調査報告書 - 経済産業省

経済産業省委託
平成27年度二国間クレジット取得等インフラ整備調査事業(エネルギー
効率向上に関する国際パートナーシップ(GSEP鉄鋼WG)を活用した途
上国の技術支援ニーズ等に関する調査)
調査報告書
平成28年2月
デロイト トーマツ コンサルティング合同会社
目次
第 1 章.
1.1.
1.2.
1.3.
1.4.
1.5.
第 2 章.
2.1.
2.2.
第 3 章.
3.1.
3.2.
3.3.
第 4 章.
4.1.
4.2.
4.3.
第 5 章.
5.1.
第 6 章.
6.1.
6.2.
6.3.
本事業の背景と目的 .................................................................................................................... 2
本事業の背景 ............................................................................................................................... 2
本事業の目的 ............................................................................................................................... 3
調査結果 ....................................................................................................................................... 4
業務内容 ....................................................................................................................................... 4
業務スケジュールと進捗結果 ...................................................................................................... 4
GSEP 鉄鋼 WG の運営支援 ........................................................................................................ 6
GSEP 鉄鋼 WG の運営支援(概要) ............................................................................................... 6
GSEP 鉄鋼 WG の運営支援(詳細) ............................................................................................... 6
各国のエネルギー管理、必要とする省エネ技術等の情報の整理、編纂 .................................... 9
背景 .............................................................................................................................................. 9
業務内容 ..................................................................................................................................... 10
各国調査結果 ............................................................................................................................. 13
国際会議開催等支援各国のエネルギー管理、必要とする省エネ技術等の情報の整理 ............... 14
国際会議の開催検討の経緯 ....................................................................................................... 14
国際会合開催に向けた準備 ....................................................................................................... 14
会合当日 ..................................................................................................................................... 14
GSEP 鉄鋼 WG 以降の活動に向けた提案 ................................................................................ 26
今次 GSEP 鉄鋼 WG 開催後の活動........................................................................................... 26
Appendix ................................................................................................................................... 27
質問表に添付された省エネルギー技術リスト .......................................................................... 27
GSEP 鉄鋼 WG 各国への主な連絡・調整................................................................................. 29
略語表 ........................................................................................................................................ 30
図表目次
図 1: APP から GSEP への再編・以降 概念図 .............................................................................................. 3
図 2: 第 1 回 GSEP 鉄鋼 WG で合意されたアクションプランおよび第 2 回 GSEP 鉄鋼 WG で合意された
GSEP 鉄鋼 WG の焦点 .............................................................................................................................. 9
図 3: 第 2 回 GSEP 鉄鋼 WG で合意された業務内容 .................................................................................... 10
表
表
表
表
1: 各国との調整内容および結果概要 .......................................................................................................... 7
2: 質問票回収結果 ..................................................................................................................................... 12
3: 各国の Booklet に対する原稿案指摘事項 ............................................................................................. 12
4: GSEP 鉄鋼 WG への参加組織・参加者一覧 .......................................................................................... 16
1
第1章. 本事業の背景と目的
1.1. 本事業の背景
わが国日本は、世界規模での気候変動問題の解決に向け、国連気候変動枠組条約における国際交渉への
参加等、多国間交渉の場を通じて世界的な枠組み・仕組みの構築に貢献している。また、二国間の枠組みを通
じて、日本の優れた環境・省エネ技術の普及等を進め、温室効果ガスの削減に貢献する仕組みとして「二国間
クレジット制度」を推進している。当該制度の普及には、産業分野ごとの環境・省エネ技術に関するニーズやポ
テンシャルを二国間の枠組みで把握することのみならず、多国間の枠組みを活用していくことも効果的である。
このような背景から、日本は多国間の枠組みに積極的に関与しており、エネルギー効率向上に関する国際パー
トナーシップ(Global Superior Energy Performance Partnership: GSEP)の活動への関与もその一環であ
る。
GSEP は、官民主体パートナーシップのもと、省エネ・環境対応技術の開発・普及・移転および関連する技術
協力を通じて、エネルギー安全保障の確保および地球温暖化対策の推進を目的とする国際的な枠組みである。
また、主要国の官公庁主体と民間主体および国際機関が集い、特定分野のエネルギー・環境政策や技術等に
ついて情報を共有し、議論をする貴重な場である。
GSEP は、2010 年 7 月のクリーンエネルギー大臣会合(Clean Energy Ministerial:CEM)において、そ
の下のイニシアチブとして日米共同で提案し承認された。併せて、2010 年 9 月にパリで開催された国際省エ
ネ協力パートナーシップ(International Partnership for Energy Efficiency Cooperation:IPEEC)執行委
員会において、その下に GSEP を位置付けることが承認された。また、2011 年のクリーン開発と気候に関する
アジア太平洋パートナーシップ(Asia-Pacific Partnership on Clean Development and Climate:APP)の終
了を受け、APP の成果と事業内容を引き継いでいる。
APP は 2005 年 7 月に設立され、アジア太平洋地域において増大するエネルギー需要に対応するとともに、
環境汚染、エネルギー安全保障、気候変動問題への対処に資する活動を趣旨とし、日本、豪州、カナダ、中国、
インド、韓国、米国の参加により、官民主体パートナーシップを築いていた。APP では、よりクリーンで効率的な
技術の開発・普及・移転のための地域協力を推進するべく、①アルミニウム、②セメント、③石炭鉱業、④再生可
能エネルギーと分散型電源、⑤建物および電気機器、⑥クリーンな化石エネルギー、⑦発送電、⑧鉄鋼の 8 つ
のタスクフォース(Task Force: TF)を設置し、協力を進めてきた。その後、2011 年 4 月に開催された APP 第
9 回政策実施委員会において、事務局を務めてきた米国国務省の予算上の制約等の理由により APP の作業
終了が合意され、同時に、鉄鋼、セメント、発送電の 3TF を、GSEP に引き継ぐことが説明された。加えて、エ
ネルギーマネジメント作業部会(Working Group: WG)(米国主導)、熱電併給・地域熱供給 WG(フィンランド主
導)、クールルーフ・舗装 WG(米国主導)の 3WG も発足し、GSEP は 6 つの WG を有する形で、CEM と
IPEEC の下でその取組みを正式に開始した。
日本は、産業分野ごとの取組みとして、GSEP のセクター別ワーキンググループ(WG)(セメント WG、電力
WG、鉄鋼 WG)を議長国として主導している。
2
出所: 経済産業省、エネルギー効率向上に関する国際パートナーシップ(GSEP)の目的と概要
図 1: APP から GSEP への再編・以降
概念図
2011 年、GSEP は 9 月に米国でワークショップを開催した。GSEP 発足後の最初の会合であり、APP の
各 TF の活動を GSEP に引き継ぐことを含め、今後の活動継続への期待が各参加者から表明された。
2012 年 3 月には東京で GSEP 第1回セクター別 WG を開催し、各 WG の運営方針や各セクターにおける
行動計画を策定した。この結果行動計画としては、省エネや低炭素化のための技術・製品の開発・普及・移転、
排出削減効果の評価等の活動を開始することが合意された。
当該合意に基づき、GSEP 鉄鋼 WG は、2014 年 2 月に GSEP エネルギー管理 WG(議長:米国)と協力し、
インド、中国、韓国、米国の官民主体メンバー参加のもと、エネルギー管理等に関するセミナーを東京で開催し
た。また、同年 9 月には上記メンバーに欧州、国際エネルギー機関(International Energy Agency: IEA)も加
わり、第 2 回会合をパリで開催した。第 2 回会合では、各国のエネルギー管理、必要とする省エネ技術情報等
を Booklet に編纂すること、また第 3 回会合においては同 Booklet に基づき議論を行うことが、アクションプラ
ンとして合意された。これらを受けて、今回、第 3 回会合を開催する運びとなった。
1.2. 本事業の目的
GSEP 鉄鋼 WG の活動支援を通じ、多国間の枠組みにおける日本の鉄鋼分野の低炭素技術およびエネル
ギー管理手法に関する知見の共有、普及、移転を促進することを本事業の目的としている。特に、GSEP 鉄鋼
WG では議長国である日本が主導的な役割を担うことが期待され、また日本としても、二国間クレジット制度推
進や当該分野における国際的な貢献・活躍のため、その役割を最大限に活用することを狙いとした。
3
1.3. 調査結果
GSEP 鉄鋼 WG は主要国の官公庁主体、民間主体および国際機関が集い、特定分野のエネルギー・環
境政策や技術等について情報を共有し、また議論をする国際的な場である。左記の場において、日本は
議長国としてメンバー国を取りまとめ、有意義な WG とするべく尽力した。一方で、2015 年に開催さ
れた CEM 会合にて、GSEP 傘下の WG は、イニシアチブへ格上げもしくは解散、の選択肢が与えら
れ、決断を求められた。これを受け、GSEP 鉄鋼 WG の議長国であるわが国は、本 WG を 2015 年度を
もって解散することとした。よって、今次会合を GSEP 鉄鋼 WG の最終会合とし、メンバー国の理解
を得て、円滑な終了を実現することとなった。
1.4. 業務内容
本事業の目的を遂行するにあたり、実施した業務は以下のとおりである。
(1) 鉄鋼 WG の運営支援
鉄鋼 WG の運営支援を行うサポート体制を構築し、鉄鋼 WG の事務局業務を実施した。具体的に
は、①鉄鋼 WG 議長の支援(WG での議論に必要な調査や資料作成、各国への協議、議論の補助等)、
②鉄鋼 WG メンバー国や関係機関との連絡・調整、③鉄鋼 WG 国内関係者による打合せへの参加・補
助等、であり、経済産業省地球環境対策室および鉄鋼 WG の担当課である製鉄企画室の指示に従い実
施した。詳細については、第 2 章を参照のこと。
(2) 各国のエネルギー管理、必要とする省エネ技術等の情報の整理、編纂
昨年 9 月に行われた GSEP 鉄鋼 WG 会合では、参加各国(米国、欧州連合(European Union: EU)、
中国、韓国、インド、日本)のエネルギー管理、および、企業等に必要とされる省エネ技術等に関する
情報を取りまとめて Booklet を作成し、その情報を基に次回会合で議論を行うことが合意された。詳
細については、第 3 章を参照されたい。また、今次会合をもって GSEP 鉄鋼 WG を終了する運びとな
ったことを受け、このたび作成した Booklet を最終成果物とすることとなった。
なお、Booklet 作成にあたり上記各国からの情報収集、Booklet の編纂に関する業務を実施した。
Booklet は、上記 6 か国の官民主体から収集した各国のエネルギー管理手法および必要とする省エネ
技術等を国別に取りまとめたものであり、内容については今次 GSEP 鉄鋼 WG 会合で議論した。内容
の詳細については、資料(Booklet for Iron and Steel Industry – Action on Energy Saving and
Climate Change)を参照のこと。
(3) 国際会議開催等支援
第 3 回および最後の GSEP 鉄鋼 WG を 2016 年 2 月 3 日(水)、霞が関・経済産業省に於いて開催し
た。開催にあたり、事前準備、当日運営、および事後フォローの一連について支援を行った。詳細は、
第 4 章を参照のこと。
1.5. 業務スケジュールと進捗結果
当初、Innovation for Cool Earth Forum (ICEF)(経済産業省主管)の開催とあわせて 2015 年 10 月 8 日
(木)に都内で開催予定であったところ、主要国の不参加が確実となったことを受け、延期する運びとなった。延
期の背景については、第 4 章を参照されたい。
その後、各国との調整を経て 2016 年 2 月 3 日(水)に第 3 回会合を開催することが確定され、開催に向けて、
会合参加と Booklet 作成に向けた調整を行った。各国との調整の詳細については、第 2 章、第 4 章、および
4
Appendix を参照のこと。
なお、Booklet 作成については、主に以下の手順で進められた。
2014 年 ※昨年度事業中
11 月
各国から情報を得るべく、日本が質問票を作成。各国へ送付・回答を依頼。
2015 年
~11 月 質問状への回答・返送を依頼
11、12 月 各国から得た質問票への回答等をふまえ、日本が文献調査を実施し、ドラフト原稿を作成
12 月
ドラフト原稿の内容について、各国官公庁主体・民間主体に確認を依頼
2016 年
1月
各国からドラフト原稿内容の確認結果返信・返信内容に基づきドラフト原稿を修正
1月
29 日、校了・完成
5
第2章. GSEP 鉄鋼 WG の運営支援
2.1. GSEP 鉄鋼 WG の運営支援(概要)
GSEP 鉄鋼 WG の運営支援にあたり、支援体制を構築し、鉄鋼 WG の事務局業務を実施した。今回
は、事業実施中の 2015 年 3 月の CEM 準備会議において、2015 年度をもって GSEP 鉄鋼 WG が終了
することが方向づけられたため、円滑な終了に向けた作業も求められた。
事務局業務として、具体的には、(1)鉄鋼 WG 議長の支援(WG での議論に必要な調査や資料作成、各
国への協議、議論の補助等)、(2)鉄鋼 WG メンバー国や関係機関との連絡・調整、および(3)鉄鋼 WG 国
内関係者による打合せへの参加・補助等について、地球環境対策室と鉄鋼 WG の担当課である製鉄企画
室の指示に従い、実施した。
2.2. GSEP 鉄鋼 WG の運営支援(詳細)
(1) 鉄鋼 WG 議長の支援
議長国である日本は、今次 WG の運営および会合の実施を主導する役割にある。この役割のもと議長が行
う以下の活動に対する支援を行った。
(a). 前回会合の合意に基づく Booklet の作成
先述の通り、第 3 回 GSEP 鉄鋼 WG においては、各国のエネルギー管理形態や必要とされる省エネ
技術情報等を編纂した Booklet に基づき協議を行うことが、アクションプランとして合意されていたため、
今年度は本 Booklet の編纂・取りまとめの支援を行った。また、第 3 回会合にて議長が Booklet を紹介
するための説明資料作成支援を行った。Booklet 作成業務の詳細は第 3 章を参照のこと。
(b). 第 3 回 GSEP 鉄鋼 WG の開催支援
第 3 回会合の開催に向けて、会合目的に沿った議事次第の作成・変更、開催における運営側・参加
側の関係各者との調整、WG 会合等における日本側からの発信内容の整理、会合当日の議事進行支
援等を行った。
(c). 第 3 回 GSEP 鉄鋼 WG における各国との協議および議論の補助
前述の通り、2015 年 3 月の CEM 準備会合の結果を受け、今次会合では GSEP 鉄鋼 WG の円滑
な終了を報告し取りまとめることが求められた。これらについて、本会合の最後に本 WG メンバー国に対
して行う発表原稿原案について作成支援を行い、会合当日には内容を踏まえた修正対応の準備を行
うなど、円滑な終了に向けた会合運営の補助を行った。
(2) 鉄鋼 WG メンバー国や関係機関との連絡・調整
会合開催にあたり、可能な限り全メンバー国の参加を得ることを目指し、主に E メールおよび電話にて、各メ
ンバー国関係者と調整を行った。連絡・調整内容は主に Booklet 作成および会合開催に向けたものである。
(a). Booklet 作成に係る主な調整項目
 質問状の作成・送信・回収を通じた各国からの情報収集
 Booklet 原稿案の作成および内容確認依頼・確認後の内容確認
※本調整内容については第 3 章を参照のこと
6
(b). 会合開催に係る主な調整項目
 開催案内および出欠確認
 宿泊・フライト調整・手配・連絡、ビザ申請書類準備(中国およびインド)
 プレゼンテーションに係る調整、等
各国とは特に、会合開催が 2 月 3 日に確定した時期、すなわち 2015 年 12 月から特に密な連携を図っ
た。主な調整内容は以下の表 1 および Appendix を参照のこと。
質問
票配
布国
インド
韓国
中国
米国
EU
官/
民
参
加
官
○
•
•
民
○
•
官
○
•
民
○
•
官
×
•
民
○
•
官
○
•
米国エネルギー省(United States Department of Energy: US-DOE)の前回鉄鋼 WG 会合出
席者に案内をしたところ、欠席の返事を得た。同組織の別担当者または日本国内の関連組織から
の参加を再三にわたり依頼したが、結局は不参加となった。
民
―
•
本鉄鋼 WG への活発な活動がないことから、今次会合への案内は見送った。
官
×
•
民
×
•
欧州委員会(European Commission: EC)の前回鉄鋼 WG 会合出席者に案内をしたところ、欠席
の返事を得た。同組織の別担当者を紹介いただき、あらためて案内および出席を依頼した。検討い
ただいたが、結局は不参加となった。日本国内の関連組織からの参加についても依頼したが、参加
は得られなかった。
欧州鉄鋼協会(The European Steel Association: Eurofer)の前回鉄鋼 WG 会合出席者に案内
をしたところ、欠席の返事を得た。同組織の別担当者または日本国内の関連組織からの参加を再三
にわたり依頼したが、結局は不参加となった。
調整結果概要
E メールや電話による密な連携により、インド鉄鋼省からバートワール局長含め 2 名の参加を得た。
電力省・エネルギー効率局(Bureau of Energy Efficiency: BEE, Ministry of Power: MOP)へ
も参加を依頼し、参加に向けて調整いただいたが、参加は得られなかった。
E メールによる密な連携により、国営インド鉄鋼公社(Steel Authority of India. Ltd: SAIL)、イン
ド国営ラシュトリヤ・イスパット・ニガム社(Rashtriya Ispat Nigam Limited: RINL)、Tata Steel
Limited 含め、6 社から 7 名の参加を得た。
E メールや電話による密な連携により、Korea Energy Agency (KEA)から 1 名の参加を得た。
E メールや電話による密な連携により、POSCO Research Institute (POSRI)から 1 名の参加を
得た。
中国国家気候変動戦略研究・国際協力センター(National Center for Climate Change
Strategy and International Cooperation: NCSC)から 1 名の参加を予定していたが、会合開催
直前に、参加予定者の都合により参加がキャンセルされた。急きょ日本国内の関連組織からの参加
についても依頼したが、結局は不参加となった。
E メールや電話による密な連携により、China Iron and Steel Association (CISA)から 1 名の参
加を得た。
表 1: 各国との調整内容および結果概要
Booklet 作成のスケジュールや調整については、第 3 章および Appendix を参照のこと。
関係国との連携により、当初の意図を満たした内容の Booklet を完成させることができたとともに、今次鉄
鋼 WG 会合へ、インド(官・民)、中国(民)、韓国(官・民)、日本(官・民)、からの参加を得た。また IEA へも開
催を案内し、1 名の参加を得た。
なお、中国官公庁主体については、NCSC からの参加表明を受けて、日本側としても準備を進めていた
が、会合開催直前に先方都合によりキャンセルとなった。急きょ、日本国内の関連機関からの派遣を依頼し
たが手配ができず、結局、中国の官公庁主体からは不参加となった。また、欧州および米国からも参加者が
得られなかった。代理出席を含めて参加を依頼をしたが、結局は不参加となった。
(3) 鉄鋼 WG 国内関係者による打ち合わせへの参加補助等
日本鉄鋼連盟が主催する地球温暖化対策タスクフォース・国際環境戦略委員会に参加し、GSEP 鉄鋼
7
WG の運営や第 3 回会合開催に向けた準備状況の相談・報告を行った。会合開催案内先やアジェンダにつ
いて相談するとともに、各国との調整状況や当日運営等について報告した。また Booklet の作成手順や構成
についての相談や報告等も行った。
上記他、GSEP 鉄鋼 WG の運営および会合開催にあたり、関係者間の協議の場を設けた。
8
第3章. 各国のエネルギー管理、必要とする省エネ技術等の情報の整理、編纂
3.1. 背景
GSEP 鉄鋼 WG 会合は、今次会合を含めて 3 回開催された。2012 年 3 月 12 日に東京にて開催され
た第 1 回 GSEP 鉄鋼 WG 会合には、韓国、豪州、中国、日本、米国他が参加し、図 2 左の通り、アク
ションプランが合意された後、2014 年 9 月 12 日フランス・パリで開催された第 2 回 GSEP 鉄鋼 WG
会合にて、参加各国(EU、インド、韓国、中国、日本、米国)により改めてアクションプランが見直された。こ
の結果、アクションプランが 2 項目に集約され、GSEP 鉄鋼 WG 会合は「最新情報を共有する場」と
し、導入後の便益や導入に伴う課題など最新の省エネルギー・環境技術の情報共有と、エネルギー管理
に係る政策や関連活動の情報共有を行うこととした。
第1回GSEP鉄鋼WGで合意されたアクションプラン
1
2
第2回GSEP鉄鋼WGで合意された
GSEP鉄鋼WGの焦点
エネルギーマネジメント
• エネルギーマネジメントシステム
• 省エネのキャパビルと改善
アクションプラン 2&4
「技術」
導入後の便益や導入に
伴う障害など最新の省エ
ネルギー・環境技術の情
報共有
SOACT ハンドブック“改良版”
• コスト・収益に関する一層の情報
• 技術の追加
3
技術普及
4
ブレークスルー研究開発
5
政策提言・広報
• バリア分析
• 解決策のための限界削減費用のカーブ
• 長期的ビジョン
• ブレークスルー技術の情報シェア (技術ハンドブック)
• 技術普及のために適切な国内外の政策
• 広報 省エネ型社会へのご提案
アクションプラン 1&5
「エネルギー管理政策」
エネルギー管理に係る
政策や関連活動の情報
共有
出所: DTC 作成
図 2: 第 1 回 GSEP 鉄鋼 WG で合意されたアクションプランおよび第 2 回 GSEP 鉄鋼 WG で合意された
GSEP 鉄鋼 WG の焦点
上記に示した合意結果を受けて、第 3 回 GSEP 鉄鋼 WG ではまず現状把握として、各国のエネルギ
ー管理に係る政策や関連活動の最新動向、および実行する上での課題、また省エネルギー・環境技術の
導入状況や導入ニーズに関して共有することとなった。
更に、これを実現するためのアプローチとして、参加国間で以下の 3 業務を実行することが合意され
た。
(1) STEP1:準備
(2) STEP2:Booklet の編纂
(3) STEP3:GSEP における協議
9
STEP1: 準備
STEP2: Bookletの編纂
STEP3: GSEPにおける協議
上記ニーズや課題を纏めた
Bookletを作成する。
各国の技術やエネルギー管理に関
するニーズや課題等に関してメン
バー国に質問票を送付し、事務局
が回収する。
質問票
必要な技術
Booklet
for Iron and
Steel Industry
アクションプラン 2&4
「技術」
第3回GSEP鉄鋼WGでは、
 各国よりBookletの内容に関
するプレゼンを行う。
 各国の技術やエネルギー管
理システムの課題について
議論する。
エネルギー管理
アクションプラン 1&5
「エネルギー管理政策」
A
AP
C
P
D
C
GSEP鉄鋼WGへのコメント
議論が必要な課題
2015
GSEP Steel
WG
出所: DTC 作成
図 3: 第 2 回 GSEP 鉄鋼 WG で合意された業務内容
各業務内容の詳細は 3.2 を参照のこと。
3.2. 業務内容
(1) STEP 1: 準備
まず各国のエネルギー管理手法および必要とする省エネ技術等の情報を得るため、EU、インド、韓国、中
国、日本、米国の官民主体に対するアンケート調査が行われた。具体的には質問票を用いて、以下の内容が
調査された。
【官公庁主体に対する主な質問事項】
 鉄鋼産業のエネルギー管理に関する政策および施策動向
 技術導入、技術開発、エネルギー管理に関する課題や他国支援の必要性
 GSEP 鉄鋼 WG に対する期待およびコメント
【民間主体に対する質問事項】
 省エネルギー・環境技術導入に関する現状と将来ニーズ
 製鉄所のエネルギー管理の現状と課題
 GSEP 鉄鋼 WG に対する期待およびコメント
質問票の回収結果は以下の通り。
質問票配布国
EU
官/民
回収
官
民
×
×
回答内容概要
N/A
N/A
10
質問票配布国
インド
韓国
中国
日本
官/民
回収
官
○
民
○
官
○
民
○
官
○
民
○
民
○
回答内容概要
•
インド鉄鋼産業のエネルギー管理に関わる政策や事業として、インド、省エ
ネ達成認証スキーム(Perform Achieve and Trade: PAT)スキームや独
立行政法人新エネルギー・産業技術総合開発機構(New Energy and
Industrial Technology Development Organization: NEDO)国際技
術・システム実証事業等が説明された。
•
インドの製鉄所のエネルギー消費量が他国より多い理由として、技術導入
不足と経済規模の欠如等の課題が挙げられた。これを受けて、政府が製
鉄所の技術近代化、研究開発投資、エネルギー・CO2 排出削減を継続的
に促進していることが言及された。
•
GSEP 鉄鋼 WG への期待として、先進国・開発途上国間で、最新鉄鋼生
産技術情報を継続的に共有すること等が挙げられた。
民間企業 1 社より質問票の回答が得られた:
•
既に導入、使用されている省エネルギー技術として、焼結機点火炉用高効
率バーナー等が挙げられた。
•
資金面、管理面の課題等が挙げられた。
•
当該企業が報告を慣行しているエネルギー管理に係る施策として、PAT
スキーム等が挙げられた。
•
GSEP 鉄鋼 WG への期待として、低品質原料のエネルギー消費に対する
悪影響を最低限に抑えるベストプラクティスや技術を共有すること等が挙げ
られた。
•
韓国鉄鋼産業のエネルギー管理に関わる政策として、温室効果ガス排出
量取引制度等が挙げられた。
•
GSEP 鉄鋼 WG への期待として、官民主体のパートナーシップという
GSEP 鉄鋼 WG の主要原則を保つこと等が挙げられた。
•
韓国鉄鋼産業では、質問票に記載されていた省エネルギー技術
(Appendix 参照)のほとんどが既に導入、使用されていることが述べられ
た。
•
幾つかの技術については技術面や資金面での課題により、導入されてい
ないことが述べられた。
•
韓国鉄鋼産業の環境に優しい産業構造への移行推進を目的とした法とし
て、エネルギーの使用の合理化に関する法律等が挙げられた。
•
中国鉄鋼産業のエネルギー管理に関わる政策として、China's Policy
and Action to Address Climate Change 等が挙げられた。
•
エネルギー管理政策の課題として、高レベルの省エネルギー・温室効果ガ
ス排出削減技術の欠如等が挙げられた。
•
GSEP 鉄鋼 WG への期待として、開発途上国の研究機関および企業の
ための共同研究開発実現に向けた具体的な実施スキームや、鉄鋼企業の
設備改良のための資金援助スキームを提供することが挙げられた。
•
質問票に記載の各省エネルギー技術に対し、中国鉄鋼産業の主要 12 企
業全体での導入率および各企業のニーズ有無情報が提供された。
•
石炭大量消費産業として、中国鉄鋼産業のエネルギー消費量および石炭
消費量の管理が、エネルギー不足や大気汚染問題解決の要になるだけで
なく、中国のエネルギー技術開発国家計画の施行においても重要な役割
を果たすことが言及され、産業構造の最良化等に取り組まなければならな
い旨が述べられた。
•
既に国内に広く普及している省エネルギー技術として、コークス乾式消火
設備等が挙げられた。
•
質問票記載の技術以外に将来的に導入が期待される技術として Ferrocoke、技術開発プロジェクトとして COURSE50 が挙げられた。
•
日本鉄鋼産業の省エネルギー活動を促進する政策として、エネルギーの
使用の合理化等に関する法律と地球温暖化対策の推進に関する法律が
挙げられた。また、日本鉄鋼連盟として法的拘束力なく自主的に遂行して
いる省エネルギーに向けた取組みとして、低炭素社会実行計画が説明さ
れた。
•
GSEP 鉄鋼 WG への期待として、メンバー国の積極的な参加のもと、各国
の政策や取り組みに関する情報交換が行われることが挙げられた。
11
質問票配布国
米国
官/民
回収
官
民
×
×
回答内容概要
表 2: 質問票回収結果
(2) STEP 2: Booklet の編纂
上記 6 か国の官民主体から収集した質問票への回答結果を、国別に取りまとめた。ただし、一部の国につ
いては質問票の回収状況が芳しくないことを受け、日本からの文献調査により情報の不足分を代替・補完の上、
各国 9~15 頁の原稿案を作成した。各国の官民主体へ原稿案内容の確認を依頼し、この結果を反映した。ま
た、反映版資料の確認をもって、各国官民主体の内容に対する承認とした。各国による確認結果と主な指摘
事項は次の通り。
質問票配布国
EU
インド
韓国
中国
日本
米国
官/民
回収
官
○
民
○
官
○
民
○
官
○
民
○
官
○
民
官
○
○
民
○
官
民
×
×
主な指摘事項(概要)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
既に記述のあった政策に対し、説明が加筆修正された。
政策・活動の追加、政策説明の加筆のために資料が提供された。
既に記述のあった政策に対し、説明が加筆修正された。
政策が追加された。
既に記述のあった政策に対し、説明が加筆修正された。
既に記述のあった活動に対し、情報が提供された。
既に記述のあった政策に対し、説明が加筆修正された。
記載していたクリーン開発メカニズム(Clean Development Mechanism:
CDM)事業例が変更された。
適用されていない企業計画が削除された。
既に記述のあったアンケート結果に対し、情報が加筆修正された。
既に記述のあった政策に対し、説明が加筆修正された。
政策説明の加筆のために資料が提供された。
既に記述のあった活動に対し、説明が加筆修正された。
既に記述のあったアンケート結果に対し、情報が加筆修正された。
記載していた主要政策一覧図表に対し、幾つかの政策、声明の追加が提
案された。
既に記述のあった政策に対し、記載順序の変更が提案された。
既に記述のあった政策に対し、説明の追加が提案された。
既に記述のあった政策に対し、正確でない情報の削除が提案がされた。
既に記述のあった政策・活動に対し、説明が加筆修正された。
記載していた図表の配置が変更された。
既に記述のあった政策・活動に対し、説明が加筆修正された。
既に記述のあった政策に対し、記載順序の変更が提案された。
記載していた主要政策一覧図表の拡大を提案された。
表 3: 各国の Booklet に対する原稿案指摘事項
米国に関しては、前回の GSEP 鉄鋼 WG にて Booklet 作成については承認を受けていたが、質問票の
回答が得られなかった。日本が実施した文献調査を基に 11 頁の原稿案を作成し、内容の確認を依頼した。そ
の後、再三に渡り確認内容・結果の返信を依頼したが、回答が得られなかった。原稿案の確認・承認が得られ
なかったことを受けて、今次 Booklet から当該章は削除することとした。
(3) STEP 3: GSEP における協議
各国より承認が得られた原稿案に、日本により今次 Booklet 作成の背景等が追加され、合計 92 頁の
12
Booklet が完成した。Booklet は、製本・印刷の上、第 3 回 GSEP 鉄鋼 WG にて発表された。また、当日の
各国官民主体による発表は、原則として Booklet の内容に基づき行われた。発表内容の詳細は第 4 章を参
照のこと。
3.3. 各国調査結果
本事業を通じ GSEP 鉄鋼 WG の成果物として、平成 27 年度に経済産業省より、「Booklet for Iron and
Steel Industry – Action on Energy Saving and Climate Change」が編纂、出版された。
13
第4章. 国際会議開催等支援各国のエネルギー管理、必要とする省エネ技術等の情報の整理
4.1. 国際会議の開催検討の経緯
当初、第 3 回 GSEP 鉄鋼 WG は、Innovation for Cool Earth Forum(ICEF)の開催とあわせ、10 月 8
日に開催の予定であった。ICEF とは、エネルギー・環境分野のイノベーションにより気候変動問題の
解決を図るため、世界の学界・産業界・政府関係者間の議論と協力を促進するための国際的なプラット
フォームとなることを目的とするものであり、GSEP 鉄鋼 WG を ICEF とあわせて開催することで、両
会合間の相乗効果を見込んでいた。開催に向け、会場の確保・AV 機器等の備品準備、食事関連の準備、
参加者のフライト・宿泊手配等の国際会合開催等支援業務を進め、あわせて、各国官民主体参加メンバ
ーへ出席確定の依頼を行っていた。しかしながら、同時期に鉄鋼に関する大規模な国際会議が開催され
ることを受け、多くの鉄鋼関係者の参加が見込まれなくなったことから、GSEP 鉄鋼 WG を延期するこ
とが決定された。
その後、GSEP 鉄鋼 WG メンバー各国との調整を経て、2016 年 2 月 3 日(水)を今次会合開催日と
することが決定された。
4.2. 国際会合開催に向けた準備
会合開催に際しては、(1)会場設営、(2)参加者招請、(3)招聘者費用の負担および手続き、(4)資料作成・
記録業務等の業務を行った。また、会合終了後は、参加各国からの問い合わせ等への対応業務を実施し
た。
主な会合開催業務は以下のとおり:
 各国メンバーあて招待レターの作成および案内に資する各種文案・資料作成
 日本側からの発信内容整理
 会合ラップアップ原稿等各種文章・スピーチおよび発表原稿ドラフトの作成
 参加対象者のスケジュール調整
 開催案内の発信および出欠確認
 参加者の宿泊手配
 会場設備手配
 席次関連準備
 会議資料準備
 当日運営・進行支援
 当日会合議事録の作成
また上記他、会合開催準備として、鉄鋼 WG 国内関係者との打ち合わせを複数回開催し、関係者への
準備状況説明等に務めるとともに、日本の官公庁主体・民間主体からの発信内容について調整を行った。
4.3. 会合当日
(1) 開催概要
本会合には、GSEP 主要参加国の官民主体が集い、編纂された Booklet を基に、参加者間での発表
および質疑応答が行われた。発表された内容としては、官公庁主体からは主にエネルギー管理政策の
最新動向と今後の見込みおよび課題について、民間主体からは主に省エネルギー・気候変動対策活動
と技術導入状況やニーズが発表された。
加えて、今次会合のまとめにあたり、今次会合をもって GSEP 鉄鋼 WG が終了することが日本から
14
言及され、今後は ICEF 等他会議や二カ国間交流を通して、参加国間の協力を続けることが確認され
た。本年度の開催概要、官民主体の参加組織一覧、開催結果を以下に示す。
会合
GSEP Steel WG Meeting
実施日時
2016 年 2 月 3 日(水) 10:00-16:10
実施場所
経済産業省本館 17 階西 第一特別会議室
(2) 議事次第
Time
Agenda
Speaker
10:00-10:30
10:30-10:45
10:45-11:00
Registration
Photo Session
Opening Remarks
11:00-11:05
Booklet Introduction
11:05-12:10
Update of Energy Management Activities and the Achievement as GSEP Steel WG
Part-1
Dr. Kozo Sakamoto, Chairman of Steel
WG, Director of Iron and Steel Technology
Office, Manufacturing Industries Bureau,
METI-Japan
Mr. Toshio Kosuge, Deputy Director, Iron
and Steel Division, Manufacturing
Industries Bureau, METI-Japan
1. IEA
IEA’s latest analysis on the iron and steel
sector and future project proposals
Ms. Araceli Fernandez Pales, Senior
Energy Technology Analyst, Energy
Technology and Policy, International
Energy Agency (IEA)
2. India
Public- Energy management policy update
Mr. Prabhat Kumar Nayak, General
Manager (Energy & Utilities), Rashtria
Ispat Nigam Limited (RINL)
3. China
Private- Activities and technology needs
30 min
15 min
15 min
5 min
15 min
10 min
Shri. Sunil Barthwal, Joint Secretary,
Ministry of Steel (MoS), Government of
India
Mr. S.K. Bhatnagar, Deputy Industrial
Adviser, Ministry of Steel (MoS),
Government of India
Private- Activities and technology needs
Duration
10 min
15 min
15 min
Mr. Dao Huang, Director, Development &
Environmental Protection Department,
China Iron and Steel Association (CISA)
12:10-12:25
12:25-12:35
12:35-14:05
14:05-14:15
14:15-15:15
QA Session
Move to the Luncheon Venue
Lunch Break
Back to the Meeting Venue
Update of Energy Management Activities and the Achievement as GSEP Steel WG
Part-2
15
15 min
10 min
90 min
10 min
Time
Agenda
Speaker
4 Korea
Public- Energy management policy update
Duration
Mr. Seung-Ho Han, Senior Manager,
Global Strategy Division, Korea Energy
Agency (KEA, former KEMCO)
15 min
Private- Activities and technology needs
15 min
Dr. Yoon-Gih Ahn, Director, Management
Research Center,
POSCO Research Institute (POSRI)
5. Japan
Public- Energy management policy update
15 min
Mr. Toshio Kosuge, Deputy Director, Iron
and Steel Division, Manufacturing
Industries Bureau, METI-Japan
Private- Activities and technology needs
15 min
Dr. Kenichiro Fujimoto, General
Manager, Head of Department Global
Environmental Affairs Department
Environment Division,
Nippon Steel & Sumitomo Metal
Corporation
The Chair for International
Environmental Strategic Committee,
The Japan Iron and Steel Federation
(JISF)
15:15-15:30
15:30-16:00
16:00-16:10
QA Session
Coffee Break
Wrap Up
16:10-16:20
16:20-18:00
Closing Remarks
Move to the Reception Venue
Reception
Chairman: Dr. Kozo Sakamoto, Chairman
of Steel WG, Director of Iron and Steel
Technology Office, Manufacturing
Industries Bureau, METI-Japan
“Wrap up of GSEP Steel WG, and
contents of the report to The Clean
Energy Ministerial (CEM)”
15 min
30 min
10 min
10 min
100 min
(3) 参加者
参加国
官
民
Ministry of Steel (Co-Chair)
Rashtria Ispat
(RINL)(国営)※
韓国
Korea Energy Agency (KEA, former
KEMCO)
POSCO Research Institute
中国
欠席
China Iron and Steel Association
(CISA)
日本
Korea
Energy
Management
Corporation (KEMKO)
POSCO Research Institute
インド
国際機関
International Energy Agency (IEA)
表 4: GSEP 鉄鋼 WG への参加組織・参加者一覧
16
Nigam
Limited
※インドに関しては、同時期に日印鉄鋼官民協力会合が開催されたため、Steel Authority of India
(SAIL)(国営)、Tata Steel Limited、JSW Steel Limited、Essar Steel India Limited、Bhushan Steel
Limited も聴講者として参加した。
(4) 協議内容
各国の発表に先んじて、Booklet 作成に係る支援への感謝および本冊子の作成背景、内容、および期
待される活用策について、小菅利男・経済産業省鉄鋼課製鉄企画室課長補佐から説明があった。
<Booklet 紹介の要旨>
 2014 年 9 月 12 日に開催された前回の GSEP 鉄鋼 WG では、米国、EU、インド、中国、韓国、
日本、IEA から 30 名強が参加し、官民主体における最新動向、課題、技術ニーズについて、情報
の共有が行われた。
 前会合では、最新の技術情報やエネルギー管理政策・活動に関する継続的な情報共有の重要性が
認識された。これらの情報を共有するため、まず現状動向や課題、ニーズ等を Booklet として取
りまとめることが同意された。
 情報収集は、まず質問票への回答というアンケート形式で行われたが、この回答に加えて日本が
実施した各種調査結果に基づき Booklet の原稿案が作成された。
 原稿案は各国により内容の確認がなされ、この結果に基づき加筆・修正が加えられた。なお、本
Booklet の完成にあたり、米国からは質問状への回答および日本の調査に基づくドラフト内容へ
の確認も得られなかったことから、同国の章は含めないこととした。
 本冊子は、GSEP 鉄鋼 WG メンバー間で各国の状況に資する情報を共有し、互いに学ぶことを趣
旨として作成された。今次会合において、本 Booklet に基づくプレゼンテーションがなされるこ
とを期待する。また、鉄鋼 WG メンバー以外にも情報提供のために配布される可能性がある。
本会合では以降、作成された Booklet を基に、各国官民主体による発表が行われた。官公庁主体か
らは主にエネルギー管理政策の最新情報と今後の鉄鋼産業成長の見込み、および想定される課題につ
いて情報共有が行われた一方、民間主体からは当該国鉄鋼産業もしくは自社の、省エネルギー活動と
技術ニーズについての発表が行われ、この内容に対して参加者間の質疑応答・意見交換が行われた。
概要は以下の通り。
(a). インド
① スニル・バートワール・インド鉄鋼省局長
インド鉄鋼省のバートワール局長より、インドのエネルギー管理政策の方向性に関する説明が
行われた。

