth was enacted in 2010, after many discussions among various stakeholders from public and private sectors in Korea. Since the enactment, it has been the legal foundation for the effective implementation of the Green Growth National Strategy.187 In addition, it is a precedent for other Acts related to the Low-carbon Green Growth vision.188 The following are some examples of policies based on the 72 GSEP Steel Working Group Framework Act on Low Carbon Green Growth. ① GHG and Energy Target Management System (TMS) TMS is one of the systems that were developed based on the Framework Act on Low Carbon Green Growth.189 The system was enacted in 2012 to achieve the mid-term national target of reducing GHG emissions by 30% in 2020 from the BAU level, which is also stated in the Framework Act on Low Carbon Green Growth.190191 TMS sets the ceilings for GHG emissions for large emitters (controlled entities), which covered 68% of total GHG emissions in Korea as of 2012, and obligates them to meet their targets. Administrative and financial penalties are given for the controlled entities in case of non-compliance.192 In addition, controlled entities have to include the calculation methods that they use to measure their energy consumption and GHG emissions into their reports.193 Figure 59 is the flowchart of the system, and Figure 60 shows the standards of controlled entities. Figure 59. Flowchart of TMS Ministry of Environment Comprehensive Monitoring/Evaluation Report Supervising Agencies Agriculture & Livestock Ministry for Food, Agriculture, Forestry and Fisheries Step 1. Designation of controlled entities and notification of GHG and energy reduction targets Industry & Power generation Ministry of Trade, Industry and Energy Waste Building & Transport Ministry of Environment Ministry of Land, Transport and Maritime Affairs Step 2. Submission of an implementation performance report Step 3. Submission of an implementation plan Step 4. An improvement order in case of unachieved targets or unsatisfactory performance Controlled Entity (Created by DTC based on Lim, D. (2012). Target Management System (TMS) and ETS in Republic of Korea [PDF document]. Retrieved from http://www.iges.or.jp/en/archive/cdm/pdf/regional/20130306/1_Korea_Prof.Lim.pdf; Korea Energy Agency. (n.d.). GHG and Energy Target Management Scheme. Retrieved from http://www.energy.or.kr/renew_eng/climate/foundation/scheme.aspx) 73 GSEP Steel Working Group Figure 60. Standards of Controlled Entities Category GHG (CO2) Energy (terajoules) -2011 Company Facility 2012-2013 Company Facility 2014Company Facility 125,000 25,000 87,500 20,000 50,000 15,000 500 100 350 90 200 80 (Created by DTC based on Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea: Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from http://faolex.fao.org/docs/pdf/kor102410.pdf) ② Korea Emission Trading Scheme (KETS) Having the Framework Act on Low Carbon Green Growth as a legal foundation and TMS as a precursor, KETS was launched in 2015.194195196 After a few years of debates and planning, the Act on the Allocation and Trading of Greenhouse Gas Emissions Permits finally passed the congress in 2012, and it was decided that KETS would start in January 2015.197 Later in 2012, the rules of KETS was determined when the Enforcement Decree of Allocation and Trading of Greenhouse Gas Emissions Rights Act passed the cabinet.198 According to International Carbon Action Partnership (ICAP), as of 2015, KETS is “the first nation-wide cap-and-trade program in operation in Asia,” having the second largest scale in the world.199 ICAP expects that the scheme would help Korea achieve its GHG emissions reduction goals toward 2030.200 The highlights of KETS are shown below. Figure 61. Highlights of KETS Cap Allowances Allocation Target GHG Target Sector and Company/Facility Carbon Offset Required Procedure Penalty Phase I 2015-2017 1687 MtCO2e Phase II 2018-2020 TBA Free Allowance: 100% to Free Allowance: 97% most sectors based on their Auction: 3 % average GHG emissions in the base year CO2, CH4, N2O, HFC, PFC, SF6 Phase III 2021-2025 TBA Free Allowance: Less than 90% Auction: More than 10 % 23 sub-sectors from steel, N/A N/A cement, petro-chemistry, refinery, power, buildings, waste sectors and aviation Company >125,000 tCO2/year, Facility >25,000 tCO2/year Only domestic emissions reduction projects International credits for up to 50% of the for up to 10% of the entity’s obligation entity’s total offsets Strict Measure, Reporting, and Verification (MRV) system was taken over from the GHG and Energy Target Management Scheme, which requires target entities to: − submit annual emission reports − get emissions verification from the third party Three times or less the average market price of allowances of the given compliance year or KRW 100,000/ton (International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme. Retrieved from https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47; Kim, Y. (2012). Emissions Trading Scheme for Low-Carbon Green Growth in Korea [PDF document]. Retrieved from http://unfccc.int/files/bodies/awg- 74 GSEP Steel Working Group lca/application/pdf/20120517_korea_1117.pdf) 6.2.3. Emissions Reduction Target toward 2030 Korea has submitted the INDC to UNFCCC in June 2015 and declared its emissions reduction target toward 2030. The target is “to reduce its greenhouse gas emissions by 37% from the business-as-usual (BAU, 850.6 MtCO2eq) level by 2030 across all economic sectors.” 201202 In addition to TMS, KETS, and other sectorial measures, which Korea has already developed for GHG mitigation, a detailed implementation plan for the target toward 2030 will be developed by the Korean government, following the finalization of the international target.203 In addition, the Korean government, Ministry of Trade, Industry and Energy (MOTIE) specifically, recently announced to establish the department of energy-related new industries to mitigate climate change with the policy of energy-related new industries in July 2015.204 MOTIE describes the energy-related new industries as “‘problemsolving industries’ that address major issues in the energy sector, including climate change, energy security and demand management.”205 It also explains that “such industries represent new types of businesses that utilize and commercialize novel technologies and information/communication technologies in ways that fit the latest market trends.”206 MOTIE has a plan to issue a roadmap and establish a special law in terms of the energy-related new industries.207 The recent business models of energy-related new industries include “demand management programs, energy management services, electric vehicle services, energy independent islands, solar energy rental services, use of thermal effluent from power plants.”208 6.3. Iron and Steel Industry 6.3.1. Voluntary Action on Energy Saving and Climate Change In addition, Korea Iron and Steel Association and firms such as POSCO in the Korean iron and steel industry have taken action on energy saving and climate change as well. i. Korea Iron and Steel Association (KOSA) KOSA was established in 1975, and it “aims to contribute in Korea’s economic development and to promote friendship between the members by strengthening the competitiveness of steel industry and seeking sustainable growth.”209210 KOSA’s one of the major activities is “Green Growth and technical cooperation,” which includes the following. − − − − Building countermeasure plans for UN Climate Change Convention Seeking for expanding ways to recycle the recycling of by-products Strengthening the technological exchange and cooperation Investigating and providing information on statistics related to production capacity, facility investment, and energy consumption (Created by DTC based on Korea Iron and Steel Association. (n.d.). Activities. Retrieved from https://www.kosa.or.kr/sub/eng/about/sub01.jsp) ii. POSCO POSCO is a Korean world-leading steelmaker established in 1968, and it has been