インドは、ベストプラクティスを共有し、グローバルエネルギー経済を促進するための国際
フォーラムである、CEM イニチアチブの加盟国である。インドは APP および GSEP 鉄鋼
WG における共同議長国としてこのパートナーシップを通し、多くの仕事がなされたと理解
している。今回、省エネルギーや気候変動についての Booklet が発行されたことを喜ばしく
思う。これはインド鉄鋼産業の役に立つであろう。

昨今のインド鉄鋼産業におけるエネルギー管理に関し、2 つの大きな変化があったと考える。
まず鉄鋼価格の世界的な劇的な低下である。過去 1、2 年の間にほぼ 40%の価格下落が見ら
れ、これはインド企業の利益幅に多大な負荷をかけた。また、インドは各国が自主的に決定
17
する約束草案(Intended Nationally Determined Contributions: INDC)という温室効果ガス
排出削減公約を 2015 年 10 月 2 日に提出したことが挙げられる。本公約では、2030 年まで
に国内総生産(Gross Domestic Product: GDP)比温室効果ガス排出を 2005 年比で 33-35%削
減し、発電における非化石燃料の使用を現在の 30%から 40%に増加させる目標を掲げてい
る。これは製鉄所のエネルギー消費削減や廃ガス利用の増加なくしては成し遂げられない。
2015 年のインドの気候変動プログラムデータによると、インド企業によって報告された温
室効果ガス排出削減活動の約 75%が省エネルギー活動であった。

省エネルギー技術の導入には相当な費用が必要となる。INDC の 2030 年目標を達成するた
めには、3,500 億インドルピー(Indian Rupee: INR)分の最新技術と、1,450 億 INR の国外
資源が必要となる。従いインド鉄鋼産業において技術を移転する資金援助のメカニズムが重
要であると考える。

この会合での対話や協議が技術移転の要件を満たす際に役立つと確信している。我々はエネ
ルギー効率を高め、INDC 達成の手助けになるような施策を歓迎する。本日の協議を楽しみ
にしている。
② インド鉄鋼省 S.K.・バトナガール氏
インド鉄鋼省の S.K.・バトナガール氏より、インドのエネルギー管理政策に関する説明が行わ
れた。

2014-2015 年においてインドの粗鋼生産量は 8,812 万トンであった。これは生産総能力(1 億
1,000 万 ト ン ) の うち 80% 程 度 を 占 め て い る 。世 界 鉄 鋼 協 会 (Worldsteel Association:
Worldsteel)によると、インドは世界で 3 番目の鉄鋼生産国である。