making an effort to reduce 75 GSEP Steel Working Group energy consumption and CO2 emissions for years.211212 Since 1999, POSCO has been participating in the Voluntary Agreement program sponsored by the government and as a result reduced 2.9 million toe by 2008.213 In the program, industries voluntarily set targets for energy use and CO2 emissions reduction, and the government provides them with funds.214 POSCO’s recent notable action is having set the voluntary target of cutting CO2 intensity per 1 ton steel production by 9% by 2020 compared to the average level of 2007-2009. To achieve the target, POSCO takes measures to increase energy efficiency, reduce coal usage, and develop innovative technologies for CO2 reduction.215 In addition, POSCO has implemented the government policy for energy and climate change. For example, it has implemented Energy Storage System along with the Second Energy Master Plan focused on the energy demand management policy. Figure 62. POSCO’s Target to Reduce CO2 Emission Intensity (t-CO2/t-S) 2.20 2.18 -9% 2.06 2007-2009 2010 2011 1.98 1.98 2012 2013 2.00 2.00 2014 2020 target (Created by DTC based on POSCO. (n.d.). Climate change /energy: Vision and strategies to mitigate climate change. Retrieved from http://www.posco.com/homepage/docs/eng5/jsp/sustain/environ/environment_03_02.jsp) Also, based on the agreement made in the GSEP Steel WG held in Paris last year, some questions regarding energy saving were asked to the participants in different countries. POSCO Research Institute (POSRI) explained the status of energy management in the Korean iron and steel industry as below. − − The following laws encourage the industry to transform into an environment-friendly structure. Energy Use Rationalization Act (1979 the first enactment, 2015.1.28 the latest revision) Framework Act on Low Carbon Green Growth (2010.4) Act on the Allocation and Trading of Greenhouse Gas Emission Permits (2012.11) EnMS based on ISO 50001 etc. has been operating for achieving the industry’s target in accordance with the government’s allowances system, and the target is to be achieved. (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) 6.3.2. The Status of Energy Saving Technology Implementation POSRI also informed the current status of technology implementation in the Korean iron and steel industry as 76 GSEP Steel Working Group below. − − − The industry has already installed and are actively using most of the energy saving technologies listed in the questionnaire as significantly effective measures for energy saving and environmental protection. Some of the installed technologies are sometimes not suitable or in fair conditions for Korean steel makers. E.g. Exhaust Gas Treatment through Low-Temperature Plasma, High Pressure Ammonia Liquor Aspiration System, VSD COG compressor (EPA-BACT), COG-non-recovery Coke Battery, Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues (EU-BAT). The industry has not installed some of the technologies due to technical and financial challenges. (Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015.) 77 GSEP Steel Working Group Appendix The Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015 Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015 Dear Sir/Madam, This is a request for you to answer the questionnaire from Global Superior Energy Performance Partnership (GSEP) Steel Working Group. The GSEP Steel Working Group focuses on improving the energy efficiency and environmental performance of the iron and steel sector as one of the most energy-intensive industrial sectors. The activities are carried out in a bottom-up manner through public-private partnerships. In the last meeting on September 12, 2014, over 30 participants from public and private sector in the United States, European Union, India, China, South Korea, Japan and IEA exchanged the latest information on the current status and challenges in the public/private sector and necessity of technology introduction etc. Participants agreed to have the Action Plan as attached and are requested to answer the questionnaire herewith. Through this questionnaire, we, the Secretariat of GSEP Steel Working Group, would like to ask the private sector to describe the current situation and future prospect of adopting technologies regarding energy-saving and environmental protection and implementing energy management activities. On the other hand, it is expected that the public sector would answer the latest policies/activities and issues in order to promote efficient technology introduction and energy management. All responses that we receive will be used for the sole purpose for the next GSEP Steel WG Meeting to be held in the middle of 2015. We appreciate it very much if you could answer the questionnaire by March 6, 2015. Thank you very much in advance for your cooperation. Please answer the following questions and send it back to the following three people. Mr. Yuki Ogura, Deloitte Tohmatsu Consulting, [[email protected]] Mr. Yukihiro Uchida, Deloitte Tohmatsu Consulting, [[email protected]] GSEP Steel WG Secretariat via email. * Answers will not be open to public and will be treated in a strictly confidential manner. If it is necessary to disclose any part of your answers, we will contact for your permission in writing in advance. Please fill the information about yourself. Date of answer Name of personnel Tel/Fax E-mail Designation Department Organization Address Country / / Notes: If you belong to private sector, please describe your answer of Questions marked with For Private Sector If you belong to public sector, please describe your answer of Questions marked with For Public Sector 78 GSEP Steel Working Group For Private Sector Q1: Current situation and future prospect for utilizing technologies 1) Please choose the ID# of technologies from Table 1 (please refer to P.5-7 ANNEX) that you have installed and answer “Adoption Status.”(Refer to Table 1, multiple answers allowed.) Answer Sheet Q1-1 ID (Choose ID# from Table 1) A: Installed and actively used Adoption Status (put “X”) B: Installed but not C: Installed but actively used removed D: Others 2) If you have any other technologies, please describe your answer in the box below. Answer Sheet Q1-2 3) Please choose the ID of technologies from Table 1 that you would like to adopt in the future and answer the challenges/issues/problems to introduce the chosen technologies? ( (please refer to P.5-7 ANNEX) , Multiple answers allowed) Answer Sheet Q1-3 ID (Choose ID# from Table 1) Challenges (put “X”) A: B: Financial Technical C: Infra -stracture D: Retro -fitting E: Others (specific reasons) 4) If you have any other technologies, please describe your answer in the box below. Answer Sheet Q1-4 79 GSEP Steel Working Group For Private Sector Q2: Current status and challenges for energy management in the iron and steel plant 1) Do you recognize any regulations which have impacts on your plants from the perspectives of energy management? If Yes, - Please name the regulations. - Are you currently in progress of any action plans for the regulations? If yes, Please briefly describe the action plan. - Could you tell us your prospects for achieving the target of your company/facilities set by the regulation? - Have you considered or Are you considering any plan to implement any particular measures to achieve that target? If No, - Are you currently in progress of any independent action plans for self-improvement on energy management? If yes, Please briefly describe the action plan. - Could you tell us your thoughts on effectiveness of the action plans? Please describe your answer in the box below. Answer Sheet Q2 80 GSEP Steel Working Group For Public Sector Q3: The information on policies and action plans relating to energy management in the iron and steel industry 1) Please describe or send the related documents on the policies/regulations and action plans for energy management in the iron and steel industry. (For example, the regulation or govnernmental system of GHG reduction and energy saving, status of ETS) Answer Sheet Q3 For Public Sector Q4: Challenges, issues and necessity of assistance from other countries relating to technology introduction, technical development and energy management 1) Are there any challenges and issues in the implementation of the above-mentioned action plans? If your answer is YES, please describe the details in the box below. In addition, if you have any idea to solve the challenges, please also describe them. Please describe your answer in the box below. <Possible barriers> Initial Cost, Lack of financial support, Lack of technical support, Need of Infrastructure, Maintenance, Space constraint for suitable layout, etc.) <Possible Countermeasures> Financial Support, Training, Incentives, etc Answer Sheet Q4 For Private Sector For Public Sector *GSEP Steel Working Group Members only Q5: Expectation and comments for GSEP Steel WG 1) Are there any expectation and comments for GSEP Steel WG? For example, the discussion issues which you would like to solve in cooperation with other countries. Please describe them. Please describe your answer in the box below. Answer Sheet Q5 Thank you for your cooperation. Please answer the following questions and send it back to the following three members Mr. Yuki Ogura, Deloitte Tohmatsu Consulting, [[email protected]] Mr. Yukihiro Uchida, Deloitte Tohmatsu Consulting, [[email protected]] GSEP Steel WG Secretariat via email. 81 GSEP Steel Working Group Table 1:List of Technologies Technologies listed in the Table 1 are considered to be significant countermeasures to tackle with energy conservation and environmental protection issues of iron and steel industry according to SOACT, NEDO, EU-BAT and EPA-BACT. Technologies Reference[*7] ID Title of Technology (SOACT base)[*1] SOAC EU EPA NEDO T -BAT -BACT Sintering ○ 1 Sinter Plant Heat Recovery (Steam Recovery from Sinter Cooler Waste Heat) 2 Sinter Plant Heat Recovery (Power Generation from Sinter Cooler Waste Heat) [*2] 3 District Heating Using Waste Heat ○ 4 Dust Emissions Control ○ 5 Exhaust Gas Treatment through Denitrification, Desulfurization, and Activated Coke Packed Bed Absorption ○ 6 Exhaust Gas Treatment through Selective Catalytic Reduction ○ 7 Exhaust Gas Treatment through Low-Temperature Plasma ○ 8 High Efficient (COG) Burner in Ignition Furnace for Sinter Plant [*3] ○ 9 Exhaust Gas Treatment Through Additive Injection and Bagfilter Dedusting ○ 10 Sintering machine ignition oven burner (NEDO) 11 Partial recycling of waste gas (EU-BAT) ○ ○ ○ ○ ○ Cokemaking 12 Coke Dry Quenching ○ ○ 13 Coal Moisture Control ○ ○ ○ ○ 14 High Pressure Ammonia Liquor Aspiration System ○ 15 Stripping of ammonia from the waste water (EU-BAT) 16 Waste water treatment (EU-BAT) 17 Modern Leak-proof Door 18 Cleaning of oven doors and frame seals (EU-BAT) 19 Reduction of SO2 by coke oven gas desulphurisation (EU-BAT) 20 Land Based Pushing Emission Control System 21 Variable pressure regulation of ovens during the coking process (EU-BAT) 22 VSD COG compressor (EPA-BACT) 23 Coke Plant – Automation and Process Control System ○ ○ ○ 24 COG-non-recovery Coke Battery [*3] ○ ○ ○ 25 Waste Plastics Recycling Process Using Coke Ovens [*4] - ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Ironmaking 26 Top Pressure Recovery Turbine ○ ○ ○ ○ 27 Pulverized Coal Injection (PCI) System ○ ○ ○ ○ 28 Pulverized coal injection to 225 kg/ton iron (EPA-BACT) 29 Oxy-oil injection (EU-BAT) ○ ○ 30 Gas injection (EU-BAT) ○ ○ 31 Injection of COG and BOF gas (EPA-BACT) 32 Plastic injection (EU-BAT) ○ 33 Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues (EU-BAT) ○ 34 Improve Blast Furnace Charge Distribution 35 Use of high quality ores (EU-BAT) 36 Charging carbon composite agglomerates (EPA-BACT) 37 Blast Furnace Gas and Cast House Dedusting 38 Blast furnace gas recycling (EPA-BACT) 39 B-gas (fueling) Regerenative Reheating Furnace [*5] - 40 B-gas (fueling) Ignition Burner of Sinter [*6] - 41 Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues (EU-BAT) 42 Cast House Dust Suppression 43 Treatment and reuse of scrubbing water (EU-BAT) 44 Hydrocyclonage of blast furnace sludge (EU-BAT) 45 Slag Odor Control 46 Slag heat recovery (EPA-BACT) 47 Blast Furnace – Increase Hot Blast Temperature (>1100 Deg C) ○ 48 Blast Furnace – Increase Blast Furnace Top Pressure (>0.5 Bar Gauge) ○ 49 Improvement of combustion in hot stove (EPA-BACT) 50 Blast Furnace Heat Recuperation ○ 51 Optimized Blast Furnace Process Control with Expert System ○ 52 Alternative Ironmaking: Direct Reduction (DRI/HBI) and Direct Smelting ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 82 ○ ○ ○ ○ GSEP Steel Working Group Technologies Reference[*7] Title of Technology (SOACT base)[*1] ID EPA EU SOAC NEDO -BAT -BACT T 53 Smelting Reduction Processes ○ 54 Direct Reduction Processes ○ 55 Coal Based Rotary Hearth Furnace Type Ironmaking Process [*3] ○ 56 Paired Straight Hearth Furnace ○ 57 Coal and Lump Ore Based Smelting-Reduction Type Ironmaking Process [*3] ○ 58 Finex Process ○ 59 Rotary Kiln Direct Reduction ○ 60 Coal and Fine Ore Based DRI/HBI Production Process [*3] ○ 61 Natural Gas Based Zero-Reforming DRI/HBI Production Process using Fine Ore [*3] ○ 62 Coal Synthesis Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production Process [*3] ○ 63 Natural Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production Process with CO2 Removal System [*3] ○ 64 High-efficiency cupola (NEDO) ○ ○ ○ Steelmaking ○ On-line Feedback Analyzer for Efficient Combustion [*3] ProVision Lance-based Camera System for Vacuum Degasser - Real-time Melt Temperature Measurement ○ 67 Hot Metal Pretreatment ○ 68 Programmed and efficient ladle heating (EPA-BACT) 69 Increase Thermal Efficiency by Using BOF Exhaust Gas as Fuel ○ 70 Use Enclosures for BOF ○ ○ 71 Control and Automization of Converter Operation ○ ○ ○ 72 OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher ○ 73 Exhaust Gas Cooling System (Combustion System) ○ ○ ○ 74 Converter gas recovery device (NEDO) 75 Laser Contouring System to Extend the Lifetime of BOF Refractory Lining ○ 76 BOF Bottom Stirring ○ 77 VSD on ventilation fans (EPA-BACT) 78 Dust hot briquetting and recycling with recovery of high zinc concentrated pellets for external reuse (EU-BAT) 79 Elimination of Radiation Sources in EAF Charge Scrap ○ 80 Improved Process Control (Neural Networks) ○ 81 Hot DRI/HBI Charging to the EAF ○ 82 Oxy-fuel Burners/Lancing ○ 83 Scrap Preheating ○ 84 New scrap-based steelmaking process predominantly using primary energy ○ 85 Twin-shell DC with scrap preheating (EPA-BACT) ○ 86 Bottom stirring/stirring gas injection (EPA-BACT) ○ 87 Eccentric bottom tapping on existing furnace (EPA-BACT) ○ 88 Post-combustion of the flue gases (EPA-BACT) ○ 89 Engineered refractories (EPA-BACT) ○ 90 Adjustable speed drives (ASDs) (EPA-BACT) ○ 91 Transformer efficiency—ultra-high power transformers (EPA-BACT) 92 Control and Automation for EAF Optimization ○ 93 Slag Foaming, Exchangeable Furnace and Injection Technology ○ 94 Airtight operation (EPA-BACT) 95 Exhaust Gas Treatment Through Gas Cooling, Carbon Injection and Bagfilter Dedusting ○ 96 Ecological and Economical Arc Furnace [*3][*9] ○ 97 Waste Heat Recovery from EAF [*2][*9] 98 DC arc furnace (NEDO) 99 Shaft-type Continuous EAF [*3] (EPA-BACT) 65 66 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Ladle Refining and Casting 100 ○ Efficient caster ladle/tundish heating (EPA-BACT) Casting 101 Strip Casting Technology [*3] ○ 102 Thin Slab Casting and Hot Rolling ○ ○ 103 Hot Charging to Reheat Furnace of Rolling Mills ○ ○ 83 GSEP Steel Working Group Technologies Reference[*7] ID Title of Technology (SOACT base)[*1] SOAC EU EPA NEDO T -BAT -BACT ○ 104 Near net shape strip casting (EU-BAT) 105 Near net shape casting - strip (EPA-BACT) ○ ○ Recycling and Waste Reduction 106 Reducing Fresh Water Use ○ 107 Slag Recycling ○ 108 Pressurization-type Steam Aging Equipment for Steel Slag ○ 109 EAF slag processing (EU-BAT) 