また、鉄鋼はインドの将来の成長と発展における中心的産業である。特に、インド国内にお
ける自動車製造、建設、耐久消費財、インフラストラクチャー産業等の成長が、鉄鋼の需要
な原動力となっている。鉄鋼生産における今後の課題としては、原料炭の備蓄不足や高い資
本コスト等が挙げられる。

政府は、インドへの直接投資案件について自由貿易体制のもと、外資出資比率 100%までの
認可を行っている。また、インド鉄鋼産業の研究開発投資比率が世界平均に比べ低いことを
受け、政府は研究開発を促進し投資への援助を行っている。例えば、革新的な製鋼ルートプ
ログラム援助、廃エネルギー回収プログラムの資金援助、水素プラズマ炉を使った製鋼の研
究支援等が挙げられるが、これらの研究はまだ初期段階である。さらに、政府として廃棄規
制や不良鉄鋼製品の輸入規制も行っている。

インドの鉄鋼産業は需要の原動力、有利な政府政策、製鉄産業の追加生産能力に支えられ、
現在高成長の軌道に乗っており、2025 年までに年間 3 億トンの粗鋼生産能力を保有する目
標を立てている。現在の一人あたり鉄鋼消費量は 60kg と世界平均に比べまだ非常に低い状
況にあり、これから需要が確実に高まることが予想される。さらに人口の 80%が分布する広
大な地方市場も、鉄鋼需要を高め生産量を増やす原動力となる。

一方、インドのエネルギー効率は 6-6.8G 粗鋼生産量あたり消費熱量(Calories per Tonnes of
18
Crude Steel: cal/TCS)と世界に比べ低い。インド政府は INDC にて、2030 年までに国内
GDP 比温室効果ガス排出量を 2005 年レベル比で 33~35%減らす公約を掲げている。エネ
ルギー消費削減に向けた課題としては、古い製鉄所の技術的退化、原材料の低い品質、廃エ
ネルギー回収率の低さ、研究開発投資不足等がある。しかしながら、エネルギー効率は過去
数十年で着々と向上している。

インド政府は鉄鋼産業に対し、省エネルギー技術力向上に向けた様々な支援を行っている。
具体的には、鉄鋼省が研究開発に対する資金を供給する他、日本の NEDO 事業や国連開発
計画・インド鉄鋼省・豪州国際開発庁(United Nations Development Programme: UNDP,
Ministry of Steel Government of India: MOS, Australian Agency for International
Development: AUSAID)事業等に代表される海外との緊密な協業連携を維持している。鉄鋼
産業の持続可能な成長のための更なるイニチアチブとしては、インフラストラクチャー開発、
内閣投資委員会による高価値事業推進、事業監査グループやスマートシティ、Make in India
計画が挙げられる。

インド政府はクリーンおよびグリーン技術の調査、開発、共有、導入のための国際協力を歓
迎している。エネルギー効率向上や汚染削減のための開発途上国への技術導入を促進する国
際知的財産権枠組みや、エネルギー効率向上や汚染削減を目的にした特定の事業を援助する
資金メカニズムの構築も期待する。NEDO モデル事業は、参考になる成功例である。
③ インド国営ラシュトリヤ・イスパット・ニガム社(Rashtriya Ispat Nigam Limited: RINL)
RINL より、インド鉄鋼産業の活動と技術ニーズについて説明があった。

インド鉄鋼産業の技術発展のために必要なことは、エネルギー効率向上のための利用可能な
最善技術およびノウハウの導入、省エネルギー技術の国際資金援助、インドのロジスティク
スおよびインフラストラクチャーへの投資、研究開発のための技術および資金援助、技能開
発である。

インド鉄鋼産業でニーズのある技術として、電気炉の排熱回収技術、焼結工場の排熱回収技
術、高炉スラグの排熱回収技術、転炉ガスの顕熱回収技術、炉の効率を高めるための蓄熱式
バーナー、コーク炉スタンプ装入技術、焼結工場・石炭工場・石炭荷役工場等の漏えい排出
物管理技術、製鋼スラグの利用とリサイクル技術、排水処理の次世代技術、水消費削減のた
めの技術が挙げられる。
(b.) 中国
① 中国鋼鉄工業協会(China Iron and Steel Association: CISA)
CISA より、中国鉄鋼産業の活動と技術ニーズについて説明があった。

中国の省エネルギーと温室効果ガス排出削減水準は著しく向上した。第 12 次 5 ヵ年計画中
の昨年 11 月時点で、CISA 加盟企業の粗鋼 1 トンあたり総エネルギー消費量は 577.3 kgce(中
国にて利用している標準石炭換算単位、1kgce=7000kal)となった。この結果は、CISA 加盟
企業が目指す省エネルギー目標(2015 年までに 580kgce)が達成されたことを示す。中国政
府の定める産業界のエネルギー効率向上と環境保全活動を目的とした政策・制度は多数存在
する。
19

また GSEP 鉄鋼 WG のメンバーである CISA は省エネルギー活動の更なる促進を目指し、
国内主要 12 企業を対象に最新クリーン技術(The State-of-the-Art Clean Technologies:
SOACT)の導入ニーズに関する調査・分析を行った。


調査の結果、以下の示唆が得られた:
調査対象の多くの企業は何らかの形で技術の高度化・再構成を行っており、保有する製鉄・
製鋼の主要省エネルギー技術は既に高度な水準に達している。
多くの企業は単一工程のための技術ではなく、全ての工程に係る体系的、包括的な省エネル
ギー技術に注目をしている。これは多くの企業が、技術の導入をコスト削減の手段と考えて
いるためと考えられる。
コークス化、焼結、製鉄など、エネルギー消費量が多い工程について、企業の技術導入ニー
ズが高い。



APP で作成された SOACT リスト内の、
「一般省エネルギーと環境施策」に区分される技術
および技術導入状況が明らかとなった。同リスト等を活用しつつ、環境問題への対応につい
て共に取り組む必要があると考える。

中国における鉄鋼生産量は、2015 年に減少傾向に転じた(粗鋼生産量は前年比で 2.3%の減
少(約 8 億 380 万トン)、銑鉄生産量は前年比で 3.45%の減少(約 6 億 9140 万トン))。

この結果は中国政府と産業界の過剰生産能力削減の取組みによるものである。今後、中国に
おける鉄鋼需要および消費を著しく増加させることは困難であることが想定される。中国鉄
鋼産業振興と過剰生産能力に対する抑制といった相反する課題に対し、短期間で解決するこ
とは難しいことであるが、政府と CISA はこの課題に取り組む。

新環境保全法が履行に対する取組みも中国鉄鋼産業の課題の1つに挙げられる。
(c.) 韓国
① Korea Energy Agency (KEA)のスンホ・ハン氏
KEA のスンホ・ハン氏より、韓国のエネルギー管理政策について説明があった。

韓国では、2009 年にグリーン成長戦略が発表され、2014 年よりグリーン成長 5 ヵ年計画が
始動している。更に、2014 年には第 2 次国家エネルギーマスタープランが策定された。グ
リーン成長 5 ヵ年計画では、情報通信技術を土台とした省エネルギーおよび気候変動政策を
推進していることに特徴が挙げられる。

また韓国では現在、約 90%のエネルギーを輸入に依存しており、且つ、原子力発電の利用に
対し強い世論の反発があることから国内で生産可能な発電能力は限られている。更に、近年
国内において、温室効果ガス排出削減取り組みへのプレッシャーが高まっている。これらを
背景として政府は第 2 次国家エネルギーマスタープランにおいて、2035 年までにエネルギ
ー需要を通常営業・操業(Business as usual: BAU)比で 13%削減する目標を掲げている。
20

省エネルギーに関する韓国政府の取り組みとしては、エネルギー管理システム(Energy
Management Systems: EnMS)、エネルギー監査、Energy Service Company (ESCO)プロ
グラム、排出量取引制度 (Emission Trading Scheme: ETS)等の整備が挙げられる。

韓国では、2011 年に EnMS 導入のための法的基盤を構築した。具体的には、産業通商資源
部が EnMS 支援内容を取りまとめた指令を発行し、また KEA は EnMS のパフォーマンス
を評価するための規格および評価ガイドラインを策定した。このような取り組みを受け韓国
政府は、
特に産業部門での EnMS パフォーマンスが著しく向上することを期待しているが、
現状では EnMS を導入した企業は 13%に留まっている。このため、KEA が EnMS パフォ
ーマンス分析に対する技術支援を行うなど、韓国政府は更なる支援取組みを提供する。

エネルギー集約型企業は、5 年毎にエネルギー監査を受けることが義務付けられており、
KEA はこれを管理する上で重要な役割を果たしている。

韓国政府は 2020 年までに温室効果ガス排出量を BAU 比で 30%削減するという目標を達成
するため、2011 年、エネルギーおよび温室効果ガス目標管理制度を始動した。これはエネ
ルギー消費量および温室効果ガス排出量に上限を設ける仕組みであり、排出量の取引は認め
られない。高エネルギー集約型と指定された企業は、政府と個別企業間の交渉で決定する定
められた目標を達成することが義務付けられている。しかし、本制度はわずか開始 3 年後に
縮小傾向となった。この理由は、多数の企業が 2015 年に始動した ETS 制度へ移行したこ
とにある。現在、約 400 企業が ETS 制度に参加しており、現在エネルギーおよび温室効果
ガス目標管理制度に参加している企業の多くは中規模企業となっている。

韓国 ETS には、500 社の企業が参加しており、参加企業の温室効果ガス排出量は韓国全体
の 66%を占めている。

現在韓国政府は、エネルギー産業促進と気候変動対策を目的とした新しい取組みとして、新
エネルギー産業の開発を行っている。例えばネガワット市場は 2014 年 11 月に開かれてい
る。また、エネルギー蓄積システムパッケージシステムは再生可能エネルギー義務割当制度
に含まれている。マイクログリッドシステムの開発も進んでおり、立証事業が鬱陵島(ウル
ルン島)にて行われている。この他、家庭向け太陽光発電リース制度、電動式レンタルカーの
立証事業、製鉄所排水の排熱回収事業等が、取組み事例として挙げられる。
② POSCO Research Institute (POSRI)
POSRI より、POSCO の活動と技術ニーズについて説明があった。

POSCO は、2020 年までに粗鋼 1 トンあたり CO2 原単位を 2007-2009 年レベル比で 9%削
減するという目標を掲げている。また、2009 年には 4 項目のイニシアチブ(①グリーンスチ
ール、②グリーンビジネス、③グリーンライフ、④グリーンパートナーシップ)を掲げた。ま
た、2015 年 2 月に組織改編を行い、環境、エネルギー、気候変動関連等の所管を統一部署
で管理し経営層に直接報告する仕組みを構築した。

戦略的な炭素管理を行うため POSCO では、炭素関連リスクと機会を理解、特定するための
プロセスを定義している。本プロセスは 5 段階に区分されており(①リスクと機会の発見、
21
②炭素管理システムの構築、③気候変動対策活動の施行、④気候変動対策のチェックとレビ
ュー、⑤最高管理者への報告)、POSCO はこの結果を戦略へ反映する。

POSCO 加盟企業への調査結果、最も温室効果ガス排出量の多い工程は製鉄工程(全排出量
の 82%)、次に製鋼と鋳造工程(7%)であり、残りはその他工程による排出である。このため、
POSCO や他の鉄鋼企業は、温室効果ガス排出削減において製鉄工程に焦点を置いている。
省エネルギー技術に関しては、POSCO は 13 項目の CO2 排出量削減技術を使用する他、革
新的にエネルギー効率を向上する新たな技術の開発を行っている。
(d.) 日本
① 小菅利男・経済産業省鉄鋼課製鉄企画室課長補佐
経済産業省の小菅利男課長補佐より、日本のエネルギー管理政策について、説明があった。

日本政府によるエネルギー管理における全ての政策取組みは、今次会合に向けて作成された
Booklet に記述されている。日本政府は 1979 年に省エネ法を制定し、企業や工場に毎年 1%
のエネルギー使用量削減を自主的に行うよう規制した。本法律には罰則はない。

最近の動向として、日本政府は新戦略エネルギー計画を確立した。しかし、2011 年に起き
た東日本大震災地震により全ての原子力発電所が停止し本計画は中座となり、以降、日本政
府は新たな計画策定を行うと共に、原子力管理事務所は全ての原子力発電所の安全を確認し
ている。
一方、
国内における再生可能エネルギー使用率は 2030 年に 20%になる予定であり、
日本政府はこのため、ネット・ゼロ・エネルギー・ハウスロードマップ、ネット・ゼロ・エ
ネルギー・ビルロードマップ等、複数の政策を導入している。

日本粗鋼生産量の需給状況は、リーマンショックのあった 2009 年以外は非常に安定してい
る。

日本の鉄鋼産業における他国との協力には長い歴史がある。1991 年からは省エネルギーの
観点で中国・タイと、2000 年からはインドとの連携事業を実施しており、今後この他の国
との協力に期待する。本ワーキンググループはこのような考えのもと、情報や政策を共有す
ることを目的に開催している。今回をもって GSEP 鉄鋼 WG は終了するが、日本はこれか
らも 2 カ国間協力の形で協力を続けていくべきだと考える。
② 日本鉄鋼連盟
日本鉄鋼連盟より、日本鉄鋼産業の活動と技術ニーズについて、説明があった。

日本の提出した INDC において、日本は 2030 年までに温室効果ガスを 2013 年比で 26%
削減する目標を公約している。

日本鉄鋼連盟の策定する低炭素社会実行計画フェーズ II において、日本鉄鋼連盟は、エコ
プロセス、エコソリューション、エコプロダクトを通した温室効果ガス排出削減の定量的
目標を立て、長期的な努力としてコース 50 やフェロコークといった環境にやさしく、革新
的な製鉄・製鋼プロセスの開発を進めている。また、日本鉄鋼連盟の自主的温室効果ガス
22
排出削減取組みは、第三者からの評価を受けたり、ISO50001 を採用していたりと、透明
性があり、効率的である。

日本鉄鋼産業は 1970 年代から省エネルギー技術に投資をしており、現在日本の鉄鋼産業
では、主要な省エネルギーの普及率はほぼ 100%となっている。

2015 年 10 月に開催された ICEF 内で行われた鉄鋼セッションにおいて、政府、産業、学
術分野が、鉄鋼産業の基礎 GHG 削減を達成するために、イノベーションが重要な役割を
持つことで合意した。

APP と GSEP は利用可能な最善の技術の共有と参加国のネットワークの構築に重要な役割
を担った。日本鉄鋼連盟 は今後も、GSEP 鉄鋼ワーキンググループで培ったネットワーク
を使い、省エネルギー活動や革新的省エネルギー技術の情報共有を続けていく。
(e.) IEA
① IEA のアラセリ・フェルナンデス・パレズ氏
IEA のアラセリ・フェルナンデス・パレズ氏より、鉄鋼産業の課題と機会について説明があっ
た。

発展途上国の経済発展と共に、世界の粗鋼需要は伸び続けることが予想される。中国市場に
おける需要は鈍化する可能性があるものの、経済協力開発機構(Organisation for Economic
Co-operation and Development: OECD)国および非 OECD 国のいずれにおいても、2050 年
までに 2013 年以上の需要となることが予測されている。特にインドでの粗鋼需要の高まり
が著しい。

エネルギー関連コストは企業経営上の課題でもあり、企業の競争力向上のためにも、関連コ
ストの管理は重要である。

鉄鋼産業は長年にわたり、エネルギー省力化に資する技術導入・活動を推進しており、2015
年時点の銑鉄エネルギー原単位値は飛躍的に向上している。例えば、最新の高炉技術は、エ
ネルギー原単位 12.0 GJ/t crude steel (1.2 tCO2/t steel)を可能とし、これは稼働にあたり最
低限必要なエネルギー原単位である 9.8 GJ/t crude steel (1.0 tCO2/t steel)に近い値である。

このように気候変動等の課題およびその解決に資する世界的規模での取組みが推進されて
きたが、更なる取組みが求められ、また改善の可能性もある。IEA が提唱する 2°C Scenario
(2DS) (「非エネルギー起源の CO2 排出量とその他の温室効果ガスも削減されるという条件
の下で、長期的な世界の気温上昇を 2°C 以内に抑える」1ためのシナリオ)によると、高炉
の平均エネルギー原単位は 2050 年までに 31%改善すると予測されている。なお、6°C
Scenario (6DS)では、既に 28%の改善が見込まれている。産業から排出される CO2 の累計
削減量約 3 分の 1 が鉄鋼産業関連であると試算されている。
出所: OECD/IEA、Energy Technology Perspectives 2012: Pathways to a Clean Energy System、
2012 年、p.1
1
23

このようなシナリオに基づく CO2 排出量削減の達成は非常に困難であるが、一方で、製造
過程で発生する余熱の活用や回収等に係る技術等の改善策に資する調査が進められている。
世界鉄鋼産業全体としては技術導入により、粗鋼 1 トンあたり 1.3 GJ (または 2EJ)の熱回
収が可能であるとの分析もされている。ガスプロセスおよび化学関連分野で進展がみられて
おり、今後更に分野横断的且つ長期的な視野に基づく革新的な技術の導入が求められている。
2050 年を視野に、幾つかの技術について議論はされている状況ではあるが、道のりは長い。

CO2 排出量削減は重要な課題であるが、分野や地域によっては経済的な制約がある。例えば
異なる地域間等の不均衡な炭素価格は、競争激化や炭素漏出のリスクをもたらす。政府はこ
れらのリスクを認識しており、例えば、カーボンリーケージの影響の大きい産業部門につい
て、EU 域内排出量取引制度(the EU Emissions Trasdign System: EU ETS)が作成したリ
ストでは、製造コストが 30%増となりうる危機的な分野として、70 分野が挙げられている。
炭素価格は政府が主たる管理を行っている分野であるが、エネルギー多消費産業において、
自由な(またはほぼ自由な)許容量を付与することも検討に値する。政策立案者の選択肢とし
ては、法の順守を担保した上で次善の解決策を打ち出すことが求められる国境における炭素
調整や、炭素コストに係る製造業者の負担を軽減するための、消費者や輸入市場への転嫁策
等の検討が挙げられる。一方で、これらは短期的なイノベーション誘発剤ともなりえないた
め、共同研究開発のための安定的な資金源の確保および市場の変化に応じた新しい技術価値
を認識することが求められている。