110 Treatment of high alloyed and stainless steel EAF slags (EU-BAT) 111 Rotary Hearth Furnace Dust Recycling System 112 Bag filter – combined or integrated reduction of solid and gaseous pollutants (EU-BAT) ○ ○ ○ ○ ○ Common Systems 113 Auditing Rotary Machines for Pump Efficiency ○ 114 AIRMaster+ Software Tool – Improved Compressed Air System Performance ○ 115 Combined Heat and Power Tool – Improved Overall Plant Efficiency and Fuel Use ○ 116 Fan System Assessment Tool – Efficiency Enhancement for Industrial Fan Systems ○ 117 MotorMaster+ International – Cost-Effective Motor System Efficiency Improvement NOx and Energy Assessment Tool – Reduced NOx Emissions and Improved Energy Efficiency Process Heating Assessment and Survey Tool – Identify Heat Efficiency Improvement Opportunities ○ 120 Quick Plant Energy Profiler – First Step to Identify Opportunities for Energy Savings ○ 121 Steam System Tools – Tools to Boost Steam System Efficiency ○ 122 Inverter (VVVF; Variable Voltage Valiable Frequency) Drive for Motors [*3] ○ ○ 123 Regenerative Burner Total System for reheating furnace [*8] ○ ○ 124 Techniques to improve heat recovery (EU-BAT) 118 119 ○ ○ ○ ○ ○ ○ ○ General Energy Savings & Environmental Measures 125 Energy Monitoring and Management Systems ○ 126 Cogeneration (include Gas Turbine Combined Cycle (GTCC)) ○ ○ 127 Technology for Effective Use of Slag ○ 128 Hydrogen Production ○ 129 Carbonation of Steel Slag ○ 130 By-product generator set (NEDO) ○ 131 Ironworks by-product gas, single-fuel-firing, high-efficiency, combined generator set (NEDO) ○ 132 Management of steam traps in steam piping and drain water recovery (NEDO) ○ 133 Power recovery by installation of steam turbine in steam pressure reducing line (NEDO) ○ 134 Management of Compressed Air Delivery Pressure Optimization [*3] (NEDO) ○ 135 Improving thermal insulation in industrial furnace (NEDO) ○ ○ ○ ○ ○ ○ 136 Preventive Maintenance (EPA-BACT) *1) Description within ( ) indicates the technologies reference name. The title without ( ) refers to SOACT. *2) JP Steel plantech Co. *3) Arranged title after replacing trademark or trade name with technical terms *4) http://www.nsc.co.jp/en/tech/report/pdf/n9413.pdf, http://www-cycle.nies.go.jp/precycle/kokus/about.html *5) Referred to APP Research Report in China *6) Referred to NEDO Research Report in China *7) SOACT; The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (2nd Edition, 2010) http://asiapacificpartnership.org/pdf/Projects/Steel/SOACT-Handbook-2nd-Edition.pdf NEDO; Japanese Technologies for Energy Savings/GHG Emissions Reduction 《2008 Revised Edition》 http://ietd.iipnetwork.org/sites/ietp/files/Japanese%20Technologies%20for%20Energy%20Saving.pdf EU-BAT; Best Available Techniques (BAT) Reference Document for Iron and Steel Production (2013) http://eippcb.jrc.ec.europa.eu/reference/BREF/IS_Adopted_03_2012.pdf EPA-BACT; Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry(2012) http://www.epa.gov/nsr/ghgdocs/ironsteel.pdf *8) Arranged in a comprehensible title *9) Preconditions below are applied to calculate effects for technologies of #96, 97 <Electric Arc Furnace> - 100% of scraps are utilized - Non of preheating for scraps exists - Batch type scrap supplier - Electric power consumption rate: 430 kWh/ton - CO2 emission factor of electric power: 0.80 tonCO2/M Wh <Reheating Furnace> - Heating temperature for billet: 1,100 degC - Consumption of natural gases - Preheating air temperature: 300 degC - Fuel consumption rate: 350 M cal/ton - Low calorific power of natural gas: 10.5 M cal/m3N - CO2 emission factor of natural gas: 2.53 kgCO2/m3N 84 ○ ○ GSEP Steel Working Group 1 World Steel Association. (n.d.). Steel facts: Integrity is at the heart of the steel industry. Retrieved from https://www.worldsteel.org/Steel-facts.html 2 International Energy Agency. (2015). Tracking clean energy progress 2015: Energy technology perspectives 2015 excerpt IEA input to the clean energy ministerial. Retrieved from http://www.iea.org/publications/freepublications/publication/Tracking_Clean_Energy_Progress_2015.pdf 3 International Energy Agency. (2015). Tracking clean energy progress 2015: Energy technology perspectives 2015 excerpt IEA input to the clean energy ministerial. Retrieved from http://www.iea.org/publications/freepublications/publication/Tracking_Clean_Energy_Progress_2015.pdf 4 World Steel Association. (n.d.). Steel's contribution to a low carbon future and climate resilitent societies. Retrieved from https://www.worldsteel.org/publications/position-papers/Steel-s-contribution-to-a-low-carbon-future.html 5 Quoted from Janjua, R. (n.d.). Energy use in the steel industry [PDF document], p. 3. Retrieved from https://www.iea.org/media/workshops/2014/industryreviewworkshopoct/8_Session2_B_WorldSteel_231014.pdf 6 Ministry of Economy, Trade, and Industry, Japan. (n.d.). GSEP: Sectoral Working Groups (Power WG, Steel WG, Cement WG), p. 3. Retrieved from http://www.meti.go.jp/policy/energy_environment/global_warming/pdf/Update_of_the_GSEP_Sectoral_WG_METI.pdf 7 European Commission. (2014). The EU explained: Energy. Retrieved from http://europa.eu/pol/ener/index_en.htm 8 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 9 Europe, Russia and CIS Division, Overseas Research Department, JETRO. (2011, February). EU のエネルギー新戦略の概要 [Summary of EU energy new strategy]. ユーロトレンド [Euro Trend], 1-12. Retrieved from https://www.jetro.go.jp/ext_images/jfile/report/07000536/eurotrend_feb2011_R3.pdf 10 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 11 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 12 Quoted from European Commission. (n.d.). Energy: 2030 Energy Strategy. Retrieved from http://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy 13 Roadmap 2050. (n.d.). Roadmap 2050. Retrieved from http://www.roadmap2050.eu/project/roadmap-2050 14 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 15 Roadmap 2050. (n.d.). Roadmap 2050. Retrieved from http://www.roadmap2050.eu/project/roadmap-2050 16 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 17 European Union. (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027 18 European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/energy-efficiency-directive 19 European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/energy-efficiency-directive 20 European Union. (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027 21 European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/energy-efficiency-directive 22 European Union. (2010). Directive 2010/31/EU of The European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Retrieved from http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32010L0031 23 European Commission. (n.d.). Energy: Buildings. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/buildings 24 European Union. (2009). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Retrieved from http://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX%3A32009L0125 25 European Union. (2010). Directive 2010/30/EU of the European Parliament and of the Council of 19 May 2010 on the indication by labelling and standard product information of the consumption of energy and other resources by energy-related products. Retrieved from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0001:0012:en:PDF 26 European Commission. (2015). Commission staff working document: Evaluation of the Energy Labelling and Ecodesign Directives. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_autre_document_travail_service_part1_v2.pdf 27 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 28 Office of Market Mechanisms, Ministry of the Environment. (2014). 諸外国における排出量取引の実施・検討状況 [The operation and examination status of Energy Trading Scheme in other countries] [PDF document]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/jokyo.pdf 29 European Commission. (2014). The European Union explained: Climate action. Retrieved from 85 GSEP Steel Working Group http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 30 European Commission. (n.d.). Climate action: Monitoring, reporting and verification of EU ETS emissions: Policy. Retrieved from http://ec.europa.eu/clima/policies/ets/monitoring/index_en.htm 31 European Commission. (2012). Guidance document: The monitoring and reporting regulation – General guidance for installations. Retrieved from http://ec.europa.eu/clima/policies/ets/monitoring/docs/gd1_guidance_installations_en.pdf 32 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 33 European Commission. (n.d.). Climate action: Effort Sharing Decision: Documentation. Retrieved from http://ec.europa.eu/clima/policies/effort/documentation_en.htm 34 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 35 European Commission. (n.d.). Climate action: Effort Sharing Decision: Policy. Retrieved from http://ec.europa.eu/clima/policies/effort/index_en.htm 36 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 37 Office of Market Mechanisms, Ministry of the Environment. (2014). 諸外国における排出量取引の実施・検討状況 [The operation and examination status of Energy Trading Scheme in other countries] [PDF document]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/jokyo.pdf 38 European Commission. (n.d.). Climate action: Structural reform of the European carbon market: Policy. Retrieved from http://ec.europa.eu/clima/policies/ets/reform/index_en.htm 39 Tezuka, H. (2014). EU の 2030 年 40%削減目標は野心的か?(第 2 回): EU の 2030 年目標を分析して見ると・・ [Is the EU 2030 target of cutting 40% of CO2 emissions ambitious? (Vol.2): Analysis of the EU 2030 Target]. Retrieved from http://ieei.or.jp/wp-content/uploads/2014/03/exp140307.pdf 40 Quoted from European Union. (2015). Decision (EU) 2015/1814 of the European Parliament and of the Council of 6 October 2015 concerning the establishment and operation of a market stability reserve for the Union greenhouse gas emission trading scheme and amending Directive 2003/87/EC (Text with EEA relevance). Retrieved from http://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=uriserv:OJ.L_.2015.264.01.0001.01.ENG 41 European Committee for Standardization. (n.d.). Who we are. Retrieved from https://www.cen.eu/about/Pages/default.aspx 42 The European Committee for Standardization., & the European Committee for Electrotechnical Standardization. (n.d.). About us: Mission & objectives. Retrieved from http://www.cencenelec.eu/aboutus/Mission/Pages/default.aspx 43 European Committee for Standardization. (n.d.). CEN/TC 264 - Air quality: CEN/TC 264 Work programme. Retrieved from http://standards.cen.eu/dyn/www/f?p=204:22:0::::FSP_ORG_ID,FSP_LANG_ID:6245,25&cs=188DC176A2CD0B647551520F9AF 099B6D 44 European Committee for Standardization. (n.d.). CEN/TC 264 - Air quality: FprEN 19694-2. Retrieved from http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_LANG_ID:38640,25&cs=13F4A3EB327B0157B4E7F2D3 A272DA6C2 45 European Committee for Standardization. (n.d.). Who we are: Our role in Europe. Retrieved from https://www.cen.eu/about/RoleEurope/Pages/default.aspx 46 Quoted from Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry PublicPrivate Partnership: Stronger smarter swifter [Brochure], p. 1. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210-spire_brochure_web---final.pdf 47 Sustainable Process Industry through Resource and Energy Efficiency. (n.d.). SPIRE PPP - Sustainable Process Industries through Resource & Energy Efficiency - [PDF document]. 48 European Commission. (n.d.). What is Horizon 2020? Retrieved from https://ec.europa.eu/programmes/horizon2020/en/whathorizon-2020 49 Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry Public-Private Partnership: Stronger smarter swifter [Brochure]. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210spire_brochure_web---final.pdf 50 Bøwadt, S. (n.d.). SPIRE PPP (Sustainable Process Industry through Resource and Energy Efficiency) [PDF document]. 51 Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry Public-Private Partnership: Stronger smarter swifter [Brochure]. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210spire_brochure_web---final.pdf 52 Bøwadt, S. (n.d.). SPIRE PPP (Sustainable Process Industry through Resource and Energy Efficiency) [PDF document]. 53 Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry Public-Private Partnership: Stronger smarter swifter [Brochure]. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210spire_brochure_web---final.pdf 54 Sustainable Process Industry through Resource and Energy Efficiency. (n.d.). SPIRE PPP - Sustainable Process Industries through Resource & Energy Efficiency - [PDF document]. 55 TASIO. (n.d.). Waste Heat Recovery for Power Valorisation with Organic Rankine Cycle Technology in Energy Intensive Industries. Retrieved from http://www.tasio-h2020.eu/ 56 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 57 European Commission. (n.d.). Climate action: NER 300 programme: Policy. Retrieved from http://ec.europa.eu/clima/policies/lowcarbon/ner300/index_en.htm 58 European Commission. (2014). The European Union explained: Climate action. Retrieved from 86 GSEP Steel Working Group http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 59 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 60 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 61 European Commission. (n.d.). Climate action: LIFE climate action: Policy. Retrieved from http://ec.europa.eu/clima/policies/budget/life/index_en.htm 62 European Commission. (2014). The European Union explained: Climate action. Retrieved from http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf 63 European Union. (n.d.). European Commission: Overview. Retrieved from http://europa.eu/about-eu/institutions-bodies/europeancommission/index_en.htm 64 Quoted from Latvia and the European Commission on behalf of the European Union and its Member States. (2015). Submission by Latvia and the European Commission on behalf of the European Union and its Member states, p. 1. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/Latvia/1/LV-03-06-EU%20INDC.pdf 65 EUROFER – The European Steel Association. (n.d.). About us: Welcome to EUROFER, the European Steel Association. Retrieved from http://www.eurofer.org/About%20us/Eurofer%20Portrait.fhtml 66 EUROFER – The European Steel Association. (n.d.). About us: Members. Retrieved from http://www.eurofer.org/About%20us/Members. 67 EUROFER – The European Steel Association. (n.d.). About us: Associated Members. Retrieved from http://www.eurofer.org/About%20us/Associated%20Members 68 EUROFER – The European Steel Association. (n.d.). Sustainable steel: Steel and climate protection: applied CO mitigation. 2 Retrieved from http://www.eurofer.org/Sustainable%20Steel/Steel%20and%20Climate%20Protection.fhtml 69 EUROFER – The European Steel Association. (2013). A steel roadmap for a low carbon Europe 2050. Retrieved from http://www.nocarbonnation.net/docs/roadmaps/2013-Steel_Roadmap.pdf 70 EUROFER – The European Steel Association., & IndustriAll – European Trade Union. (2013). Joint EUROFER-industriAll declaration on the European Steel Action Plan. Retrieved from http://www.eurofer.be/Issues%26Positions/Social%20Affairs/Joint%20EUROFERindustriAll%20Declaration%20on%20the%20European%20Steel%20Action%20Plan.pdf 71 EUROFER – The European Steel Association. (2015). Expectations of the European Steel Industry on the results of the Paris COP21 Climate Change Negotiations. Retrieved from http://www.eurofer.org/Issues%26Positions/Communication/20151124%20%20EUROFER%20position%20paper%20COP21.pdf 72 EUROFER – The European Steel Association. (2014.). Energy Efficiency of the EU Steel Industry [PDF document]. 73 De Lamberterie, B. (2014). Steel production - energy efficiency working group: Final report, January 2014. 74 EUROFER – The European Steel Association. (2014.). Energy Efficiency of the EU Steel Industry [PDF document]. 