本プレゼンテーションでは以下を結論とする:
鉄鋼産業はこれまでの省エネ活動によりエネルギー消費を大幅に削減し、また今後も同様で
あることが想定される。一方で、既存のプロセスにおける差益は減少する一方である。
 高炉一貫製鉄所で大量に消費される石炭は、環境政策や環境改善活動の推進を困難にする。
 鉄鋼産業の CO2 排出について、早急な解決が求められているものではないが、革新的なプ
ロセスを開発する。
 IEA が提案する、将来的な低炭素にむけた鉄鋼業におけるロードマップは次の内容を含む:
・ 環境や貿易に資する革新的なプロセスを特定
・ 新しいプロセスを構築するための技術発展プロジェクトの推進(試行プロジェクトの増加)
・ 酸素・水素生産、二酸化炭貯留、石油増進回収法等、他の関連研究開発との共同
(5) 開催結果
今回の GSEP 鉄鋼 WG には、インド、韓国、中国、日本の官民主体および IEA が参加した。今次
会合に向けて作成した、鉄鋼産業に資する各国の省エネ・気候変動に関する政策および民間としての
取り組みを取りまとめた「Booklet for Iron and Steel Industry – Action on Energy Saving and
Climate Change」が会合冒頭に紹介された。参加者は、本冊子に基づき、各国・鉄鋼産業に資するエ
ネルギー管理活動の最新動向について、情報を共有し、議論した。官公庁主体の参加者からは関連政
策について、また民間主体の参加者からは技術ニーズや活動について、講演された。IEA の参加者か
らは、鉄鋼産業に係る IEA の最新研究および将来的なプロジェクト案について講演された。また、2015
年に開催された CEM にて、GSEP 傘下の WG は、イニシアチブへ格上げもしくは解散、の選択肢が
与えられ、GSEP 鉄鋼 WG は 2015 年度をもって解散することとなり、本会合が GSEP 鉄鋼会合の最
後となった旨が議長より言及された。しかし、各国からの参加者は、省エネ向上および気候変動に資
24
する活動に今後も従事することに合意した。日本政府は既存の多国間枠組みである ICEF(経済産業省
主管)および二国間協議等を通じて、関連する活動に取り組む予定である。
25
第5章. GSEP 鉄鋼 WG 以降の活動に向けた提案
5.1. 今次 GSEP 鉄鋼 WG 開催後の活動
2015 年に開催された CEM にて、GSEP 傘下の WG は、イニシアチブへ格上げもしくは解散、の選
択肢が与えられ、GSEP 鉄鋼 WG は 2015 年度をもって解散することとなった。よって、今次が GSEP
鉄鋼 WG の最終会合であった。
今次第 3 回 GSEP 鉄鋼 WG 会合はインド(官・民)、中華人民共和国(民)、大韓民国(官・民)、日本(官・
民)および IEA から、合計 30 名の参加を得た。特にインドからは、スニル・バートワール鉄鋼省局長お
よび 6 社の鉄鋼企業が参加した。
参加者は、各国・鉄鋼産業に資するエネルギー管理活動の最新動向について、情報を共有し、議論し
た。官公庁主体の参加者からは関連政策について、また民間主体の参加者からは技術ニーズや活動につ
いて、講演された。また、IEA からは、鉄鋼産業に係る IEA の最新研究および将来的なプロジェクト案
について講演があった。
さらに、今次会合に向けて、鉄鋼産業に資する各国の省エネ・気候変動に関する政策および民間とし
ての取り組みを取りまとめた「Booklet for Iron and Steel Industry – Action on Energy Saving and
Climate Change」を作成した。本 Booklet の作成は 2014 年の前回 GSEP 鉄鋼 WG における合意に基
づくものであり、Booklet の内容を基に参加国間で情報を共有し、ともに学び、協議することを趣旨と
して作成され、今次会合では本冊子に基づき各国からプレゼンテーションがなされた。加えて、会合の
一部として開催された昼食会およびレセプションには全ての各国官公庁主体・民間主体が参加し、メン
バー間の親睦を深めることができた。上記の取り組み・活動を背景とし、今次 GSEP 鉄鋼 WG は一定
の成果を得て、成功裡に終了した。
2011 年の APP の終了を受けて、同組織の活動を GSEP が引き継ぎ、あわせて、APP 鉄鋼タスクフ
ォースは GSEP 鉄鋼 WG として、GSEP 傘下に設置された。GSEP 鉄鋼 WG は、2011 年の設立以降、
合計 3 回の会合を重ね、鉄鋼産業における省エネルギーや環境対策について、各国の知見をメンバー間
で共有した。また、主要国の官公庁主体と民間主体および国際機関が集い、特定分野のエネルギー・環
境政策や技術等について情報を共有し、また議論をする貴重な場であった。左記の場において、日本は
議長国としてメンバー国を取りまとめ、有意義な会合を開催するべく尽力した。
GSEP 鉄鋼 WG は解散するものの、各国からの参加者は、今次会合の締めに際し、省エネ向上および
気候変動に資する活動に今後も従事することに合意した。日本政府は既存の多国間枠組みである ICEF
および二国間協議等を通じて、関連する活動に取り組む予定である。GSEP 鉄鋼 WG に代わる今後の日
本の取り組みについては、今次会合にて示され、参加国メンバーからの理解が得られた。
セクター別アプローチの一環として、多国間の枠組みとして機能してきた GSEP 鉄鋼 WG は終了の
運びとなった。今後は、日本政府が推奨する「二国間クレジット制度」等の二国間の枠組みを通じて、
日本の優れた環境・省エネ技術の普及等を進め、温室効果ガスの削減に貢献する仕組みを構築すること
が求められる。また、GSEP 鉄鋼 WG の活動を含め、多国間の枠組みにおいてわが国が環境・省エネ関
連分野で担ってきた役割は、国際貢献や日本の技術の普及等の観点から重要である。更には、新興国の
経済発展等により当該分野への取り組みは、今後より一層、喫緊かつ重大な課題となりうる。これらの
背景をふまえ、今後は ICEF をはじめとする国際会議等の場を通じた活動を実施していくことが、有効
である。
26
第6章. Appendix
6.1.
質問表に添付された省エネルギー技術リスト
Technologies listed in the Table 1 are considered to be significant countermeasures to tackle with energy conservation and environmental
protection issues of iron and steel industry according to SOACT, NEDO, EU-BAT and EPA-BACT.
Technologies Reference[*7]
ID
Title of Technology (SOACT base)[*1]
SOAC
EU
EPA
NEDO
T
-BAT -BACT
Sintering
○
1
Sinter Plant Heat Recovery (Steam Recovery from Sinter Cooler Waste Heat)
2
Sinter Plant Heat Recovery (Power Generation from Sinter Cooler Waste Heat) [*2]
3
District Heating Using Waste Heat
○
4
Dust Emissions Control
○
5
Exhaust Gas Treatment through Denitrification, Desulfurization, and Activated Coke Packed
Bed Absorption
○
6
Exhaust Gas Treatment through Selective Catalytic Reduction
○
7
Exhaust Gas Treatment through Low-Temperature Plasma
○
8
High Efficient (COG) Burner in Ignition Furnace for Sinter Plant [*3]
○
9
Exhaust Gas Treatment Through Additive Injection and Bagfilter Dedusting
○
10
Sintering machine ignition oven burner (NEDO)
11
Partial recycling of waste gas (EU-BAT)
○
○
○
○
○
Cokemaking
12
Coke Dry Quenching
○
○
13
Coal Moisture Control
○
○
○
○
14
High Pressure Ammonia Liquor Aspiration System
○
15
Stripping of ammonia from the waste water (EU-BAT)
16
Waste water treatment (EU-BAT)
17
Modern Leak-proof Door
18
Cleaning of oven doors and frame seals (EU-BAT)
19
Reduction of SO2 by coke oven gas desulphurisation (EU-BAT)
20
Land Based Pushing Emission Control System
21
Variable pressure regulation of ovens during the coking process (EU-BAT)
22
VSD COG compressor (EPA-BACT)
23
Coke Plant – Automation and Process Control System
○
○
○
24
COG-non-recovery Coke Battery [*3]
○
○
○
25
Waste Plastics Recycling Process Using Coke Ovens [*4]
-
○
○
○
○
○
○
○
○
○
○
○
○
Ironmaking
26
Top Pressure Recovery Turbine
○
○
○
○
27
Pulverized Coal Injection (PCI) System
○
○
○
○
28
Pulverized coal injection to 225 kg/ton iron (EPA-BACT)
29
Oxy-oil injection (EU-BAT)
○
○
30
Gas injection (EU-BAT)
○
○
31
Injection of COG and BOF gas (EPA-BACT)
32
Plastic injection (EU-BAT)
○
33
Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues
(EU-BAT)
○
34
Improve Blast Furnace Charge Distribution
35
Use of high quality ores (EU-BAT)
36
Charging carbon composite agglomerates (EPA-BACT)
37
Blast Furnace Gas and Cast House Dedusting
38
Blast furnace gas recycling (EPA-BACT)
39
B-gas (fueling) Regerenative Reheating Furnace [*5]
-
40
B-gas (fueling) Ignition Burner of Sinter [*6]
-
41
Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues
(EU-BAT)
42
Cast House Dust Suppression
43
Treatment and reuse of scrubbing water (EU-BAT)
44
Hydrocyclonage of blast furnace sludge (EU-BAT)
45
Slag Odor Control
46
Slag heat recovery (EPA-BACT)
47
Blast Furnace – Increase Hot Blast Temperature (>1100 Deg C)
○
48
Blast Furnace – Increase Blast Furnace Top Pressure (>0.5 Bar Gauge)
○
49
Improvement of combustion in hot stove (EPA-BACT)
50
Blast Furnace Heat Recuperation
○
51
Optimized Blast Furnace Process Control with Expert System
○
52
Alternative Ironmaking: Direct Reduction (DRI/HBI) and Direct Smelting
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
27
○
○
○
○
Technologies Reference[*7]
ID
Title of Technology (SOACT base)[*1]
SOAC
EU
EPA
NEDO
T
-BAT -BACT
53
Smelting Reduction Processes
○
54
Direct Reduction Processes
○
55
Coal Based Rotary Hearth Furnace Type Ironmaking Process [*3]
○
56
Paired Straight Hearth Furnace
○
57
Coal and Lump Ore Based Smelting-Reduction Type Ironmaking Process [*3]
○
58
Finex Process
○
59
Rotary Kiln Direct Reduction
○
60
Coal and Fine Ore Based DRI/HBI Production Process [*3]
○
61
Natural Gas Based Zero-Reforming DRI/HBI Production Process using Fine Ore [*3]
○
62
Coal Synthesis Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production
Process [*3]
○
63
Natural Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production Process
with CO2 Removal System [*3]
○
64
High-efficiency cupola (NEDO)
○
○
○
Steelmaking
On-line Feedback Analyzer for Efficient Combustion [*3]
ProVision Lance-based Camera System for Vacuum Degasser - Real-time Melt Temperature
Measurement
○
67
Hot Metal Pretreatment
○
68
Programmed and efficient ladle heating (EPA-BACT)
69
Increase Thermal Efficiency by Using BOF Exhaust Gas as Fuel
○
70
Use Enclosures for BOF
○
○
71
Control and Automization of Converter Operation
○
○
○
72
OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher
○
73
Exhaust Gas Cooling System (Combustion System)
○
○
○
74
Converter gas recovery device (NEDO)
75
Laser Contouring System to Extend the Lifetime of BOF Refractory Lining
○
76
BOF Bottom Stirring
○
77
VSD on ventilation fans (EPA-BACT)
78
Dust hot briquetting and recycling with recovery of high zinc concentrated pellets for
external reuse (EU-BAT)
79
Elimination of Radiation Sources in EAF Charge Scrap
○
80
Improved Process Control (Neural Networks)
○
81
Hot DRI/HBI Charging to the EAF
○
82
Oxy-fuel Burners/Lancing
○
83
Scrap Preheating
○
84
New scrap-based steelmaking process predominantly using primary energy
○
85
Twin-shell DC with scrap preheating (EPA-BACT)
○
86
Bottom stirring/stirring gas injection (EPA-BACT)
○
87
Eccentric bottom tapping on existing furnace (EPA-BACT)
○
88
Post-combustion of the flue gases (EPA-BACT)
○
89
Engineered refractories (EPA-BACT)
○
90
Adjustable speed drives (ASDs) (EPA-BACT)
○
91
Transformer efficiency—ultra-high power transformers (EPA-BACT)
92
Control and Automation for EAF Optimization
○
93
Slag Foaming, Exchangeable Furnace and Injection Technology
○
94
Airtight operation (EPA-BACT)
95
Exhaust Gas Treatment Through Gas Cooling, Carbon Injection and Bagfilter Dedusting
○
96
Ecological and Economical Arc Furnace [*3][*9]
○
97
Waste Heat Recovery from EAF [*2][*9]
98
DC arc furnace (NEDO)
99
Shaft-type Continuous EAF [*3] (EPA-BACT)
65
66
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
Ladle Refining and Casting
100
○
Efficient caster ladle/tundish heating (EPA-BACT)
Casting
101
Strip Casting Technology [*3]
○
102
Thin Slab Casting and Hot Rolling
○
○
103
Hot Charging to Reheat Furnace of Rolling Mills
○
○
28
6.2.
GSEP 鉄鋼 WG 各国への主な連絡・調整
年
2014
2015
2015
月
11
2
8
調査内容
質問票を送付※昨年度事業内容
質問票未回答者への提出催促※昨年度事業内容
質問票未回答者への提出催促および 10 月 GSEP 開催
について連絡
9
9
日
上旬
中旬
中旬
~
下旬
上旬
中旬
2015
2015
2015
10
上旬
質問票未回答者への提出催促
2015
2015
10
11
中旬
中旬
質問票未回答者への提出催促
質問票未回答者への提出催促
2015
11
中旬
2015
11
下旬
2015
2015
12
12
2016
2016
1
1
中旬
上旬
~
下旬
上旬
上旬
GSEP 鉄鋼 WG 候補日に関する打診(2 月 15-19 の間
での開催について案内、都合伺い)
GSEP 鉄鋼 WG 候補日に関する打診(2 月 1-4、または
8-10 が候補日であることを案内、都合伺い)
GSEP 鉄鋼 WG 開催日通知・出欠連絡依頼
Booklet 内容確認依頼
2016
1
2016
1
上旬
~
下旬
中旬
2016
2016
2016
1
1
1
中旬
中旬
下旬
2016
2016
2016
1
1
1
下旬
下旬
下旬
第 3 回 GSEP 鉄鋼 WG 開催延期連絡
質問票未回答者への提出催促
宛先
全員
中国官、韓国官・民、米国
官、欧州官・民
中国官、米国官、欧州官・
民
韓国官・民、中国官
中国官、米国官、欧州官・
民
全員
全員
全員
日本官・民、インド官・民、
中国官・民、韓国官・民
GSEP 鉄鋼 WG 会合出欠連絡催促
VISA 申請やプレゼンテーション資料等詳細について
確認
参加予定者と宿泊や旅程関連について調整
全員
(該当者欠席の連絡を受けて)同組織の他の方、もしく
は在京関係者の派遣について打診・依頼
Booklet 内容確認依頼・出欠連絡催促
会合における発表関連事項の詳細確認・連絡
(該当者欠席の連絡を受けて)同組織の他の方、もしく
は在京関係者の派遣について打診・依頼
Booklet 内容確認御礼・会合出欠連絡催促
Booklet 内容確認催促・出欠連絡催促
(該当者欠席の連絡を受けて)同組織の他の方、もしく
は、在京関係者の派遣について打診・依頼
Booklet 内容確認依頼・出欠連絡催促
米国官
米国官、欧州官・民
欧州民
欧州官
米国官
欧州官
2016
1
下旬
米国官
【補足】