75 De Lamberterie, B. (2014). c. 76 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r eport_clean_stc.pdf 77 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r eport_clean_stc.pdf 78 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r eport_clean_stc.pdf 79 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r eport_clean_stc.pdf 80 ULCOS. (n.d.). About ULCOS: Overview. Retrieved from http://www.ulcos.org/en/about_ulcos/home.php 81 EUROFER – The European Steel Association. (2013). A steel roadmap for a low carbon Europe 2050. Retrieved from http://www.nocarbonnation.net/docs/roadmaps/2013-Steel_Roadmap.pdf 82 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r eport_clean_stc.pdf 83 Energy Conservation and Renewable Energy Department, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry, Government of Japan. (2014). 省エネ法の改正について [About the amendment of the Energy Saving Act] [PDF document]. Retrieved from http://www.enecho.meti.go.jp/category/saving_and_new/saving/summary/pdf/140401_syouenehoukaisei.pdf 84 Government of Japan. (2008). 京都議定書目標達成計画 [Kyoto Protocol Target Achievement Plan]. Retrieved from http://www.env.go.jp/earth/ondanka/kptap/plan080328/full.pdf 85 Government of Japan. (2008). 京都議定書目標達成計画 [Kyoto Protocol Target Achievement Plan]. Retrieved from 87 GSEP Steel Working Group http://www.env.go.jp/earth/ondanka/kptap/plan080328/full.pdf 86 Prime Minister of Japan and His Cabinet. (2007). 地球温暖化対策に関する内閣総理大臣演説 美しい星へのいざない 「Invitation to 『 Cool Earth 50 』」 ~ 3つの提案、3つの原則 ~ 国際交流会議「アジアの未来」晩餐会にて [Prime Minister’s speech on climate action: Invitation to Cool Earth “Invitation to ‘Cool Earth 50’” ~ three proposals, three principles ~ at a banquet of International Conference on The Future of Asia]. Retrieved from http://www.kantei.go.jp/jp/abespeech/2007/05/24speech.html 87 Quoted from ACE: Actions for Cool Earth: Japan’s diplomatic strategy for countering global warming. (n.d.). [PDF document], p. 1. 88 Innovation for Cool Earth Forum. (n.d.). ICEF とは [What's ICEF?]. Retrieved from http://www.icefforum.org/jp/what_icef/index.html 89 Quoted from Innovation for Cool Earth Forum. (n.d.). What's ICEF? Retrieved from http://www.icef-forum.org/what_icef/ 90 Innovation for Cool Earth Forum. (n.d.). Innovation for Cool Earth Forum: 1st annual meeting. Retrieved from http://www.icefforum.org/icef_2014/index.html 91 The Nikkei. (2015). 温暖化ガス削減の仕組み導入を 国際会議が声明 [An international conference called for the introduction of a scheme for GHG emissions reduction]. Retrieved from http://www.nikkei.com/article/DGXLASFS08H6R_Y5A001C1EE8000/ 92 The Nikkei. (2015). 温暖化ガス削減の仕組み導入を 国際会議が声明 [An international conference called for the introduction of a scheme for GHG emissions reduction]. Retrieved from http://www.nikkei.com/article/DGXLASFS08H6R_Y5A001C1EE8000/ 93 Energy Conservation and Renewable Energy Department, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry, Government of Japan. (2014). 省エネ法の改正について [About the amendment of the Energy Saving Act] [PDF document]. Retrieved from http://www.enecho.meti.go.jp/category/saving_and_new/saving/summary/pdf/140401_syouenehoukaisei.pdf 94 Quoted from Ministry of Justice, Government of Japan. (2009). エネルギーの使用の合理化に関する法律: Act on the Rational Use of Energy [Act on the Rational Use of Energy: Act on the Rational Use of Energy]. Retrieved from http://www.japaneselawtranslation.go.jp/law/detail/?ft=1&re=01&dn=1&co=01&ia=03&x=0&y=0&ky=%E5%9C%B0%E7%90%8 3%E6%B8%A9%E6%9A%96%E5%8C%96&page=2 95 The Ministry of the Environment, Government of Japan., & Ministry of Economy, Trade and Industry, Government of Japan. (2015). 地球温暖化対策の推進に関する法律に基づく温室効果ガス排出量算定・報告・公表制度による平成 24(2012) 年度温室効果ガス排出量の集計結果 [Collected results of GHG emissions in 2012 with the system of GHS emissions calculation, reporting, and announcement based on the Act on Promotion of Global Warming Countermeasures]. Retrieved from https://www.env.go.jp/press/files/jp/27440.pdf 96 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx 97 Quoted from Japan. (2015). Submission of Japan’s Intended Nationally Determined Contribution (INDC), p. 3. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/Japan/1/20150717_Japan's%20INDC.pdf 98 Terao, M. (2015). Domestic and global energy saving activities of Japanese steel industry [PowerPoint slides]. 99 The Japan Iron and Steel Federation, personal communication, December 10, 2015. 100 The Japan Iron and Steel Federation, personal communication, December 10, 2015. 101 Keidanren. (n.d.). 経団連環境自主行動計画の概要 [Summary of Keidanren’s Commitment to a Low Carbon Society]. Retrieved from http://www.keidanren.or.jp/japanese/policy/pol133/outline.html 102 Keidanren. (n.d.). 経団連環境自主行動計画の概要 [Summary of Keidanren’s Commitment to a Low Carbon Society]. Retrieved from http://www.keidanren.or.jp/japanese/policy/pol133/outline.html 103 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from https://www.keidanren.or.jp/policy/2013/003_honbun.pdf 104 産業構造審議会・総合資源エネルギー調査会 自主行動計画フォローアップ合同小委員会 [Joint Subcommittee on Voluntary Action Plan Follow-Up, Industrial Structural Council & Advisory Committee for Natural Resources and Energy, Ministry of Economy, Trade and Industry, Government of Japan]., & 中央環境審議会 自主行動計画フォローアップ専門委員会 [Expert Committee on Voluntary Action Plan Follow-Up, Central Environment Council, Ministry of the Environment, Government of Japan]. (2007). 2006 年度 自主行動計画フォローアップ 結果及び今後の課題等 [Voluntary Action Plan follow-up: Results and future tasks etc.]. Retrieved from http://www.meti.go.jp/policy/energy_environment/global_warming/pdf/2006vap.pdf 105 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from https://www.keidanren.or.jp/policy/2013/003_honbun.pdf 106 Keidanren. (2015). 低炭素社会実行計画 2015 年度フォローアップ結果 総括編 <2014 年度実績> [速報版] [Summary of the results of fiscal 2015 follow-up to the KEIDANREN's Commitment to a Low Carbon Society (Fiscal 2014 performance) (Preliminary version)]. Retrieved from https://www.keidanren.or.jp/policy/2015/102_all.pdf 107 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from https://www.keidanren.or.jp/policy/2013/003_honbun.pdf 108 Keidanren. (2009). 経団連 低炭素社会実行計画: Keidanren's Commitment to a Low Carbon Society [Keidanren's Commitment to a Low Carbon Society: Keidanren's Commitment to a Low Carbon Society]. Retrieved from http://www.keidanren.or.jp/japanese/policy/2009/107.html 109 Keidanren. (2015). 2030 年に向けた 経団連低炭素社会実行計画(フェーズⅡ)-経済界のさらなる挑戦- [Keidanren's Commitment to a Low Carbon Society (Phase II) toward 2030: Further challenge of the business community]. Retrieved from 88 GSEP Steel Working Group http://www.keidanren.or.jp/policy/2015/031_honbun.pdf 110 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from https://www.keidanren.or.jp/policy/2013/003_honbun.pdf 111 Keidanren. (2015). 2030 年に向けた 経団連低炭素社会実行計画(フェーズⅡ)-経済界のさらなる挑戦- [Keidanren's Commitment to a Low Carbon Society (Phase II) toward 2030: Further challenge of the business community]. Retrieved from http://www.keidanren.or.jp/policy/2015/031_honbun.pdf 112 Quoted from Fujimoto, K. (2015). Current status and future prospect of Japanese steel industry [PowerPoint slides], p. 8. 113 Fujimoto, K. (2015). Current status and future prospect of Japanese steel industry [PowerPoint slides], p. 8. 114 Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度 エネルギー使用合理化国際標準化推 進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方 法)に関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international standardization promotion project (Joint research and development and foundation development project for dissemination of energysaving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2 emissions amount and intensity)): Research report]. 115 Okazaki, T., Tezuka, H., Nakano. N., & Terashima, K. (2012). GSEP 鉄鋼 WG について [About GSEP Steel WG]. 環境管理 [Environment Management], 48(7), 38-46. Retrieved from http://www.e-jemai.jp/jemai_club/update/pdf/p038046_0710_%E7%89%B9%E9%9B%862_GSEP%E9%89%84%E9%8B%BCWG%E3%81%AB%E3%81%A4%E3%81%84%E3% 81%A6.pdf 116 Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度 エネルギー使用合理化国際標準化推 進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方 法)に関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international standardization promotion project (Joint research and development and foundation development project for dissemination of energysaving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2 emissions amount and intensity)): Research report]. 