2015 年 12 月~2016 年 1 月にかけて、Booklet の内容確認を各国に依頼し、回答を得た箇所について、
加筆・修正を実施した。

2016 年 1 月中に、米国官の参加を得るべく、合計 10 回以上の連絡(E メールおよび電話)を試みた。

2016 年 1 月中に、欧州官・民の参加を得るべく、20 回程度の連絡(E メールおよび電話)を試みた。

上記の E メールでの連絡・調整以外、電話連絡により密な連携を行った。
29
6.3.
略語表
略語
APP
AUSAID
BAU
BEE
CDM
CEM
CISA
CO2
EC
EJ
EnMS
ESCO
ETS
EU
EU ETS
Eurofer
cal/TCS
GDP
GJ
GSEP
ICEF
IEA
INDC
INR
IPEEC
KEA
MOP
MOS
NCSC
NEDO
OECD
PAT
POSRI
RINL
SAIL
SOACT
TF
UNDP
US-DOE
WG
Worldsteel
2DS
6DS
英語 (日本語)
The Asia-Pacific Partnership on Clean Development and Climate (クリーン開発と気
候に関するアジア太平洋パートナーシップ)
Australian Agency for International Development (豪州国際開発庁)
Business as usual (通常営業・操業)
Bureau pf Energy Efficiency, Ministry of Power, Government of India (インド電力
省エネルギー効率局)
Clean Development Mechanism (クリーン開発メカニズム)
Clean Energy Ministerial (クリーンエネルギー大臣会合)
China Iron and Steel Association (中国鋼鉄工業協会)
Carbon Dioxide (二酸化炭素)
European Commission (欧州委員会)
Exa Joule (エクサジュール)
Energy Management Systems (エネルギー管理システム)
Energy Service Company
Emission Trading Scheme (排出量取引制度)
European Union (欧州連合)
The EU emissions trading system (EU 域内排出量取引制度)
The European Steel Association (欧州鉄鋼協会)
Calories per Tonnes of Crude Steel (粗鋼生産量あたり消費熱量)
Gross Domestic Product (国内総生産量)
Giga Joule (ギガジュール)
Global Superior Energy Performance Partnership (エネルギー効率向上に関する国
際パートナーシップ)
Innovation for Cool Earth Forum
International Energy Agency (国際エネルギー機関)
Intended Nationally Determined Contribution (各国が自主的に決定する約束草案)
Indian Rupee (インドルピー)
International Partnership for Energy Efficiency Cooperation (国際省エネ協力パー
トナーシップ)
Korea Energy Angency
Ministry of Power, Government of India (インド電力省)
Ministry of Steel, Government of India (インド鉄鋼省)
National Center for Climate Change Strategy and International Cooperation
(中国国家気候変動戦略研究・国際協力センター)
New Energy and Industrial Technology Development Organization (独立行政法人
新エネルギー・産業技術総合開発機構)
Organisation for Economic Co-operation and Development (経済協力開発機構)
Perform, Achieve and Trade (インド、省エネ達成認証スキーム)
POSCO Research Institute
Rashtriya Ispat Nigam Limited (インド国営ラシュトリヤ・イスパット・ニガム社)
Steel Authority of India. Ltd (国営インド鉄鋼公社)
The State-of-the-Art Clean Technologies (最新クリーン技術)
Task Force (タスクフォース)
United Nations Development Programme (国連開発計画)
United States Department of Energy (米国エネルギー省)
Working Group(作業部会)
Worldsteel Association(世界鉄鋼協会)
2°C Scenario
6°C Scenario
以上
30
GSEP Steel Working Group
Table of Contents
1.
Overview ....................................................................................................................................................... 6
1.1.
Purpose .......................................................................................................................................................... 6
1.2.
Background.................................................................................................................................................... 7
1.2.1. Transition from APP to GSEP ....................................................................................................................... 7
1.2.2. Activities of GSEP Steel WG ........................................................................................................................ 9
1.2.3. Action Plan and the Creation of the Booklet ............................................................................................... 10
2.
European Union (EU) .................................................................................................................................. 13
2.1.
Overview of Action on Energy Saving and Climate Change in the EU ...................................................... 13
2.2.
Government ................................................................................................................................................. 13
2.2.1. The Targets and Plans of Action on Energy Saving and Climate Change in the EU ................................... 13
2.2.2. Legal Measures to Support the Targets and Plans ....................................................................................... 15
2.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 22
2.3.
Iron and Steel Industry................................................................................................................................. 23
2.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 23
2.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 24
3.
Japan ............................................................................................................................................................ 27
3.1.
Overview of Action on Energy Saving and Climate Change in Japan ........................................................ 27
3.2.
Government ................................................................................................................................................. 29
3.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in Japan ...................... 29
3.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 30
3.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 31
3.3.
Iron and Steel Industry................................................................................................................................. 32
3.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 32
3.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 38
4.
People’s Republic of China (China) ............................................................................................................ 42
4.1.
Overview of Action on Energy Saving and Climate Change in China ........................................................ 42
4.2.
Government ................................................................................................................................................. 43
4.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in China ...................... 43
4.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 50
4.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 52
4.3.
Iron and Steel Industry................................................................................................................................. 52
4.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 52
4.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 53
5.
Republic of India (India) ............................................................................................................................. 56
5.1.
Overview of Action on Energy Saving and Climate Change in India ......................................................... 56
1
GSEP Steel Working Group
5.2.
Government ................................................................................................................................................. 56
5.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in India ....................... 56
5.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 59
5.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 60
5.2.4. Collaborative Action with the International Society .................................................................................... 61
5.2.5. Collaborative Action within the Country with the Iron and Steel Industry ................................................. 64
5.3.
Iron and Steel Industry................................................................................................................................. 65
5.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 65
5.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 65
6.
Republic of Korea (Korea) .......................................................................................................................... 67
6.1.
Overview of Action on Energy Saving and Climate Change in Korea ........................................................ 67
6.2.
Government ................................................................................................................................................. 67
6.2.1. The National Targets and Plans of Action on Energy Saving and Climate Change in Korea ...................... 67
6.2.2. Legal Measures to Support the National Targets and Plans ......................................................................... 69
6.2.3. Emissions Reduction Target toward 2030 ................................................................................................... 75
6.3.
Iron and Steel Industry................................................................................................................................. 75
6.3.1. Voluntary Action on Energy Saving and Climate Change ........................................................................... 75
6.3.2. The Status of Energy Saving Technology Implementation .......................................................................... 76
Appendix ................................................................................................................................................................. 78
2
GSEP Steel Working Group
List of Figures
Figure 1. World Total Production of Crude Oil ................................................................................................. 6
Figure 2. Members of APP Iron and Steel Task Force ....................................................................................... 7
Figure 3. Transition from APP ........................................................................................................................... 8
Figure 4. Members of GSEP Steel WG ............................................................................................................. 9
Figure 5. GSEP Steel WG Action Plan ............................................................................................................ 10
Figure 6. Overview of EU Policies and Laws Related to Energy Saving and Climate Change ...................... 13
Figure 7. Energy Targets toward 2020, 2030, and 2050 .................................................................................. 14
Figure 8. Examples of Provisions .................................................................................................................... 15
Figure 9. Summary of EU ETS........................................................................................................................ 16
Figure 10. Monitoring Methodologies of MRR............................................................................................... 18
Figure 11. Overview of FprEN 19694-2 .......................................................................................................... 19
Figure 12. SPIRE Roadmap ............................................................................................................................. 21
Figure 13. Summary of TASIO ........................................................................................................................ 21
Figure 14. Research Results and Achievements of ESTEP WG7 .................................................................... 24
Figure 15. Projection of Energy Saving Potential............................................................................................ 25
Figure 16. Projected Energy Saving Potential of Industry Specific Energy Saving Technologies .................. 25
Figure 17. Overview of Japanese Policies and Laws Related to Energy Saving and Climate Change............ 28
Figure 18. Summary of ACE ........................................................................................................................... 29
Figure 19. Summary of the Energy Saving Act’s Regulation for Plants .......................................................... 30
Figure 20. Summary of the GHG Emissions Reporting Rule under the Act on Promotion of Global Warming
Countermeasures...................................................................................................................................... 31
Figure 21. Summary of JISF’s Voluntary Action Plan ..................................................................................... 33
Figure 22. Summary of JISF’s Commitment to a Low Carbon Society .......................................................... 34
Figure 23. Development Process of ISO14404................................................................................................ 35
Figure 24. Boundary Approach of ISO14404 .................................................................................................. 35
Figure 25. Calculation Formula of ISO14404 ................................................................................................. 36
Figure 26. Upstream Concept of ISO14404 .................................................................................................... 37
Figure 27. PDCA Framework with ISO14404 and TCL ................................................................................. 38
Figure 28. Utilization Rates of Major Energy Conservation Equipment in the Japanese Iron and Steel
Industry .................................................................................................................................................... 39
Figure 29. Commonly Installed and Actively Used Energy Saving Technologies in the Japanese Iron and
Steel Industry ........................................................................................................................................... 39
Figure 30. (*1) Illustration of Coke Dry Quenching ....................................................................................... 40
Figure 31. (*2) Illustration of Regenerative Burner Total System for Reheating Furnace .............................. 40
Figure 32. (*3) Illustration of Cogeneration (Include Gas Turbine Combined Cycle (GTCC)) ...................... 41
Figure 33. Overview of Chinese Policies and Laws Related to Energy Saving and Climate Change ............. 42
Figure 34. Contents of the 12th Five Year Plan ................................................................................................ 43
Figure 35. Energy Saving Target in the 12th Five Year Plan ........................................................................... 44
3
GSEP Steel Working Group
Figure 36. Overview of the Comprehensive Work Plan for Energy Conservation and Emission Reduction
During the 12th Five-Year Plan Period .................................................................................................... 45
Figure 37. Major Concerns Addressed in the Energy Development Plan of the 12th Five Year Plan ............. 46
Figure 38. Transition from the Top 1,000 Energy Consuming Enterprises Program to the Top 10,000 EnergyConsuming Enterprises Program ............................................................................................................. 47
Figure 39. Overview of the Top 10,000 Energy-Consuming Enterprises Program ......................................... 48
Figure 40. Overview of the Action Plan on Clean and Highly Efficient Use of Coal ..................................... 50
Figure 41. Overview of the Law of the People's Republic of China on Energy Conservation ........................ 51
Figure 42. Percentage of Companies Having Needs for Each SOACT Technology (Based on questionnaire
targeted at 12 major iron and steel companies in China) ......................................................................... 53
Figure 43. Technologies Listed on SOACT Handbook under the Category of “General Energy Saving &
Environmental Measures” and Diffusion Situation of Each Technology ................................................ 54
Figure 44. Technologies Strong Needs Are Shown by Major 12 Steel Companies in China (“Yes” means
interested, “No” means not interested) .................................................................................................... 55
Figure 45. National Missions under National Action Plan on Climate Change............................................... 57
Figure 46. Four Initiatives under NMEEE....................................................................................................... 58
Figure 47. Details of PAT ................................................................................................................................ 58
Figure 48. Major Initiatives under the Energy Conservation Act .................................................................... 59
Figure 49. Summary of the Sinter Cooler Waste Heat Recovery Model Project ............................................. 63
Figure 50. Summary of the Coke Dry Quenching Model Project ................................................................... 63
Figure 51. Summary of the Blast Furnace Stove Waste Heat Recovery Model Project .................................. 64
Figure 52. Energy Saving Technologies to Adopt and the Challenges ............................................................ 66
Figure 53. Six Major Tasks and Objectives of the Second Energy Master Plan .............................................. 68
Figure 54. Directions of the Green Growth National Strategy ........................................................................ 68
Figure 55. The EnMS Program of KEA .......................................................................................................... 70
Figure 56. Flowchart of the ESCO Program.................................................................................................... 71
Figure 57. Overview of the ESCO Program .................................................................................................... 71
Figure 58. Flowchart of the Energy Audit System Program ............................................................................ 72
Figure 59. Flowchart of TMS .......................................................................................................................... 73
Figure 60. Standards of Controlled Entities..................................................................................................... 74
Figure 61. Highlights of KETS ........................................................................................................................ 74
Figure 62. POSCO’s Target to Reduce CO2 Emission Intensity ..................................................................... 76
4
GSEP Steel Working Group
I. Introduction
5
GSEP Steel Working Group
1. Overview
1.1. Purpose
Steel products are used to create various products, such as automobile, industrial machinery, information and
electronics, and construction, and continue to be valuable and indispensable for manufacturing and constructions.
The steel industry is the second largest industry in the world after oil and gas with average world steel use per capita
being increased from 150kg in 2001 to 217 kg in 2014. The demand and the production are continue to grow, and
by 2050, steel use is expected to increase to be 1.5 times higher than present levels as well.1 Crude steel production
in the world is also expected to grow steadily, by almost 2% per year.2
Figure 1. World Total Production of Crude Oil
(million tonnes)
1,800
1,600
1,400
1,200
1,000
800
600
400
200
0
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 (year)
The iron and steel sector is an energy intensive industry. It has the second-largest energy consumption of all
industrial sectors, after chemicals and petrochemicals. It accounts for 22% of total industrial energy use and 31%
of industrial direct CO2 emissions in 2012.3 It is estimated that 1.8 tonnes of CO2 on average are emitted for every
tonne of steel produced.4
In 2012, the world average of aggregated energy intensity in the iron and steel industry remained at 20.7 GJ/t,
5% lower than 2000 levels. While the amount of steel production increases, the introduction of technologies has
contributed to the improvement. Reduction of energy use is also an important managerial factor for companies, as
energy use relates to the cost. According to a study by the World Steel Association, “energy costs represent around
20 to 25 % of the total input of steel producers and is one of the most important items to manage by steel producers.”5
Therefore, it has always been important for both public and private sectors that involve in the iron and steel
industry, to always tackle issues to improve energy efficiency and climate change. This booklet is compiled, under
6
GSEP Steel Working Group
the agreement made in the previous GSEP Steel Working Group (GSEP Steel WG), to share updated technology
information including its benefits and barriers, and to share updated energy management policies and relevant
activities.
1.2. Background
1.2.1.
Transition from APP to GSEP
Asia Pacific Partnership on Clean Development and Climate (APP), established in July 2005 under the initiative
by the United States of America (US), was a public-private and multilateral scheme to cover environmental related
issues. Its secretariat was established in United States Department of State and worked together with APP member
countries, US, Canada, Australia, Republic of India (India), People’s Republic of China (China), Republic of Korea
(Korea), and Japan, of which activities included Ministerial Meetings. APP held 8 Task Forces, including a Task
Force on Iron and Steel, and worked closely among the members to take action to gain energy efficiency and reduce
CO2 emissions.
APP Iron and Steel Task Force, of which chair country was Japan, held meetings among its member countries,
annually. APP also issued useful information and tools for the iron and steel industry. One of its achievements is to
compile a hand book, The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (SOACT
Handbook) in 2010, as one of flagship projects of APP Iron and Steel Task Force. SOACT Handbook contains
affluent information on technologies relevant to energy saving and the environment in the iron and steel industry.
SOACT Handbook (2nd version) could be obtained via website
(http://www.jisf.or.jp/business/ondanka/eco/docs/SOACT-Handbook-2nd-Edition.pdf).
Figure 2. Members of APP Iron and Steel Task Force
Country
Public
Private
US
−
−
−
Department of Commerce
Department of Energy
Department of State
−
American Iron and Steel Institute and its
member companies
Canada
−
Industry Canada, Environment
Canada
−
Canadian Steel Producers Association and
its member companies
Australia
−
Department of Resources, Energy
and Tourism, Department of the
Environment, Water, Heritage and
the Arts
−
−
Hismelt Corporation
Bluescope Steel
India
−
Ministry of Steel
−
Steel Authority of India Ltd., Rashtriya
Ispat Nigam Limited (RINL) , Tata Steel
Limited, Jindal Steel Works, Jindal Steel
and Power Limited, Essar Steel Limited,
Ispat Industries Limited
China
−
National Development and Reform
Commission
−
China Iron and Steel Association and its
member companies
Korea
−
Ministry of Knowledge Economy
−
Korea Iron & Steel Association and its
member companies
7
GSEP Steel Working Group
Country
Japan
Public
−
Private
−
Ministry of Economy, Trade and
Industry
The Japan Iron and Steel Federation and its
member companies
Global Superior Energy Performance Partnership (GSEP) was established in 2010, under Clean Energy
Ministerial (CEM) and International Partnership for Energy Efficiency Cooperation (IPEEC). The mission of GSEP
is to aim “to reduce global energy use in industrial facilities and commercial buildings in order to improve energy
security,” under collaborations between the public and private.6 By the establishment, most of the APP function
was succeeded to GSEP, which included some of APP Task Forces to GSEP sectorial groups. APP Iron and Steel
Task Force was succeeded to GSEP Steel WG under this movement.
Figure 3. Transition from APP
(Extracted from Kono, T. (2012). Objective and overview of Global Superior Energy Performance Partnership. In Ministry of Economy, Trade and
Industry, Japan, the Federation of Electric Power Companies of Japan, the Japan Iron and Steel Federation, & Japan Cement Association. (Eds.),
Sectoral approach in GSEP: GSEP: Global Superior Energy Performance Partnership: Power, steel and cement sector. (pp. 1-3). Retrieved from
https://www.fepc.or.jp/english/environment/global_warming/sectoral_approach/gsep.pdf)
Given that the needs to tackle the environmental related issues globally, there are many international schemes
including COP meetings that aim to reduce greenhouse gas (GHG) emissions and improve energy efficiency. GSEP
8
GSEP Steel Working Group
is one of such international fora, in which member countries share their insights and take relevant action.
One of GSEP Working Groups, GSEP Steel WG focuses on improving the energy efficiency and environmental
performance of the iron and steel sector. Participants from public and private sectors of the GSEP Steel WG member
countries, US, European Union (EU), India, China, Korea, and Japan, as well as multilateral organizations such as
International Energy Agency (IEA) work together to tackle the issues relevant to improving energy efficiency and
reducing environmentally negative impacts in the iron and steel sector. Its annual meeting, hosted by the Japanese
government as the chairing country, has been utilized as an opportunity to exchange information and to discuss
relevant issues among the member countries. It is a unique and only scheme in which representatives from both
public and private sectors in the iron and steel industry gather, exchange opinions and information, and take action
to deal with the environmental related issues.
1.2.2.
Activities of GSEP Steel WG
GSEP Steel WG focuses on improving the energy efficiency and environmental performance of the iron and
steel sector as one of the most energy-intensive industrial sectors. Following the GSEP Workshop, the GSEP’s first
meeting held in September 2011, GSEP Steel WG’s first meeting was held in March 2012 in Tokyo. In the meeting,
participants including new participants from the EU that was not the member of APP, reviewed the achievements
under APP and discussed the future activities under the GSEP scheme. 68 participants from 13 economies
participated, and together with other sectoral WGs, such as Power WG and Cement WG, Steel WG had a joint
plenary session. At the second meeting which was held on September 12, 2014, in Paris, participants from 5 member
countries, India, China, Korea, Europe, and Japan, as well as international organizations such as IEA, shared their
insights and activities on energy management and discussed the future activities of GSEP Steel WG.
It was decided at CEM Meeting in 2015, that GSEP Working Groups are to be either moved to “Initiative” level
or to dissolve. GSEP Steel Working Group then has decided to close its group in 2015 FY.
Figure 4. Members of GSEP Steel WG
Country
Public
Private
US
−
Department of Energy
−
American Iron and Steel Institute and
its member companies
EU
−
European Commission (EC)
−
The European Steel Association
(EUROFER)
India
−
−
Ministry of Steel
Bureau of Energy Efficiency (BEE),
Ministry of Power (MOP)
−
Steel Authority of India Ltd.,
Rashtriya Ispat Nigam Limited
(RINL) , Tata Steel Limited, Jindal
Steel Works, Jindal Steel and Power
Limited, Essar Steel Limited, Ispat
Industries Limited
China
−
National Development and Reform
Commission
−
China Iron and Steel Association and
its member companies
9
GSEP Steel Working Group
Country
Public
Private
Korea
−
Korea Energy Agency (KEA)
−
Korea Iron & Steel Association and
its member companies
Japan
−
Ministry of Economy, Trade and
Industry
−
The Japan Iron and Steel Federation
and its member companies
1.2.3.
Action Plan and the Creation of the Booklet
In the meeting on September 12, 2014, over 30 participants from public and private sectors in the US, the EC,
India, China, Korea, Japan, and IEA, gathered and exchanged the latest information on the current status and
challenges in the public and private sectors and necessity of technology introduction etc.
As the result of the meeting, participants agreed to have the Action Plan as below.
Figure 5. GSEP Steel WG Action Plan
Action plan a the 1st GSEP Steel WG
1
2
Energy Management
• Energy management system
• Capacity building / improvement in energy efficiency
SOACT handbook “improved edition”
• Further information on cost / benefit related information
• Additional technologies
Technology deployment
3
• Barrier analysis
• MAC / Cost curve for countermeasures
Breakthrough R&D
4
• Longer-term vision
• Break through technology information sharing
• (Technology handbook)
Proposal of Policies, PR
5
• Appropriate national / international scheme for promoting technology
diffusion
• PR ~Contribution to an energy saving society~
Proposed focus area for
the 3rd GSEP Steel WG
Action Plan 2&4
“Technology”
Share updated
technology information
including its benefits
and barriers
Action Plan 1&5
“Energy Management
Policies”
Share updated energy
management policies
and relevant activities
In order to share information based on Action Plans, it was also decided to compile a booklet that contains
relevant information, such as on technology and energy management policies. For collecting necessary information,
a questionnaire (refer to Appendix) was made, and sent to the member countries. In the questionnaire, the private
sector was asked to describe the current situation and future prospect of adopting technologies regarding energy
saving and environmental protection and implementing energy management activities, and the public sector was
asked to provide the latest policies/activities and issues in order to promote efficient technology introduction and
energy management.
The contents of the booklet were drafted based on the collected information and data by the questionnaire and
10
GSEP Steel Working Group
researches conducted by Japan. The draft was then reviewed by the members of respective countries to confirm the
contents. The booklet contains information that was reviewed by each country/region, namely, EU, Japan, China,
India, and Korea.
The booklet will be also utilized at the next GSEP Steel WG in 2016, as the members are to discuss and share
information relevant to energy management and environmental performance at the meeting.
11
GSEP Steel Working Group
II. Action on Energy Saving and Climate
Change
12
GSEP Steel Working Group
2. European Union (EU)
2.1. Overview of Action on Energy Saving and Climate Change in the EU
The EU has been taking action on energy security since the 1960’s and climate change since 1990. It recently
has developed progressive energy efficiency and GHG emissions reduction targets toward 2020, 2030, and 2050 as
well as systems and rules to help the targets be met.
Figure 6. Overview of EU Policies and Laws Related to Energy Saving and Climate Change
Year
1960’s
~
1997
1998
2001
2005
2006
2007
2008
Dec. 1997
Kyoto
Protocol
Adoption
International
Society
GHG
emissions
reduction by
8% compared
to 1999 levels
by 2012
2009
2010
COP15
COP16
2011
2012
20 or 30%
reduction
by 2020
2013
2015
EU achieved 12.2%
reduction, which
exceeded its target.
2008~2012
Phase I (Nonparticipation: US, China)
Started taking
actions for
energy security
in the 1960s,
stating to
increase lowcarbon energy
sources.
2014
Oct. 2009
Oct. 2014
2020
Climate
and Energy
Package
GHG
emissions
reduction
target
toward
2050
2030
Framework
EU
Action
~2030
COP21
2020~
2013~2020
Phase II (Nonparticipation:
US, JP, Russia, NZ)
Jan. 2008
At least 20% lower
GHG emissions
than 1990 levels
2020
80-95% lower
GHG emissions
than 1990 levels
At least 40% lower
than 1990 levels
Nov. 2010
Mar. 2011
2020
Energy
Strategy
Roadmap
2050
(2050
Energy
Strategy)
2030
Energy
Strategy
Oct. 2012
Energy
Efficiency
Directive
Jan. 2005
A set of binding
measures for EU
nations to
achieve 20%
energy efficiency
target by 2020.
EU-ETS
■ System
■ Policy
Strategy
□ Directive
Phase I
Phase II
Phase III
2005~2007
2008~2012
2013~2020
(Created by Deloitte Tohmatsu Consulting LLC (DTC))
2.2. Government
2.2.1.
The Targets and Plans of Action on Energy Saving and Climate Change in the EU
Following the European treaties for coal and steel and atomic energy after the Second World War, the EU
counties started to collaborate to tackle energy supply problems in the 1960’s. The EU explains that it imports over
a half of its energy from outside of the EU, which is a risk because the energy costs can change due to uncontrollable
factors such as political events in exporter countries. The EU also states that it needs to increase use of low-carbon
13
GSEP Steel Working Group
energy sources instead of fossil fuels, which are currently 80% of the energy sector’s source.7
On the other hand, EU’s action on climate change started in 1990 when the EU pledged to stabilize its CO2
emissions level at 1990 levels by 2000. Since then, the EU has applied policies to reduce GHG emissions, and each
Member State has taken action. Action on climate change seems to be one of the highest priorities for the EU,
considering the EU leaders’ decision on spending at least 20% of the 2014-2020 EU budget on climate-related
measures.8
As of 2015, the EU is committed to the following climate and energy targets toward 2020, 2030, and 2050.
Figure 7. Energy Targets toward 2020, 2030, and 2050
Toward
Target
GHG Emissions Reduction
Renewable Energy
Energy Efficiency
2020
At least 20% lower than 1990
levels
20% share of EU energy
consumption
20% improvement compared
with BAU levels
2030
At least 40% lower than 1990
levels
27% share of EU energy
consumption
27% improvement compared
with BAU levels*
2050
80-95% lower than 1990 levels
-
-
*To be reviewed in 2020 in consideration of a 30% target
(Created by DTC based on European Union. (n.d.). Climate action. Retrieved from http://europa.eu/pol/clim/index_en.htm; European Commission.
(n.d.). Energy: 2030 Energy Strategy. Retrieved from http://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy); European
Commission. (n.d.). Climate action: 2030 climate & energy framework. Retrieved from
http://ec.europa.eu/clima/policies/strategies/2030/index_en.htm)
i.
Targets Toward 2020
The targets toward 2020 were originally adopted as the 20-20-20 targets in 2008, as part of the 2020 Climate
and Energy Package, and once again included to the Europe 2020, an EU’s growth strategy, in 2010. In the 2020
Energy Strategy, which was adopted in 2010 to achieve the targets, the EU set five priorities: improvement of energy
efficiency; development of an integrated EU energy market; strengthening of consumer rights and top-class energy
safety/supply security; enhancement of the EU leadership in energy technologies and innovations; and development
of foreign relationships in the energy market.9 The targets for GHG emissions reduction and renewable energy are
legally binding.10
ii.
Targets toward 2030
The targets toward 2030 were adopted in 2014 as part of the 2030 Climate and Energy Framework to support
the ongoing action and show EU’s commitment to the world. The GHG emissions reduction target is binding, and
a reformed EU Emissions Trading Scheme (EU ETS), which will be discussed later, is expected to become the main
driver to achieve the target.11 Other than EU ETS, “new indicators for the competitiveness and security of the
energy system” and “ideas on a new governance system based on national plans for competitive, secure, and
14
GSEP Steel Working Group
sustainable energy” have been proposed in the 2030 Energy Strategy to achieve the targets.12
iii.
Target Toward 2050
The EU set the GHG emissions reduction target toward 2050 in 2009. 13 The Roadmap 2050, which was
published in 2011 after thorough research, presents a possible way to achieve the target in a cost-efficient way while
keeping EU’s competitiveness.
1415
It includes milestones to evaluate the progress and information about what
different sectors can do to contribute to the effort.16
2.2.2.
Legal Measures to Support the Targets and Plans
The EU has developed various measures to achieve the targets both in the field of energy and climate change.
The following are some examples.
i.
Energy Efficiency Directive
The Energy Efficiency Directive was adopted in 2012 by the European Parliament and of the Council with a set
of binding measures to achieve the energy efficiency target toward 2020.1718 It requires all EU countries to promote
energy efficiency on the demand side and in all stages of supply chain and also includes requirements to take
concrete action in various sectors.19 Each country has to set an energy efficiency target for 2020 and report progress
toward the target every year. Also, it has to develop National Energy Efficiency Action Plans every three years.20
At the same time, EU countries had to implement national laws incorporating the directive’s provisions by June
2014.21 The examples of provisions are shown below.
Figure 8. Examples of Provisions
Contents
1
Energy distributors or retail energy sales companies have to achieve 1.5% energy savings per
year through the implementation of energy efficiency measures.
2
EU countries can opt to achieve the same level of savings through other means such as improving
the efficiency of heating systems, installing double glazed windows or insulating roofs.
3
The public sector in EU countries should purchase energy efficient buildings, products and
services.
4
Every year, EU governments will carry out energy efficient renovations on at least 3% of the
buildings they own and occupy by floor area.
5
Empowering energy consumers to better manage consumption. This includes easy and free access
to data on consumption through individual metering.
6
National incentives for Small and Medium Enterprises (SMEs) to undergo energy audits.
7
Large companies will make audits of their energy consumption to help them identify ways to
reduce it.
15
GSEP Steel Working Group
Contents
8
Monitoring efficiency levels in new energy generation capacities.
(Created by DTC based on European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from
https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficiency-directive)
ii.
Energy Performance of Buildings Directive
The Energy Performance of Buildings Directive was adopted in 2010 by the European Parliament and of the
Council.22 It requires countries to set minimum efficiency standards for buildings and publish certificates informing
consumers about the efficiency of buildings they purchase or rent.23
iii.
Ecodesign Directive and Energy Labeling Directive
The Ecodesign Directive and Energy Labelling Directive were adopted in 2009 and 2010 respectively by the
European Parliament and of the Council.2425 The directives drive the product market towards greater efficiency by
removing the least efficient products from the market and informing consumers about the energy performance of
products. More than 20 product groups are covered at present.26
iv.
The EU Emissions Trading Scheme (EU ETS)
Since its launch in 2005, EU ETS has been the core of EU’s action on climate change.27 EU ETS targets energy-
intensive facilities such as those in the power generating, oil refining, iron and steel, cement, and aviation industries
of the EU countries, Iceland, Liechtenstein, and Norway. It takes a cap-and-trade system, and the cap becomes
stricter overtime.28 In this system, there is a limit or “cap” on emissions, and participants can sell and buy the
allowances depending on their emissions levels. Applying EU ETS, the emissions from ETS target sectors are
expected to become 21% lower than 2005 levels by 2020.29 The summary of EU ETS in each of three phases is
below:
Figure 9. Summary of EU ETS
Cap
Phase I
Phase II
Phase III
2005-2007
2008-2012
2013-2020
8.3% above 2005 levels
5.6% below 2005 levels
(avg. 2005-2007)
(avg. 2008-2012)
21% below 2005 levels in
2020
(The cap amount annually
decreases by 1.74% in a linear
way from the medium amount
between 2008 and 2012.)
Actual
Reduction
0.98% above 2005 levels in
2007
3.06% below 2007 levels in
2008
11.6% below 2008 levels in
2009
3.16% above 2009 levels in
16
2% below 2011 levels in 2012
3% below 2012 levels in 2013
(estimated)
GSEP Steel Working Group
Phase I
Phase II
Phase III
2005-2007
2008-2012
2013-2020
2010
2.09% below 2010 levels in
2011
Allowances
Across the countries:
Across the countries:
Across the countries:
Allocation
National Allocation Plan
(NAP)*1
National Allocation Plan
(NAP)
A single EU-wide cap instead
of NAP
Method
Within countries:
Within countries:
Mainly grandfathering*2
Mainly grandfathering
(Benchmarks increased in
some countries.)
(The EU-wide cap annually
decreases by 1.74% in linear
way from the year-average
total quantity of allowances
given during 2008-2012.)
Within countries:
Gradually transfers into
auctions, staring from the
power generating sector.*3
Target
CO2
CO2
CO2, N2O, PFC
Power generators and energyintensive industrial sectors
(Iron and Steel, Oil refining,
Cement, etc.)
The aviation sector was added
in 2012.
More sectors were added.
€100/t-CO2
€100/t-CO2
GHG
Target
Sector
(e.g. aluminum, chemicals)
(approx. 11,500 facilities)
Penalty
€40/t-CO2
*1
A national cap for which each country has to get an approval from the EC
Method to decide allocation based on the actual emissions in the past
*3
Manufacturing industry will receive 80% of its allowances for free in 2013, a proportion that will decrease in linear fashion each year to 30% in
2020. Sectors and sub-sectors facing competition from industries outside the EU which are not subject to comparable climate legislation will receive a
higher share of free allowances than those which are not at risk of such ‘carbon leakage’ (i.e; 100% free allowances for carbon leakage sectors like
steel).
(Created by DTC based on Office of Market Mechanisms, Ministry of the Environment. (2014). 諸外国における排出量取引の実施・検討状況
[The operation and examination status of Energy Trading Scheme in other countries] [PDF document]. Retrieved from
http://www.env.go.jp/earth/ondanka/det/os-info/jokyo.pdf; European Commission. (n.d.). Climate action: Allowances and caps: Policy. Retrieved
from http://ec.europa.eu/clima/policies/ets/cap/index_en.htm; European Commission. (n.d.). Climate action: Free allocation based on benchmarks:
Policy. Retrieved from http://ec.europa.eu/clima/policies/ets/cap/allocation/index_en.htm; European Commission. (2014). Commission Decision of 27
October 2014 determining, pursuant to Directive 2003/87/EC of the European Parliament and of the Council, a list of sectors and subsectors which
are deemed to be exposed to a significant risk of carbon leakage, for the period 2015 to 2019. Retrieved from http://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX%3A32014D0746)
*2
EU ETS requires the participant operators of facilities to have approved monitoring plans and monitor and report
their annual emissions in accordance with the Monitoring and Reporting Regulation (MRR).30 MRR offers multiple
monitoring methodologies from which operators select for their monitoring plans.31
17
GSEP Steel Working Group
Figure 10. Monitoring Methodologies of MRR
Methodology
Calculation
Standard
−
Based
Methodology
−
Mass
−
−
Balance
−
Approach
Methodology
Measurement Based
Approach

−
−
−
−
−
Fall-back Approach
Key Point
Calculation of emissions by means of activity data (e.g. amount of fuel or
process input material consumed) times an emission factor
Calculation Equations
 Combustion emissions [t CO2]: Em = AD ⋅ EF ⋅ OF
Em ......Emissions [t CO2]
AD.......Activity data [TJ, t or Nm3]
EF .......Emission factor [t CO2/TJ, t CO2/t or t CO2/Nm3]
OF.......Oxidation factor [dimensionless]
 Process emissions [t CO2]: Em = AD ⋅ EF ⋅ CF
Em ......Emissions [t CO2]
AD.......Activity data [t or Nm3]
EF .......Emission factor [t CO2/t or t CO2/Nm3]
CF.......Conversion factor [dimensionless]
 Activity data [TJ, t or Nm3] = Fuel quantity [t or Nm3] * Net
Calorific Value [TJ/t or TJ/Nm3]
 Activity data may refer to either an input material or to the resulting
output of the process.
 Products and waste are accounted for by Oxidation
factor/Conversion factor.
Suitable for relatively simple processes
Calculation of a complete balance of carbon entering and leaving the
installation
Calculation Equation
 EmMB = Σ( f ⋅ ADi ⋅ CCi )
−
i
EMMB...Emissions from all source streams included in the mass
balance [t CO2]
f........... factor for converting the molar mass of carbon to CO2. The
value of f is 3.664 t CO2/t C
i ........... index for the material or fuel under consideration.
ADi ......Activity data (i.e. the mass in tonnes) of the material or fuel
under consideration.
CCi ......The carbon content of the component under consideration.
Always dimensionless and positive.
 In terms of Activity data, ingoing materials or fuels taken into
account as positive, outgoing materials or fuels have negative. Mass
streams to and from stock piles must be taken into account
appropriately in order to give correct results for the calendar year.
Suitable for relatively complex processes
Method to measure GHGs directly
Apply a continuous emission measurement system
Measure the hourly average concentration and the hourly average flow
rate of GHGs
Sum up the hourly data of each emission points to get the yearly total
emissions of all emission sources
Operators are allowed to use non-tier methodology (Fall-back
Methodology) if applying the tier system is technically not feasible or
leads to unreasonable costs for the operator. (Ties refer to different data
quality levels of each parameter needed for the determination of
emissions. The MRR indicates which tier an operator must select.)
(Created by DTC based on European Commission. (2012). Guidance document: The monitoring and reporting regulation – General guidance for
installations. Retrieved from http://ec.europa.eu/clima/policies/ets/monitoring/docs/gd1_guidance_installations_en.pdf)
EU ETS covers 45% of GHG emissions in the EU, and the EU has an agreement to address the rest of the
18
GSEP Steel Working Group
emissions as well. The rest of 55% of emissions, which EU ETS does not cover, comes from sectors such as transport,
buildings, agriculture, and waste.32 In 2009, EU countries had an “effort-sharing” agreement, which sets binding
national targets to reduce non-ETS emissions for the period of 2013-2020.333435 The national targets for non-ETS
emissions reduction vary from a 20% reduction for the richest countries to a 20% increase for the poorest. The EU
plans to cut 10% of emissions from non-ETS sectors by 2020 as a whole. The base year for these targets is 2005.36
Although the world recognizes the actual reduction of GHG emissions that EU ETS has achieved, the volatility
of carbon prices is causing concerns because it would discourage the investments into low-carbon facilities and
technologies.37 Since the economic crisis decreased GHG emissions in 2009, the surplus of emission allowances
has been increasing. The EU observes that it resulted in low carbon prices and a weaker incentive to reduce GHG
emissions. As a short-term countermeasure for this issue, the EU decided to postpone €900 million allowance
auctions originally scheduled in 2014-2016 to 2019-2020. As a long-term solution, a market stability reserve will
be established in 2018.38 In the market stability reserve system, when the total number of allowances in circulation
in the previous year is over 830 million tCO2, “an amount of allowances corresponding to 12 % of the number of
allowances in circulation…should be deducted from the auction volumes and placed in the reserve.” Then, “a
corresponding number of allowances should be released from the reserve…and should be added to auction volumes
if the relevant total number of allowances in circulation is less than 400 million” in any year.3940
v.
Standard for GHG Emissions Calculation in Steel Production - FprEN 19694-2
The EU is developing a standard for GHG emissions calculation in iron and steel production. European
Committee for Standardization (CEN) is a private international non-profit organization officially recognized by the
EU which develops and defines voluntary standards for various sectors at European level with other two
organizations. 4142 In 2014, CEN started the project of Stationary source emissions - Greenhouse Gas (GHG)
emissions in energy-intensive industries - Part 2: Iron and steel industry, referred as FprEN 19694-2. 43 The
overview of the standard is shown below.4445
Figure 11. Overview of FprEN 19694-2
Title
Stationary source emissions - Greenhouse Gas (GHG) emissions in energy-intensive
industries - Part 2: Iron and steel industry
Reference
FprEN 19694-2
Status
Under Approval
Target Sector
Iron and steel industry
Summary
This standard provides a methodology for:
−
Measuring, testing and quantifying methods for the determination of greenhouse gas
(GHG) emissions
−
Assessing the level of GHG emissions performance of production processes over time,
at production sites
The establishment and provision of reliable and accurate information of proper quality for
19
GSEP Steel Working Group
reporting and verification purposes
Key Point
−
The determination of the direct and indirect CO2 emissions of a steel facility
−
A strong focus on performance assessment which it strives to address through the
following aspects:

Assessment of CO2 impact, including process emissions:
Evaluates the total CO2 emission of a steel facility, with the carbon content of the
waste gases burdened as CO2 to the processes giving rise to them

Assessment of the actual CO2 impact:
Evaluates the total CO2 emissions released by a steel facility, but considers waste
gases exported or used in a power plant as equal to natural gas in terms of CO2
emissions

Carbon input CO2 performance at facility level:
Delivers an indicator comparing the facility performance with best practice, on the
basis of the carbon input to the system

CO2 performance assessment at process level:
Delivers a set of indicators comparing process performance with best practice at
unit level. These indicators are then combined as a consolidated figure for the
whole facility.