117 Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度 エネルギー使用合理化国際標準化推 進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方 法)に関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international standardization promotion project (Joint research and development and foundation development project for dissemination of energysaving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2 emissions amount and intensity)): Research report]. 118 Wada, M. (2015). Introduction of Technology Customized List for ASEAN Ver. 1.0 [PowerPoint slides]. 119 Quoted from the Japan Iron and Steel Federation. (2014). Overview of energy saving activities in Japanese steel industry and ISO14404 [PowerPoint slides], p. 11. 120 Wada, M. (2015). Introduction of Technology Customized List for ASEAN Ver. 1.0 [PowerPoint slides]. 121 Terao, M. (2015). Domestic and global energy saving activities of Japanese steel industry [PowerPoint slides]. 122 Terao, M. (2015). Domestic and global energy saving activities of Japanese steel industry [PowerPoint slides]. 123 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 124 Sano, J. (2011). 「第 12 次 5 カ年計画」の主要目標と実現に向けた施策―7%成長を掲げた背景―」[Major goals and measures of “the 12th Five-Year Plan”: Background of targeting 7% growth]. 環太平洋ビジネス情報 RIM [The Pacific Rim Business Information RIM], 11(43). 95-112. 125 Haacke, O. (2015). Understanding China’s 13th Five-Year Plan. The China Business Review. Retrieved from http://www.chinabusinessreview.com/understanding-chinas-13th-five-year-plan/ 126 China Coal Resource. (2015). China releases clean coal action plan 2015-2020. H. Huo (Ed.). Retrieved from http://en.sxcoal.com/117736/NewsShow.html 127 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx 128 Quoted from People’s Republic of China. (2015). Enhanced actions on climate change: China’s Intended Nationally Determined Contributions, p. 5. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20-%20on%2030%20June%2020 15.pdf 129 The White House, Government of the United States of America. (2014). U.S.-China Joint Announcement on Climate Change. Retrieved from https://www.whitehouse.gov/the-press-office/2014/11/11/us-china-joint-announcement-climate-change 130 Filho, W. L., & Voudouris, V. (Eds.). (2013). Global energy policy and security. Retrieved from https://books.google.co.jp/books?id=yn68BAAAQBAJ&pg=PA217&lpg=PA217&dq=Energy+Survey+Committee+of+India+(ESCI) &source=bl&ots=Vr_ZAALMSX&sig=BRCAqNUtT7qduZADUJ4EC4hpjpM&hl=en&sa=X&ved=0ahUKEwjMvcey7fXJAhUCU KYKHQnCA3MQ6AEIHDAA#v=onepage&q=Energy%20Survey%20Committee%20of%20India%20(ESCI)&f=false 131 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 132 Filho, W. L., & Voudouris, V. (Eds.). (2013). Global energy policy and security. Retrieved from https://books.google.co.jp/books?id=yn68BAAAQBAJ&pg=PA217&lpg=PA217&dq=Energy+Survey+Committee+of+India+(ESCI) &source=bl&ots=Vr_ZAALMSX&sig=BRCAqNUtT7qduZADUJ4EC4hpjpM&hl=en&sa=X&ved=0ahUKEwjMvcey7fXJAhUCU KYKHQnCA3MQ6AEIHDAA#v=onepage&q=Energy%20Survey%20Committee%20of%20India%20(ESCI)&f=false 133 Planning Commission, Government of India. (2013). Twelfth Five Year Plan (2012–2017) (Vols. 1-3). Retrieved from 89 GSEP Steel Working Group http://planningcommission.gov.in/plans/planrel/fiveyr/welcome.html 134 Planning Commission, Government of India. (2011). Faster, sustainable and more inclusive growth: An approach to the Twelfth Five Year Plan. Retrieved from http://planningcommission.gov.in/plans/planrel/12appdrft/appraoch_12plan.pdf 135 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 136 Planning Commission, Government of India. (2013). Twelfth Five Year Plan (2012–2017) (Vols. 1-3). Retrieved from http://planningcommission.gov.in/plans/planrel/fiveyr/welcome.html 137 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 138 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 139 The Institute of Energy Economics, Japan. (2014). 平成 25 年度 国際エネルギー使用合理化対策事業 インドにおける 省エネルギー等政策共同研究事業 報告書 [Report of FY2013 Indian energy saving policy joint research project, international energy use rationalization project]. Retrieved from http://www.meti.go.jp/meti_lib/report/2014fy/E003925.pdf 140 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 141 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 142 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx 143 Quoted from India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice, p. 29. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf 144 Republic of India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf 145 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 146 National CDM Authority, Ministry of Environment and Forests, Government of India. (n.d.). About us. Retrieved from http://www.cdmindia.gov.in/aboutus.php 147 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 148 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 149 Srinivas, S. N., Das, A. C. R., & Iyer, S. (Eds.). (2013). Energy-efficient steel re-rolling: How a pioneering project is transforming the Indian secondary steel sector. Retrieved from http://in.one.un.org/img/uploads/STEEL_BOOK_Low_res_for_upload.pdf 150 United Nations Development Programme. (2013). Improved energy efficiency in steel re-rolling sector results in higher profits and more jobs [Press release]. Retrieved from http://www.in.undp.org/content/india/en/home/presscenter/pressreleases/2013/11/25/improved-energy-efficiency-in-steel-re-rollingsector-results-in.html 151 New Energy and Industrial Technology Development Organization. (n.d.). About NEDO. Retrieved from http://www.nedo.go.jp/english/introducing_index.html 152 New Energy and Industrial Technology Development Organization. (n.d.). NEDO project activities (budget: 131.9 billion yen). Retrieved from http://www.nedo.go.jp/english/introducing_pja.html 153 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 154 Central Pollution Control Board Ministry of Environment and Forests, Government of India. (n.d.). CREP: Charter on Corporate Responsibility for Environmental Protection (CREP). Retrieved from http://cpcb.nic.in/crep.php 155 Central Pollution Control Board Ministry of Environment and Forests. (2003). Charter on Corporate Responsibility for Environmental Protection: Action points for 17 categories of industries. Retrieved from http://www.indiansugar.com/PDFS/CREP2003-FullText.pdf 156 Central Pollution Control Board Ministry of Environment and Forests, Government of India. (n.d.). CREP: Charter on Corporate Responsibility for Environmental Protection (CREP). Retrieved from http://cpcb.nic.in/crep.php 157 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 158 Ministry of Environment and Forests. (n.d.). Annual report 2005-2006. Retrieved from http://www.moef.nic.in/report/0506/Chap%2004.pdf 159 Central Pollution Control Board Ministry of Environment and Forests, Government of India. (n.d.). CREP: Charter on Corporate Responsibility for Environmental Protection (CREP). Retrieved from http://cpcb.nic.in/crep.php 160 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet, 2014 & 2015. 161 Ministry of Steel, Government of India. (n.d.). Research & development in iron & steel sector: Background. Retrieved from http://steel.gov.in/Scheme%20for%20promotion%20of%20Research%20&%20Development%20in%20Indian%20Iron%20&%20St eel%20Industry.htm# 162 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & 90 GSEP Steel Working Group Answer Sheet, 2014 & 2015. 163 Korea.net. (n.d.). The Korean economy - the miracle on the Hangang River. Retrieved from http://www.korea.net/AboutKorea/Economy/The-Miracle-on-The-Hangang 164 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1). Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20 and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf 165 Shin, S. (2009). Korea’s National Green Growth Strategy and environmental policy. Korea Environmental Policy Bulletin, 17(1). Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20 and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf 166 제 63 주년 광복절 및 대한민국 건국 60 년 경축사 "위대한 국민, 새로운 꿈" 위대한 국민, 기적의 역사 [Vision for the next 60 years: Low-carbon Green Growth]. (n.d.). 167 제 63 주년 광복절 및 대한민국 건국 60 년 경축사 "위대한 국민, 새로운 꿈" 위대한 국민, 기적의 역사 [Vision for the next 60 years: Low-carbon Green Growth]. (n.d.). 168 Quoted from Blue-Ocean Content and Strategy. (n.d.). National Basic Energy Plan, Korea (2008-2030), p. 4. Retrieved from http://www.energyplus.or.kr/pdf/11_ing/110207_t2.pdf 169 Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea: Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from http://www.moleg.go.kr/english/korLawEng?pstSeq=54792 170 Blue-Ocean Content and Strategy. (n.d.). National Basic Energy Plan, Korea (2008-2030). Retrieved from http://www.energyplus.or.kr/pdf/11_ing/110207_t2.pdf 171 Korea Energy Agency. (2015). KEA Annual Report 2014. Retrieved from http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf 172 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1). Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20 and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf 173 Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure]. 174 Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure]. 175 Quoted from Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure], p. 20. 176 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf 177 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1). Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20 and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf 178 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf 179 Quoted from Korea Energy Management Corporation. (n.d.). Energy Management System (EnMS). Retrieved from http://www.kemco.or.kr/new_eng/pg02/pg02100330.asp 180 Korea Energy Agency. (n.d.). Energy Management System (EnMS). Retrieved from http://www.energy.or.kr/renew_eng/energy/industry/enms.aspx 181 Korea Energy Management Corporation. (n.d.). Energy Management System (EnMS). Retrieved from http://www.kemco.or.kr/new_eng/pg02/pg02100330.asp 182 Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea: Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from http://www.moleg.go.kr/english/korLawEng;jsessionid=kjmTtZQPu1bQdxjokg86YsuCywByy3tgSiusGLC4IveVo6lbrwpeogUfqbY0 IIYw?pstSeq=54783&brdSeq=33 183 Korea Energy Agency. (n.d.). Energy Service Companies (ESCO). Retrieved from http://www.energy.or.kr/renew_eng/energy/industry/esco.aspx 184 Korea Energy Agency. (2015). KEA Annual Report 2014. Retrieved from http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf 185 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf 186 Korea Energy Agency. (2015). KEA Annual Report 2014. Retrieved from http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf 187 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1). Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20 91 GSEP Steel Working Group and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf 188 International Emissions Trading Association. (2014). South Korea: The world’s carbon markets: A case study guide to emissions trading. Retrieved from https://www.edf.org/sites/default/files/South-Korea-ETS-Case-Study-March-2014.pdf 189 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf 190 Kim, Y. (2012). Emissions Trading Scheme for Low-Carbon Green Growth in Korea [PDF document]. Retrieved from http://unfccc.int/files/bodies/awg-lca/application/pdf/20120517_korea_1117.pdf 191 The Republic of Korea. (2015). Submission by the Republic of Korea: Intended Nationally Determined Contribution. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20 the%20Republic%20of%20Korea%20on%20June%2030.pdf 192 Kim, Y. (2012). Emissions Trading Scheme for Low-Carbon Green Growth in Korea [PDF document]. Retrieved from http://unfccc.int/files/bodies/awg-lca/application/pdf/20120517_korea_1117.pdf 193 Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea: Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from http://faolex.fao.org/docs/pdf/kor102410.pdf 194 Yoo, C. (2012). South Korea streams ahead. Global Carbon Autumn 2012, 16-17. Retrieved from https://www.pwc.com/gx/en/sustainability/publications/assets/pwc-emmisions-trading-south-korea.pdf 195 Office of Market Mechanisms, Ministry of the Environment. (2013). 韓国温室効果ガス排出権取引制度の概要 [Summary of Korea Emissions Trading Scheme]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/mats/kr20130110.pdf 196 International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme. Retrieved from https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47 197 Yoo, C. (2012). South Korea streams ahead. Global Carbon Autumn 2012. Retrieved from https://www.pwc.com/gx/en/sustainability/publications/assets/pwc-emmisions-trading-south-korea.pdf 198 Ministry of the Environment Office of Market Mechanisms. (2013). 韓国温室効果ガス排出権取引制度の概要 [Summary of Korea Emissions Trading Scheme]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/mats/kr20130110.pdf 199 Quoted from International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme, p. 1. Retrieved from https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47 200 International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme. Retrieved from https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47 201 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx 202 Quoted from The Republic of Korea. (2015). Submission by the Republic of Korea: Intended Nationally Determined Contribution, p. 1. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20 the%20Republic%20of%20Korea%20on%20June%2030.pdf 203 The Republic of Korea. (2015). Submission by the Republic of Korea: Intended Nationally Determined Contribution. Retrieved from http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20 the%20Republic%20of%20Korea%20on%20June%2030.pdf 204 Ministry of Trade, Industry and Energy, Government of Korea. (2015). 산업통상자원부, 기후변화 대응과 에너지신산업의 체계적 육성을 위해 「에너지신산업정책단」 출범 [Ministry of Trade, Industry and Energy launched the Department of energyrelated new industries for climate change and systematic development of energy-related new industries] [Press release]. 205 Quoted from Ministry of Trade, Industry and Energy, Government of Korea. (2014). Energy-related new industries. Retrieved from http://english.motie.go.kr/?p=5452 206 Quoted from Ministry of Trade, Industry and Energy, Government of Korea. (2014). Energy-related new industries. Retrieved from http://english.motie.go.kr/?p=5452 207 Ministry of Trade, Industry and Energy, Government of Korea. (2015). 산업통상자원부, 기후변화 대응과 에너지신산업의 체계적 육성을 위해 「에너지신산업정책단」 출범 [Ministry of Trade, Industry and Energy launched the Department of energyrelated new industries for climate change and systematic development of energy-related new industries] [Press release]. 208 Quoted from Ministry of Trade, Industry and Energy, Government of Korea. (2014). Energy-related new industries. Retrieved from http://english.motie.go.kr/?p=5452 209 Korea Iron and Steel Association. (n.d.). History. Retrieved from https://www.kosa.or.kr/sub/eng/about/sub01.jsp 210 Quoted from Korea Iron and Steel Association. (n.d.). Activities. Retrieved from https://www.kosa.or.kr/sub/eng/about/sub01.jsp 211 POSCO. (n.d.). History of POSCO: vision 1965~1969. Retrieved from http://www.posco.com/homepage/docs/eng5/jsp/company/posco/s91a1000012c.jsp 212 POSCO. (n.d.). History of POSCO: Success 1993~. Retrieved from http://www.posco.com/homepage/docs/eng5/jsp/company/posco/s91a1000015c.jsp 213 Park, K. (2010). Green Growth Strategy of POSCO [PDF document]. Retrieved from http://www.oecd.org/sti/ind/45009940.pdf 214 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf 215 POSCO. (n.d.). Climate change /energy: Vision and strategies to mitigate climate change. Retrieved from http://www.posco.com/homepage/docs/eng5/jsp/sustain/environ/environment_03_02.jsp 92
© Copyright 2024 ExpyDoc