A theoretical assessment of the CO2 saving potential up to best practice
(Created by DTC based on European Committee for Standardization. (n.d.). CEN/TC 264 - Air quality: FprEN 19694-2. Retrieved from
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_LANG_ID:38640,25&cs=13F4A3EB327B0157B4E7F2D3A272DA6C2)
vi.
Financial Instruments
The EU offers various financial instruments to encourage and support action on energy saving and climate
change. Examples are below:
① Sustainable Process Industry through Resource and Energy Efficiency (SPIRE)
SPIRE is “a contractual Public-Private Partnership (PPP) dedicated to innovation in resource and energy
efficiency enabled by the process industries.”46 It was launched in the end of 2013 in a framework of Horizon
2020.47 Horizon 2020 is the EU’s biggest programme for Research and Innovation, which implements Innovation
Union, a flagship initiative of the Europe 2020.48 SPIRE covers the EU process industrial sectors of iron and steel,
ceramics, chemicals, engineering, non-ferrous metals, minerals, water, and cement. They are the core of the
European economy. The process industry has a high interest in improving their energy efficiency especially because
it has high dependency on resources, such as energy, raw materials, and water, and seeks for long-term
sustainability. 49 However, efficiency improvement takes high risks and long-term investments, which makes it
difficult for the industry to face the challenge alone.50 SPIRE is expected to bring back the innovation trend to the
EU manufacturing industry by uniting the process industrial sectors across the value chains and letting them
cooperate with the public sector.5152 It is expected to alternately contribute to the sustainable growth and jobs of the
Europe.53 The initiative is to last for 7 years, and the EC budget is secured up to €1 billion.54 The following is the
roadmap of SPIRE.
20
GSEP Steel Working Group
Figure 12. SPIRE Roadmap
Vision
−
A Sustainable Process Industry for a resource-efficient and low-carbon economy:
Rejuvenate the European process industry base and help decoupling economic
growth from resource impact
Research and
−
6 Key-components:
Innovation
1.
Feed: Increased energy and resource efficiency through optimal valorisation and
smarter use and management of existing, alternative and renewable feedstock
2.
Process: Solutions for more efficient processing and energy systems for the process
industry, including industrial symbiosis
3.
Applications: New processes to produce materials for market applications that boost
energy and resource efficiency up and down the value chain
4.
Waste2Resource: Avoidance, valorisation and re-use of waste streams within and
across sectors, including recycling of post-consumer waste streams and new
business models for eco-innovation
5.
Horizontal: Underpinning the accelerated deployment of the R&D&I opportunities
identified within SPIRE through sustainability evaluation tools and skills and
education programmes as well as enhancing the sharing of knowledge, best practices
and cross-sectorial technology transfer
6.
Outreach: Reach out to the process industry, policy makers and citizens to support
the realisation of impact through awareness, stimulating societal responsible
behaviour
−
Up to 30% reduction in fossil energy intensity from current levels
−
Up to 20% reduction in non-renewable, primary raw material intensity compared to
current levels
−
Up to 40% improvement in CO2-equivalent footprints
−
Leveraging additional investments
Strategy
Expected Impacts
(Created by DTC based on Sustainable Process Industry through Resource and Energy Efficiency. (n.d.). SPIRE PPP - Sustainable Process Industries
through Resource & Energy Efficiency - [PDF document].)
One example of SPIRE projects is “Waste Heat Recovery for Power Valorisation with Organic Rankine Cycle
Technology in Energy Intensive Industries (TASIO).”55 The summary of TASIO is below.
Figure 13. Summary of TASIO
Consortium Member
To develop solutions to recover the waste heat produced in energetic intensive processes
and transform it into useful energy
− Development of advanced Waste Heat Recovery Systems based on Organic
Rankine Cycle (ORC)
− Recovery and transformation of the thermal energy of the flue Gases of Energy
Intensive Industries into mechanical energy for internal use (compressors)
− Direct Heat Exchange concept aimed at heat recovery for electricity generation
through an ORC
− Application of new materials and coatings to improve heat transfer and avoid heat
exchanger corrosion
8 companies and organizations from 4 European countries
Period
December 1, 2014 – May 31, 2018
Objective
21
GSEP Steel Working Group
Budget
€3,989,247.50
Impact
Foreseen increase in the efficiency of the process 15-20%
Technology Image
(Created by DTC based on TASIO. (n.d.). Objectives of the project. Retrieved from http://www.tasioh2020.eu/objectives;jsessionid=7e0f7aa179afb9ec14ff5604eafd; TASIO. (n.d.). Waste Heat Recovery for Power Valorisation with Organic Rankine
Cycle Technology in Energy Intensive Industries. Retrieved from http://www.tasio-h2020.eu/; Success story: Participation of the steel sector in H2020
projects. (n.d.). [PDF document].)
② NER300
NER300 is the world-largest funding programme for the development of innovative renewable energy sources
(RES) and carbon capture and storage (CCS) technologies. The programme is funded from the sale of 300 million
EU ETS allowances.56 Under two calls for proposals in 2012 and 2014, €2.1 billion was awarded in funding to 39
projects of RES and CCS.5758 It is also estimated that the funding by NER300 will attract additional €2.8 billion
from private sources.59
③ LIFE
The LIFE programme is a finance instrument to support projects for the environment and climate protection. It
has supported over 4,000 projects with €3.4 billion of contribution since its launch in 1992. As one of the subprogrammes of the LIFE programme, the Climate Action sub- programme will provide €864 million to co-finance
projects between 2014 and 2020.60 It seeks for the ideas and technologies to reduce GHG emissions, adapt climate
change, and enhance climate governance and raise awareness of climate change. 61 The programme calls for
proposals annually from public authorities, non-profit organizations, and private actors, especially SMEs. In
addition to this grant opportunity, people could finance their projects through loans and guarantees with the two
pilot programmes called Natural Capital Financing Facility and Private Finance for Energy Efficiency.62
2.2.3.
Emissions Reduction Target toward 2030
The EC submitted the Intended Nationally Determined Contribution (INDC) to the United Nations Framework
Convention on Climate Change (UNFCCC) in March 2015 and declared that “the EU and its Member States are
committed to a binding target of an at least 40% domestic reduction in greenhouse gas emissions by 2030 compared
22
GSEP Steel Working Group
to 1990.”6364
2.3. Iron and Steel Industry
2.3.1.
i.
Voluntary Action on Energy Saving and Climate Change
EUROFER – The European Steel Association (EUROFER)
EUROFER was founded in 1976. The members consist of steel companies and national federations in the EU
countries, representing 100% of steel production in the EU. It currently has 55 member organizations throughout
the EU and 7 associate members in Switzerland and Turkey.656667 The European steel industry has been contributing
to the action on climate change as seen in its GHG emissions reduction by 25% from 1990 to 2010.68 However,
EUROFER concluded that the EU’s target toward 2050 was technologically and economically unachievable and
that the European steel sector could cut CO2 intensity by 15% at best during 2010 to 2050. EUROFER insists that
in order to achieve the EU’s target toward 2050, the European steel sector needs policy makers’ support to install
innovative technologies to reduce significant amount of CO2 emissions and keep the competitiveness of the sector.69
The EU has unveiled its action plan in June 2013 to develop a political framework to support the steel sector from
economic, social, and environmental perspectives.70
EUROFER has expressed its opinions and suggestions about the government policies such as the EU targets
toward 2050 and EU ETS from the perspective of the European steel industry. In November 2015, EUROFER
published a statement which called on the policy makers to make sure that the Paris agreement at COP21 would
include incentives for investments in Europe.71
ii.
The European Steel Technology Platform Working Group 7 (ESTEP WG7)
ESTEP WG7 was launched in 2010 by EUROFER and the European Steel Technology Platform (ESTEP) in
order to investigate energy saving potential in the European steel industry.72 It intended to provide the ESTEP
community with the accurate information on energy consumption of the European steel industry, potential of
improvement in energy efficiency, and the link between energy consumption and CO2 emissions. 73 Through its
activities, ESTEP WG7 developed a data collection methodology, identified the existing and new energy savings
technologies, and also found out new ideas for Research & Innovation for energy savings in steel production.74
In 2014, the final report was published as a result of the investigation of ESTEP WG7.75 According to the final
report, ESTEP WG7 gained the following research results and achievements.
23
GSEP Steel Working Group
Figure 14. Research Results and Achievements of ESTEP WG7
Research Topic
Accurate information on energy consumption
of the European steel industry
Potential of improvement in energy efficiency
Research Result and Achievement of ESTEP WG7
−
Collected information confidentially from 6 integrated
steel mills and 4 EAF steel mills based on the data
collection methodology that it developed
−
Analyzed the information by comparing it to a reference
benchmark taken from the best mills in Europe
−
Concluded that steel mills’ potential of improving their
energy efficiency is 8% on the average although it would
be lower for some plants
−
Noted that the figure would raise to 10-12% if the study
extends to all steel mills in the EU
−
Investigated the areas of improvement and suggested R&D
directions for the coming years which included
recommendations on: energy savings, energy recovery, use
of alternative energy sources, incremental or radical
process changes and diversifying input of raw materials
(Created by DTC based on De Lamberterie, B. (2014). Steel production - energy efficiency working group: Final report, January 2014.)
2.3.2.
The Status of Energy Saving Technology Implementation
The iron and steel industry in the EU has been improving the energy efficiency overtime. The drastic
improvement in the energy efficiency happened in the 1970’s and 1980’s due to the shift from the open-hearth
production route to the more efficient blast furnace-basic oxygen furnace (BF-BOF) and electric arc furnace (EAF)
production route. The improvement trend has been more moderate since the 1990’s up to the present.76
According to a research done on behalf of the EC, if all the energy saving technologies that are feasible for the
EU iron and steel industry are implemented (Technical Scenario), they would reduce the industry’s annual energy
consumption by 16.3 million toe (24%) in 2030 and 18.9 million toe (26%) in 2050 compared to the business-asusual (BAU) projections.77
24
GSEP Steel Working Group
Figure 15. Projection of Energy Saving Potential
Annual Energy Consumption (kTOE)
90,000
80,000
70,000
60,000
50,000
40,000
30,000
2011
2015
2020
BAU Consumption
2025
2030
2035
2040
2045
2050
Technical Scenario Consumption
(Created by DTC based on ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20report_clean_stc.p
df)
Out of the 94 technologies that were found to be feasible for the EU iron and steel industry, 9 are specific to the
iron and steel industry. The following are the industry specific energy saving technologies and their energy saving
potential.78
Figure 16. Projected Energy Saving Potential of Industry Specific Energy Saving Technologies
State-of-the-Art Power Plant
1621
4314
% of Total Energy
Saving Potential of
the Technical
Scenario (2030/2050)
10%/23%
BOF Waste Heat and Gas Recovery
1227
1180
8%/6%
Coke Dry Quenching
523
509
3.2%/2.7%
Continuous Casting
403
533
2.5%/2.8%
Sinter Plant Waste Heat Recovery
251
241
1.5%/1.3%
Optimized Sinter Pellet Ratio (Iron Ore)
173
170
1.1%/0.9%
Top Gas Recovery Turbine
43
56
0.3%/0.3%
Stove Waste Gas Heat Recovery
73
70
0.4%/0.4%
Scrap Pre-Heating
36
46
0.2%/0.2%
Industry Specific
Energy Saving Technology
Energy Saving
Potential in 2030
(ktoe/a)
25
Energy Saving
Potential in 2050
(ktoe/a)
GSEP Steel Working Group
(Created by DTC based on ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20report_clean_stc.p
df)
On the other hand, the report predicted that some emerging technologies would improve the energy efficiency
of the iron and steel industry in the EU from 2011 to 2030.79 Some initiatives are contributing to the development
of such new technologies. For example, Ultra-Low Carbon dioxide Steelmaking, a consortium of 48 steel companies
and other organizations from 15 EU countries supported by the EC, runs a programme to develop innovative
technologies to reduce CO2 emissions from steel production by 50%.80 So far four technologies were found to have
a potential to reduce more than 50% of CO2 emissions in the long term: blast furnace with top gas recycling, bath
smelting, direct reduction, and, electrolysis. These technologies will be investigated further.81 Finally, the spread
of breakthrough technologies are expected to enhance the energy efficiency even further from 2030 to 2040.82
26
GSEP Steel Working Group
3. Japan
3.1. Overview of Action on Energy Saving and Climate Change in Japan
The Japanese government has been promoting energy saving activities since the oil crisis in the 1970’s and
developing plans and laws to tackle climate change since the 1990’s.8384 Meanwhile, the iron and steel industry,
mainly the Japan Iron and Steel Federation (JISF), has developed plans and technologies for energy saving and
GHG emissions reduction.
27
GSEP Steel Working Group
Figure 17. Overview of Japanese Policies and Laws Related to Energy Saving and Climate Change
Year
1970’s 1980’s 1990~
1995~
2000~
2005~
2010~
2015~
2020~
1988~: IPCC
1970’s~80’s: Oil Crisis
●1992: Earth Summit
UNFCC
●1997:COP3 (Kyoto)
Kyoto
Protocol
● 2005:
Kyoto Protocol
Effectuation
業務プロセスフロー (5/5)
2008~2012:
Kyoto Protocol
Commitment Period 1
2013~2020:
Kyoto Protocol
Commitment Period 2
● 2009: COP15 (Copenhagen)
International
Society
● 2010: COP16 (Cancun)
Efforts according to the Cancun Agreement
2020~:
New Framework
● 2011: COP17 (Durban)
ADP
● 2015: COP21(Paris)
 Plans to make an agreement on a new
framework
▼ 1979
▼ 1993
▼ 1997
Energy Saving Act
Enactment
Amendment
Amendment
▼ 2006
▼ 1998
▼ 2002
Act on Promotion of
Global Warming
Countermeasures
Enactment
▼ 1990
▼ 2008
Conclusions of the
new framework from
each country
▼ 2013
Amendment
Amendment
2005 2006
▼ 2008
▼ ▼
Amendment
Amendment
Amendment Amendment
Amendment
1991~2010
Action Program for Prevention of Global Warming
Announcement
▼ 1999
Basic Policies for Global Warming Countermeasures
Announcement
1998
▼ 2002
▼
Japanese
Government
1998~2012
Climate Change New Climate Change
Policy Program
Policy Program
2008
Cabinet Approval
Cabinet Approval 2005 2006
▼
Kyoto Protocol ▼ ▼
Target
2005~2012
Achievement Plan
Revision
Cabinet Approval Revision
 ACE was developed to achieve the goals
that were proposed in Cool Earth 50 as a
new incentive of Japan.
2013
▼
▼2007
Cool Earth 50
Announcement
2013~2050
ACE Announcement
2013 2014 2015
▼ ● ●
ICEF1
ICEF2
ICEF
Announcement
Since the Oil Crisis in 1970’s, the
Japanese iron and steel industry
has been actively developing
energy saving technologies.
2008
▼
1996 1997
▼ ▼
Industry-Wise Voluntary
Action Plans
Announcement
Keidanren Voluntary
Action Plan on the
Environment
Announcement
1996~2012
Base Year Change
(2010⇒avg.2008~2012)
Phase I revision
Phase I
&
Announcement Phase II
2009
2013 Announcement
▼
▼
▼ 2015
Basic Policy of Commitment
to a Low Carbon Society
2013~2020:
(Phase I) Announcement
Commitment to a Low Carbon
Society (Phase I)
Japanese
Private
Sector (JISF)
▼ 2009
ISO14404 Proposal (JISF)
▼ 2013
ISO14404-01 (for BF-BOF)
ISO14404-02 (for EAF)
▼2014
TCLs
2006~2010:
APP Task Force
APP Steel
Task Force
&
GSEP Steel
Working
Group
 The Second ICEP was
held on October 7 and 8
this year.
2010~:
GSEP Steel WG
Worldsteel
2007~:
CO2 Emissions Data Collection
APP Task Force
SOACT
Handbook
■ Law
□ Plan
■ Deliverable
Calculation
method of CO2
emission intensity
from iron and
steel production
(Created by DTC)
28
2020~2030:
Commitment to a
Low Carbon
Society (Phase I)
GSEP Steel Working Group
3.2. Government
The Japanese government has developed several plans overtime to tackle climate change, and the plans were
followed by the latest plan called Actions for Cool Earth (ACE). On the other hand, the government has developed
the Act on the Rational Use of Energy (Energy Saving Act) for energy saving action and Act on Promotion of Global
Warming Countermeasures for action on climate change.
3.2.1.
i.
The National Targets and Plans of Action on Energy Saving and Climate Change in Japan
Kyoto Protocol Target Achievement Plan
The Japanese government has promoted various countermeasure plans for climate change since the 1990’s.
Following previous plans, the Kyoto Protocol Target Achievement Plan was established in 2005 right after the
effectuation of the Kyoto Protocol. The Kyoto Protocol Target Achievement Plan claimed goals and set target GHG
emission amounts for different chemicals and functions of the society in Japan (e.g. industry, household).85 The
following are the goals of the plan.
−
−
Achieving a 6% reduction of GHG emissions within 2008 to 2012 compared to 1990 as it was promised
in the Kyoto Protocol
Contributing to the global reduction of GHG emissions in a long term
(Created by DTC based on Government of Japan. (2008). 京都議定書目標達成計画 [Kyoto Protocol Target Achievement Plan]. Retrieved from
http://www.env.go.jp/earth/ondanka/kptap/plan080328/full.pdf)
ii.
Cool Earth 50
As a post Kyoto Protocol initiative of the Japanese government, in 2007, Prime Minister Abe proposed a strategy
called Cool Earth 50. It suggested setting a global goal of halving GHG emissions of 2007 levels in the world as a
whole by 2050.86 To realize the goal, in 2013, the government announced the ACE, which consists of “innovation
of low carbon technologies,” “application of existing technologies,” and “partnership with various stakeholders.”87
Figure 18. Summary of ACE
Action
Innovation
Application
−
−
−
−
−
Partnership
−
−
−
Summary
Invest USD110 billion into energy and environment over five years
Implement Low Carbon Technology Plan (created to realize the low-carbon society in 2008)
Host an annual innovation forum with the participation of world innovation leaders
Double the number of member countries for the Joint Crediting Mechanisms in the next three
years
Facilitate intentional standardization of low-carbon technologies developed in Japan such as
LED lightings
Launch a satellite to observe GHG emissions in 2017
Invest USD 16 billion in developing countries to support their disaster prevention and private
finance regarding climate change in the next three years (2013-2015)
Lead the international discussion to develop the new international framework against climate
change
(Created by DTC based on ACE: Actions for Cool Earth: Japan’s diplomatic strategy for countering global warming. (n.d.). [PDF document].;
Cabinet Office, Government of Japan. (n.d.). 環境エネルギー技術革新計画 [Low Carbon Technology Plan]. Retrieved from
http://www8.cao.go.jp/cstp/sonota/kankyoene/kankyoene.html; Ministry of Foreign Affairs, Government of Japan, Ministry of Economy, Trade and
Industry, Government of Japan, & Ministry of the Environment, Government of Japan. (2013). ACE(エース):「Actions for Cool Earth(美しい
29
GSEP Steel Working Group
星への行動)」: 攻めの地球温暖化外交戦略 [Ace: “Action for Cool Earth (Actions for Cool Earth)”: Offensive diplomatic strategy regarding
global warming] [PDF document]. Retrieved from http://www.kantei.go.jp/jp/singi/ondanka/kaisai/dai27/siryou2_1.pdf)
In 2013, as part of ACE, the government decided to host Innovation for Cool Earth Forum (ICEF) annually.88
ICEF aims to use innovation to address climate change by investigating “what innovative measures should be
developed, how the innovation should be promoted, and how cooperation should be enhanced among the
stakeholders.”89 The forum has been successfully held twice so far.9091 The latest ICEF was held on October 7 and
8, 2015, welcoming approximately 1,000 experts from all over the world.92
3.2.2.
Legal Measures to Support the National Targets and Plans
In Japan, the Energy Saving Act is the main legal function to facilitate energy saving efforts, and the Act on
Promotion of Global Warming Countermeasures is the one to facilitate action on climate change. While the Energy
Saving Act is not based on any particular master plan, the Act on Promotion of Global Warming Countermeasures
plays a role to support national plans. Both of them are recognized as the most fundamental laws in Japan for action
on energy saving and climate change respectively.
i.
Act on the Rational Use of Energy (Energy Saving Act)
The Japanese government’s main policy for energy saving is the Energy Saving Act, which was enacted in 1979
during the oil crisis.93
The purpose of the Act is “with the aim to contribute to securing the effective utilization of fuel resources
according to the economic and social environment concerning energy in and outside Japan, to take the measures
required for the rational use of energy with regard to factories, etc., transportation, buildings, and machinery and
equipment as well as other necessary measures, etc. for comprehensively promoting the rational use of energy,
thereby contributing to the sound development of the national economy.”94
For example, the Energy Saving Act adopted a regulation for plants as described below.
Figure 19. Summary of the Energy Saving Act’s Regulation for Plants
Target
Companies which use more than 1,500kg of energy (in a crude oil
equivalent) per year
Requirement
−
File an energy consumption report and get recognized as specified
business operators or specified chain business operators
−
Appoint Energy Management Control Officer and Energy
Management Planning Promoter and report any appointments and
dismissals of Energy Managers
−
Submit periodical reports and medium and long-term plans
Penalty
A fine can be imposed to companies in the case of failed or false
reporting and rejection of inspection.
(Created by DTC based on Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry, Government of Japan. (2014). エネ
ルギーの使用の合理化等に関する法律: 省エネ法の概要 [Act on the Rational Use of Energy: Summary of Energy Saving Act]. Retrieved from
30
GSEP Steel Working Group
http://www.enecho.meti.go.jp/category/saving_and_new/saving/summary/pdf/2014_gaiyo.pdf).
ii.
Act on Promotion of Global Warming Countermeasures
Act on Promotion of Global Warming Countermeasures was enacted in 1998 as the first step of global warming
countermeasures in Japan in response to the adoption of the Kyoto Protocol in 1997. It sets a framework under
which the national government, local governments, businesses, and citizens can take action to tackle global warming
all together. In 2005, when the Kyoto Protocol came into effect, the law was amended to introduce the system of
GHG emissions calculation, reporting, and announcement. In the system, large GHG emitters have to calculate and
report their emission amounts to the national government, and the government collects and announces the result to
the public.95 The summary of the reporting rule of the system is below.
Figure 20. Summary of the GHG Emissions Reporting Rule
under the Act on Promotion of Global Warming Countermeasures
Target GHG
Target Emitter
(“Specified
Emitter”)
Requirement
Penalty
Energy-originated CO2
Non energy-oriented CO2, CH4, N2O, HFC,
PFC, and SF6
Parties which use more than 1,500kl of energy Either of parties which:
(in a crude oil equivalent) per year
emit more than 3,000t of a target GHG (in a
CO2 equivalent) per year
use always 21 employees or more
“Specified emitters” have to report the GHG emission amounts etc. every fiscal year to the
minister who has jurisdiction over the business.
A fine can be imposed to specified emitters in the case of failed or false reporting.
(Created by DTC based on The Ministry of the Environment, Government of Japan., & Ministry of Economy, Trade and Industry, Government of
Japan. (2015). 地球温暖化対策の推進に関する法律に基づく温室効果ガス排出量算定・報告・公表制度による平成 24(2012)年度温室
効果ガス排出量の集計結果 [Collected results of GHG emissions in 2012 with the system of GHS emissions calculation, reporting, and
announcement based on the Act on Promotion of Global Warming Countermeasures]. Retrieved from https://www.env.go.jp/press/files/jp/27440.pdf;
Ministry of Justice, Government of Japan. (2009). 地球温暖化対策の推進に関する法律: Act on Promotion of Global Warming Countermeasures
[Act on Promotion of Global Warming Countermeasures: Act on Promotion of Global Warming Countermeasures]. Retrieved from
http://www.japaneselawtranslation.go.jp/law/detail/?ft=1&re=01&dn=1&co=01&ia=03&x=0&y=0&ky=%E5%9C%B0%E7%90%83%E6%B8%A9
%E6%9A%96%E5%8C%96&page=13)
3.2.3.
Emissions Reduction Target toward 2030
Japan submitted the INDC to UNFCCC in July 2015.96 The GHG emissions reduction target is “at the level of
a reduction of 26.0% by fiscal year (FY) 2030 compared to FY 2013.”97 To achieve the target, Japan prepared
measures for the following areas.
−
−
−
−
Energy-originated CO2 from: the industry sector, commercial and other sectors, residential sector,
transport sector, energy conversion sector
Non energy-oriented CO2, CH4, and N2O
Fluorinated gases
The land use, land-use change and forestry sector
(Created by DTC based on Japan. (2015). Submission of Japan’s Intended Nationally Determined Contribution (INDC). Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/Japan/1/20150717_Japan's%20INDC.pdf)
31
GSEP Steel Working Group
3.3. Iron and Steel Industry
3.3.1.
i.
Voluntary Action on Energy Saving and Climate Change
Voluntary Action Plan and Commitment to a Low Carbon Society
The energy saving history of the Japanese iron and steel industry dates back to the 1970’s.98 The two oil crises
in the 1970’s made the Japanese iron and steel industry realize the importance of energy conservation. It has thus
invested proactively in developing and adopting energy saving technologies, especially through the industrygovernment-academia collaboration.99
For energy saving and environmental technologies, the Japanese iron and steel industry invested ¥3 trillion and
achieved 20% energy saving between 1971 and 1989. From 1990 to 2012, ¥1.8 trillion was invested to achieve
12% energy saving.100
In order to address energy saving as the whole Japanese iron and steel industry, JISF has settled several voluntary
targets to reduce energy consumption and CO2 emissions since the 1990’s. In 1997, as a master plan of the iron and
steel industry, JISF announced the Voluntary Action Plan under the Keidanren Voluntary Action Plan on the
Environment. The Keidanren Voluntary Action Plan on the Environment was developed by Keidanren, the Japan
Business Federation, based on the voluntary action plans of 36 industry sectors.101 The action plans adopted the
Plan Do-Check-Act (PDCA) cycle in the system in which industries kept improving their plans based on annual
public reviews.102103 Also, the Japanese government (Ministry of Economy, Trade and Industry (METI) since 1998
and Ministry of the Environment since 2007) participated in the reviewing process for each industry’s progress in
order to increase the transparency, credibility, and probability of the voluntary plans.104 The government recognized
the Keidanren Voluntary Action Plan on the Environment as one of the major pillars for global warming
countermeasures in the industry field.105
Under the Keidanren Voluntary Action Plan on the Environment, 34 industries were committed to the target of
reducing the average GHG emissions of 2008 to 2012 less than 1990 levels. The target was met with the GHG
emissions cut by 12.1% from 1990 levels.106
In 2012, Keidanren announced a new action plan called Keidanren’s Commitment to a Low Carbon Society. The
plan targets 2013 to 2020 based on the long-term vision of contributing technologies of the Japanese industries for
the target of halving the world GHG emissions by 2050. As a successor of the Keidanren Voluntary Action Plan on
the Environment, the plan expands the focus to the international GHG emissions reduction.107 Also, it strengthens
the PDCA cycle with the reviews from the third party, including the government.108 Keidanren recently announced
the second phase of the plan targeting 2020 to 2030.109 JISF has been developing plans as one of the participant
industries in both first and second phases of the Keidanren’s Commitment to a Low Carbon Society.110111
Throughout the Voluntary Action Plan (2008-2012) and the first and second phase of Commitment to a Low
Carbon Society (2013-2020; 2020-2030), JISF has set goals for three major activities: Eco Process (“efficiency
improvement of production process”), Eco Solution (“global contribution from the use of energy conservation
technologies and equipment”), and Eco Product (“contribution from use of high-grade steel in finished products”).112
In addition, as long-term efforts, JISF has set goals for activities to develop innovative technologies such as
COURSE50 and ferro coke.113 Summaries of the Voluntary Action Plan and Commitment to a Low Carbon Society
Phase I and II are below.
32
GSEP Steel Working Group
Figure 21. Summary of JISF’s Voluntary Action Plan
Voluntary Action Plan (2008~2012)
• JISF set a voluntary target to reduce energy consumption by 10% as 2008-2012
average compared to 1990 (Eco Process).
• Participation: 85 steel companies = 97% of crude steel production in Japan
• Achieved 10.7% reduction in total energy consumption as 2008-2012 average
compared with 1990.
Total Energy Consumption in the Japanese
Steel Industry*
Target
(FY)
Clued steel
Unit Energy Consumption*
(Based on FY1990)
FY 12
-8.0%
Avg.FY8-12
91.8 (-8.2)
(FY)
*Conversion factor of electricity is calculated as generating end.
(Created by DTC based on Fujimoto, K. (2015). Current status and future prospect of Japanese steel industry [PowerPoint slides].)
33
GSEP Steel Working Group
Figure 22. Summary of JISF’s Commitment to a Low Carbon Society
JISF’s Commitment to a Low Carbon Society
(Phase I: 2013~2020, Phase II: 2020~2030)
Short-Term Plan
(Toward 2020 for Phase I and 2030 for Phase II)
Eco Process
Target CO2 reduction vs. BAU emission
Phase I: 5 million-tons
Phase II: 9 million-tons
Eco Solution
Eco Product
Target CO2 reduction
Target CO2 reduction
Phase I: 70 million-tons
(Actual ⇒ 50 million-tons)
Phase II: 80 million-tons
Phase I: 34 million-tons
(Actual ⇒ 26 million-tons)
Phase II: 42 million-tons
Long-Term Plan
Development of:
 COURSE50 (from Phase I): 30% cut of CO2 emissions from production processes;
operations by 2030; widespread use of these processes by 2050
 Ferro Coke (from Phase II)
(Created by DTC based on the Japan Iron and Steel Federation. (2015). Steel industry measures to combat global warming: Report of “Commitment
to a Low Carbon Society” [PDF document]. Retrieved from
http://www.jisf.or.jp/en/activity/climate/documents/Reportofcommitmenttoalowcarbonsociety.pdf; the Japan Iron and Steel Federation. (2014).
Overview of energy saving activities in Japanese steel industry and ISO14404 [PowerPoint slides].)
ii.
ISO14404
Along with developing the Voluntary Action Plan and the Commitment to a Low Carbon Society and putting
them into practice, JISF has developed tools for an energy management system by collaborating with global
initiatives. The tools can increase the energy efficiency in iron and steel production. ISO14404 is a calculation
method of CO2/energy intensity of iron and steel production. Indexes to evaluate energy efficiency in the iron and
steel industry had been discussed among multiple countries for years. APP, in which Australia, China, India, Japan,
Korea, and the US participated, developed an evaluation method for energy intensity in plants as a sectorial approach
for climate change.114 By applying the APP method, World Steel Association has been managing the “CO2 Data
Collection” which collects and analyzes energy data of steel companies since 2007.115116 ISO14404 was developed
based on such methods and efforts in a way that the calculation becomes simpler and more versatile. JISF took the
leadership to develop an international standard to calculate CO2/energy intensity, and ISO14404-01 (for BF-BOF)
and ISO14404-02 (for EAF) were officially published as ISO standards in 2013.117
34
GSEP Steel Working Group
Figure 23. Development Process of ISO14404
ISO14404, simple and more versatile
analytical tool for emission and energy
intensity, was developed.
World Steel has been managing the “CO2
Data Collection” based on APP method.
APP has developed an evaluation method for
energy intensity in plants as a sectorial
approach for global warming countermeasures.
(Created by DTC based on Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度 エネルギー使用合理化国際標
準化推進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方法)に
関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international standardization promotion project
(Joint research and development and foundation development project for dissemination of energy-saving international standards: Foundation
development for dissemination regrading to ISO14404 (calculation method of CO2 emissions amount and intensity)): Research report].)
ISO14404 enables steel plants in the world to evaluate CO2 intensity by a universally common indicator and
thereby contributes to CO2 emissions reduction globally. Users are allowed to apply their own conversion factors
if they are credible.
ISO14404 defines the whole steel plant as the CO2 emission boundary. This type of boundary enables users to
assess CO2 performance regardless of the configuration of the site. Steel production processes are comprised of a
lot of processes and include energy interchanges among the facilities in the site. In order to optimize the energy use
in the site, it is crucial to manage and evaluate the energy use as a whole steel plant, not by a process-by-process
basis.
Figure 24. Boundary Approach of ISO14404
(Extracted from Kitaguchi, H. (2015). ISO14404: Calculation methodology for energy consumption and CO2 emission from a steel plant
[PowerPoint slides], p. 3.)
The calculation does not require any measurement hardware. Instead, ISO14404 simply requires three kinds of
35
GSEP Steel Working Group
data that all the steel companies record regularly:
−
−
−
Input CO2: CO2 emissions that arise from energy source or materials which are supplied to the steel plant
Output CO2: CO2 emissions that correspond to exported material and electricity or steam
Crude steel production data
CO2 emissions are calculated by multiplying energy consumption by CO2 emissions factors. By subtracting
output CO2 from input CO2, the total CO2 emissions in a whole plant are calculated. CO2 intensity is calculated
by dividing the total CO2 emissions by crude steel production.
Energy conversion factors are also available to calculate total energy consumption and energy intensity.
Figure 25. Calculation Formula of ISO14404
ISO14404 provides default conversion factors for each CO2 emission source. For electricity, ISO14404 applies
a conversion factor that is equivalent to the world average electricity since CO2 emissions factors of electricity
depend on power supply composition of the area, which is not directly related to energy saving activities of the
plant.
ISO14404 applies three types of CO2 emission sources – direct, credit, and upstream. Direct emissions are CO2
emissions from carbon contents of the emission sources. Credit emissions are CO2 emissions of sold materials,
which will be exempted from the total CO2 emissions. ISO14404 also calculates CO2 emissions used to produce
purchased materials, such as coke, oxygen etc. as “upstream emission.” By applying upstream emission, CO2
intensity relating to steel production is accurately evaluated regardless of quality of low material or site
configuration, for example whether the plant owns oxygen plant or purchase oxygen.
36
GSEP Steel Working Group
Figure 26. Upstream Concept of ISO14404
B: Outsource the
oxygen production
A: Oxygen Plant locates
inside the steel plant
Direct
Emission
Direct
Emission
CO2
Upstream
Emission
Steel Plant
Oxyg
en
Oxygen
Plant
CO2
Electric
Arc
Furnace
Oxygen
Oxygen
Plant
Electricity
CO2
Steel Plant
Electric
Arc
Furnace
Electricity
CO2
=
CO2
+
CO2
(Extracted from Kitaguchi, H. (2015). ISO14404: Calculation methodology for energy consumption and CO2 emission from a steel plant [PowerPoint
slides], p. 6.)
Once steel plants adopt ISO14404, plants will be able to regularly review the energy saving condition and
thereby establish an energy management structure.
In addition, by combining ISO and technology references that illustrate reduction potential of energy saving
technologies, steel plants will be able to simulate energy saving potential of technology introduction.
iii.
Technologies Customized List (TCL)
JISF has been actively involved in the development of TCL, a “technology reference of energy saving
technologies suitable for each country/region,” with METI.118119 Experienced experts compile the list with affluent
research and include technologies for energy saving, environmental protection, and recycling. TCLs are customized
for each country as well.120 TCLs for ASEAN countries were created in ASEAN Japan Steel Initiative, which JISF
participates. Also, a TCL for India was created in the Public and Private Collaborative Meeting between Indian and
Japanese Iron and Steel Industry with a collaborative effort of the Japanese and Indian iron and steel industries.
JISF suggests that more efficient and cost competitive steel production processes can be realized by applying
ISO14404 as software and TCL as hardware to the PDCA framework and facilitating self-improvement of steel
plants. JISF tries to contribute to sound and sustainable growth of the global steel market by promoting this general
approach to other countries.121
37
GSEP Steel Working Group
Figure 27. PDCA Framework with ISO14404 and TCL
(Extracted from Kitaguchi, H. (2015). ISO14404: Calculation methodology for energy consumption and CO2 emission from a steel plant [PowerPoint
slides], p. 6.)
Under the sponsorship of METI, JISF has been introducing an energy management method using ISO14404 to
the iron and steel industry in India and ASEAN countries since the 2010’s. Japanese experts demonstrate how to
use ISO14404 by using the original data of each plant. In addition, experts conduct plant diagnosis to find
opportunities for energy saving and recommend several energy efficient technologies.
3.3.2.
The Status of Energy Saving Technology Implementation
As mentioned earlier, the Japanese iron and steel industry has been making significant investment in energy
saving technologies and introducing them since the oil crisis in the 1970’s. As a result, the current utilization rates
of major energy saving technologies are almost 100% as shown below.122
38
GSEP Steel Working Group
Figure 28. Utilization Rates of Major Energy Conservation Equipment in the Japanese Iron and Steel Industry
(%) 100
80
60
40
20
0
Continuous
Coke Oven Converter Gas Coke Dry
Casting
Gas Recovery Recovery
Quenching
(CDQ)
Top Pressure
Recovery
Turbine (TRT)
(Figure created by DTC, Data by the Japan Iron and Steel Federation.)
In addition, according to the questionnaire that was distributed to JISF based on the agreement made in the GSEP
Steel WG last year, the following technologies have been commonly installed and actively used in the Japanese iron
and steel industry. They are considered to be significantly effective for energy conservation and environmental
protection.123
Figure 29. Commonly Installed and Actively Used Energy Saving Technologies
in the Japanese Iron and Steel Industry
Technology
Coke Dry Quenching*1
Coal Moisture Control
Top Pressure Recovery Turbine
Pulverized Coal Injection System
Regenerative Burner Total System for
reheating furnace*2
Energy Monitoring and Management
Systems
Cogeneration (include Gas Turbine
Combined Cycle)*3
Description
The heat recovered by inert gas is used to produce steam, which may be
used on-site or to generate electricity.
Coal moisture control uses the waste heat from the coke oven gas to dry
the coal used for coke making.
This system generates electric power by employing blast furnace top gas
to drive a turbinegenerator.
This system comprises a technology and equipment for injecting
pulverized coal directly through the blast furnace tuyeres as a partial
substitute for the coke used in the blast furnace.
A unit, Burner with Regenerator, ensures highly efficient and selectable
thermal storage.
This measure includes site energy management systems for optimal energy
recovery and distribution between various processes and plants.
This equipment is a high-efficiency (47.5%, HHV Base) combined
generator set using the by-product gas produced during iron and steel
manufacturing process as the fuel.
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.; the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014).
Technologies Customized List & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-
39
GSEP Steel Working Group
saving and environmental protection.)
Figure 30. (*1) Illustration of Coke Dry Quenching
(Extracted from the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies customized
list & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-saving and environmental
protection.)
Figure 31. (*2) Illustration of Regenerative Burner Total System for Reheating Furnace
(Extracted from the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies customized
list & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-saving and environmental
protection.)
40
GSEP Steel Working Group
Figure 32. (*3) Illustration of Cogeneration (Include Gas Turbine Combined Cycle (GTCC))
(Extracted from the Public and Private Collaborative Meeting between Indian and Japanese Iron and Steel Industry. (2014). Technologies customized
list & technologies one by one sheets ver.2 for technology transfer to Indian iron and steel industry with regard to energy-saving and environmental
protection.)
41
GSEP Steel Working Group
4. People’s Republic of China (China)
4.1. Overview of Action on Energy Saving and Climate Change in China
China attaches high importance to addressing climate change. China has been one of the countries to formulate
and implement a national climate change program. Recently, China adopted the National Plan on Climate Change
for 2014-2020 to make sure that it meets the target of cutting carbon intensity by 40% to 45% by 2020 from 2005
levels.
In 2013, carbon intensity in China was down by 28.5% from 2005 levels. That was equivalent to a reduction of
2.5 billion tons of CO2 emissions. In terms of the iron and steel industry, between 2006 and 2013, China made a
huge amount of backward production capacity.
China’s recent energy saving and climate change policies and activities are basically defined and directed in the
12th Five-Year Plan for National Economic and Social Development and its associated plans as well as the recently
adopted national master plan, the National Plan on Climate Change for 2014-2020.
Meanwhile, as legally binding measures, China has adopted the Law of the People’s Republic of China on Energy
Conservation in 1997 and Renewable Energy Law of the People’s Republic of China in 2005.
Figure 33 shows the overview of Chinese policies and laws related to energy saving and climate change.
Figure 33. Overview of Chinese Policies and Laws Related to Energy Saving and Climate Change
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
Law of the People's Republic of China on Energy Conservation
(Adopted in 1997 and Amended in 2007)
Amen
ded
Laws and
Regulations
Renewable Energy Law of the People's Republic of China
(Adopted in 2005 and Amended in 2009)
Amen
ded
National
Development
Plan
Climate
Change
Policies
The 12th Five-Year Plan for National
Economic and Social Development
The 11th Five Year Plan for National
Economic and Social Development
China’s National Climate Change
Programme
The 13th-Five Year Plan for National
Economic and Social Development
China’s National Plan on Climate Change for 2014-2020
The Work Plan for Controlling Greenhouse
Gas Emissions During the 12th Five-Year
Plan Period
The Comprehensive Work Plan for Energy
Conservation and Emission Reduction During
the 12th Five-Year Plan Period
Climate
Change &
Energy Saving
policies
The 2014-2015 Action Plan
for Energy Conservation,
Emissions Reduction and Low
Carbon Development
Energy Development Plan of the 12th Five Year
Plan
Energy Development Strategy Action Plan
Energy Saving
Policies
Action Plan on Clean and Highly Efficient Use of Coal
Top-1,000 Energy-Consuming Enterprises
Program
Top-10,000 Energy-Consuming Enterprises
Program
Medium and Long-Term Development Plan for Renewable Energy in China
Industrial
Policies
The Plan for Industrial Transformation and
Upgrading (2011-2015)
Blueprint for the Adjustment and
Revitalization of the Steel Industry
42
2021~
GSEP Steel Working Group
4.2. Government
4.2.1.
i.
The National Targets and Plans of Action on Energy Saving and Climate Change in China
12th Five-Year Plan for National Economic and Social Development (12th Five-Year Plan)
The 12th Five Year Plan was adopted in the 11th National People's Congress fourth meeting which was held in
March 2011, and it was valid from 2011 until 2015. This plan aimed at solving issues being left as the result of the
11th Five Year Plan for National Economic and Social Development (2006-2010) (11th Five-Year Plan).
In particular, the following are the issues mentioned in the plan.
−
−
−
The increasing income gap between urban areas and rural areas
The critical state of economical sustainability resulting from waste of resources and environmental
destruction
Obstruction of domestic demand expansion due to a higher rate of savings (51.3% in 2008; world average
is 19.7%) caused by the unsatisfactory social security system
(Created by DTC based on Mitsui Global Strategic Studies Institute. (2011). 世界・地域分析レポート [World and region analysis report].
Retrieved from http://mitsui.mgssi.com/issues/report/r1104c_baatarkimura.pdf)
To address those issues, in the 12th Fiver Year Plan, the government of China upheld a transformation of the
economic development model by “Expansion of domestic demand” and “structural adjustment”. This policy meant
that China was heading for a shift from investment-led growth to consumption-led growth.124
As the specific economic growth target, the government of China set a 7.0% of average GDP growth rate during
the 12th Five Year Plan period (2011-2015).
The contents of the 12th Five Year Plan are shown below.
Figure 34. Contents of the 12th Five Year Plan
Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7
Part 8
Part 9
Part 10
Part 11
Part 12
Part 13
Part 14
Part 15
Part 16
Contents
Transforming growth pattern, create a new scenario for scientific development
Strengthen and benefit the farmers, accelerating the construction of socialist new
Transformation and upgrading, enhancing the competitiveness of industrial core
Creating the environment necessary for extensive development in the services industry
Optimizing the structure, accelerating the coordinated regional development and sound
urbanization development
Green development, construct energy conservation and environment friendly society
Innovation driven, implementing the strategy of reinvigorating the country through
science and education and the strategy of strengthening the country through human
resource development
Improve people's wellbeing, establish and improve basic public service system
Cure the symptoms and the roots, strengthen and innovate social management
Inherit and innovate, promoting the big development and prosperous of culture
Reform in difficult areas, improving socialism institution of market economy
Mutual beneficial and win-win, improving the opening up
Develop democracy; promote the construction of socialism political civilization
Deepen cooperation; construct the common homeland for Chinese nation
Civil-military integration, strengthen the construction of national defense and army
modernization
Strengthen implementation, achieve the grand development blueprint
43
GSEP Steel Working Group
In regard to energy saving, a specific energy saving goal was mentioned in Chapter.3 of Part1. The target was
being set based on the target average GDP growth rate during 2011-2015 (7.0%).
Figure 35. Energy Saving Target in the 12th Five Year Plan
Target
2010
Farmland reserves (billion mu)
2015
1818
Decrease in water consumption per unit of value-added
industrial output (%)
1818
-
Change over
Forecast/binding
5 years (%)
0
binding
30
binding
Increase of water efficiency coefficient in aguricultural
irrigation
0.5
0.53
0.03
forecast
Increase of non-fossil fuel usage in primary energy
consumption (%)
8.3
11.4
3.1
binding
Decrease in energy consumption per unit of GDP (%)
-
-
16
binding
Decrease in CO2 emissions per unit of GDP (%)
Chemical Oxygen Demand
(COD)
Total decrease in emissions Sulphur Dioxide (SO2)
of major pollutants (%)
Ammonia Nitrogen
-
-
17
binding
-
-
8
-
-
8
-
-
10
-
-
10
Nitrous Oxides
Forest Increase
Forest coverage rate (%)
3
Forest stock (m )
20.36
21.66
1.3
137
143
6
binding
binding
(Created by DTC based on the 12th Five Year Plan)
13th Five-Year Plan for National Economic and Social Development will be issued in March 2016.125
ii.
Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year Plan
Period
On August 31, 2011, China’s State Council released the Comprehensive Work Plan for Energy Conservation and
Emission Reduction During the 12th Five-Year Plan Period. While energy saving targets and emissions reduction
targets for major pollutants were mentioned in the 12th Five-Year Plan, the Comprehensive Work Plan for Energy
Conservation and Emission Reduction During the 12th Five-Year Plan Period defined the following targets for the
local governments.
−
−
−
−
Energy saving targets
Chemical Oxygen Demand emissions reduction target
NH3 emissions reduction targets
SO2 emissions reduction targets
NO emissions reduction targets
−
(Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-2: Energy and carbon intensity targets of the 12th Five Year Plan.
Retrieved from http://iepd.iipnetwork.org/policy/energy-and-carbon-intensity-targets-12th-five-year-plan)
The Comprehensive Work Plan for Energy Conservation and Emission Reduction During the 12th Five-Year
44
GSEP Steel Working Group
Plan Period consisted of twelve chapters which described overall requirements and major objectives of the plan
and main measures for promoting energy saving and pollutants emissions reduction in China. The overview of the
plan is shown in Figure 36.
Figure 36. Overview of the Comprehensive Work Plan for Energy Conservation and Emission Reduction
During the 12th Five-Year Plan Period
1
Main Contents
Overall requirements and main targets
2
Enhancement of energy saving/emissions reduction target responsibilities
3
Optimization of industrial structure
4
Implementation of energy saving/emissions reduction important projects
5
Enhancement of energy saving/emissions reduction management
For the iron and steel industry:
− Thoroughly applying stack gas desulfurization of sintering machines
− Attaching Desulfurization/Denitration Apparatus to all newly placed sintering
machines
Acceleration of recycling economic system development
6
7
8
9
10
11
12
Acceleration of energy saving/emissions reduction technologies development and
application and diffusion
Provision of economic policies for energy saving/emissions reduction
Enhancement of monitoring and inspection of energy saving/emissions reduction
progress
Dissemination of market mechanism in energy saving/emissions reduction field
Improvement of fundamental work and capacity building for energy saving/emissions
reduction
Promotion of entire society’s participation to energy saving/emissions reduction
(Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-2:Energy and Carbon Intensity Targets of the 12th Five Year Plan.
Retrieved from http://iepd.iipnetwork.org/policy/energy-and-carbon-intensity-targets-12th-five-year-plan etc.)
iii.
Energy Development Plan of the 12th Five Year Plan
On January 1, 2013, the Energy Development Plan of the 12th Five Year Plan was released by China’s State
Council with the focus on energy supply in China. The plan aimed to develop the Chinese energy supply system
into the one with more security and environmental considerations. Emerging international and domestic concerns
regarding energy supply were addressed in the plan as shown in Figure 37.
45
GSEP Steel Working Group
Figure 37. Major Concerns Addressed in the Energy Development Plan of the 12th Five Year Plan
Major Concerns Addressed in the Plan
International

Increasing international competition
for energy resources

Major shifts in energy supply
globally

The maintained or increasing
volatility of energy markets

The “complex game” of climate
change
Domestic

A difficult energy security situation
(57% reliance on foreign oil),
whereby national production will be
difficult to increase

Increasing pressure on the ecological
environment, including air, land, and
water resources

A continued state of economic
development

A lagging energy infrastructure

Lack of energy innovation

Institutional constraints becoming
increasingly apparent, highlighting
the need for deepened reform in the
energy industry
(Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-6:Energy Development Plan of the 12th Five Year Plan. Retrieved from
http://iepd.iipnetwork.org/policy/energy-development-plan-12th-five-year-plan)
Based on these concerns in mind, the plan also mentioned principles and goals. For principles, the plan
prioritized the following.
−
−
−
−
−
−
−
Energy conservation
Reduce reliance on foreign energy supply as much as possible
Diversify development of energy supply sources
Emphasize environmental protection
Deepen the reform of energy pricing and market mechanisms
Increase innovation and international cooperation
Improve people’s livelihoods
(Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-6:Energy Development Plan of the 12th Five Year Plan. Retrieved from
http://iepd.iipnetwork.org/policy/energy-development-plan-12th-five-year-plan)
Also the plan set high level binding goals such as the following.
−
−
−
−
Energy intensity
Carbon intensity
Non-fossil fuel energy
Coal-fired power emissions index targets
(Created by DTC based on the Institute for Industrial Productivity. (n.d.). CN-6:Energy Development Plan of the 12th Five Year Plan. Retrieved from
http://iepd.iipnetwork.org/policy/energy-development-plan-12th-five-year-plan)
46
GSEP Steel Working Group
iv.
Top-10,000 Energy-Consuming Enterprises Program
The Top-10,000 Energy-Consuming Enterprises Program was a mandatory program to target on 250Mtce energy
saving by 2015, focusing on largest energy consuming enterprises in China. The program was a successor of Top1,000 Energy-Consuming Enterprises Program which had been conducted during the 11th Five-Year Plan period and
achieved 150Mtce against the original target of 100Mtce. Figure 38 illustrates the transition between the two
programs. Among Top-1,000 enterprises, the majority were from the iron and steel and chemical industries. Also,
the iron and steel enterprises accounted for a large amount of the energy consumption. The overview of the program
is shown in Figure 39.
Figure 38. Transition from the Top 1,000 Energy Consuming Enterprises Program to
the Top 10,000 Energy-Consuming Enterprises Program
The 11th Five Year Plan
Gradually
expanded at
the local level
during 11th
FYP
The 12th Five Year Plan
 Covers total 17,000 companies including
(≒2/3 of China’s total energy consumption);
− more than 15,000 industrial enterprises
using more than 10,000 tce/y
− about 160 large transportation enterprises
− public buildings using more than 5,000
tce/y
 Targeting largest
1,000 companies
Energy
saving target:
of the
Program:
250 Mtce
 Achieve 150 Mtce
energy saving
against original
target of 100 Mtce.
Top 1,000 EnergyConsuming
Enterprises Program
37% of China’s
total energy
saving target of
670 Mtce by
2015
Top 10,000 Energy-Consuming
Enterprises Program
47
GSEP Steel Working Group
Figure 39. Overview of the Top 10,000 Energy-Consuming Enterprises Program
Mandatory system of
the Program
Evaluation of the
progress by local
governments
Publicize the results
If enterprises do not
meet the target…
Local governments are
authorized to supervise;
− the progress of local
Enterprises, and
− centrally owned StateOwned Enterprises
• Mandatory energy
audits will be
conducted
• Adjustment/retrofits
will be required
Key elements of the
Program
 Establishment of energy audit systems
 Implementation of the target responsibility and accounting system,
allocating targets to companies, plants and workshops
 Conducting energy audits and developing energy conservation plans,
based on the Technical Principle of Energy Audits in Enterprises
 Implementation of energy audit systems
 Conducting energy efficiency benchmarking
 Establishment of energy management systems following China’s
energy management standard
 Expansion of the energy managers training pilots
 Implementation of energy utilization reporting system
 Continuation of phasing-out of backward technologies
 Acceleration of energy conservation retrofits by allocating special
funding for annual retrofits and cooperating with Energy Service
Companies (ESCOs)
 Improvement of energy measurement and measuring instrument,
encouraging companies to build energy management and control
centers and to use automation and IT
 Establishment of energy conservation incentive mechanisms
48
GSEP Steel Working Group
v.
Work Plan for Controlling Greenhouse Gas Emissions during the 12th Five-Year Plan Period
The Work Plan for Controlling Greenhouse Gas Emissions during the 12th Five-Year Plan Period was adopted
by China’s State Council in December 2011. This plan aimed at realizing the target for reducing CO2 emissions per
unit of GDP by 17% by 2015 from 2010 levels by engaging in the following activities and measures;
−
−
−
−
−
−
−
vi.
Controlling CO2 emissions in non-energy activities
Controlling the emissions of GHGs such as methane, nitrous oxide, HFCs, perfluorocarbon and sulfur
hexafluoride
Improve climate change policy systems and mechanisms, basically establish systems for the statistical
accounting of GHG emissions
Gradually create a carbon emission trading market
Form a group of low carbon provinces
Establish a group of model low carbon parks and communities
Popularize numerous low carbon technologies and products with sound emissions reduction effects
China's National Plan on Climate Change for 2014-2020
China’s National Plan on Climate Change for 2014-2020 was released by China’s National Development and
Reform Commission in November 2014. This plan outlines China’s goals related to GHG emissions, climate change
adaptability, and a national emission trading scheme among others. A noteworthy fact is that the plan insists that the
total GHG emissions from the steel and cement sectors should stabilize at 2015 levels by 2020. This is because the
emissions from Chinese steel and cement producers currently make up about 20% of the country’s total CO2
emissions and therefore the progress in those industries would have a huge impact on CO2 emissions reduction.
However, at same time, it is not clear how emissions reduction in the steel and construction sectors will be realized
or what will happen in case those industries fail to stabilize the GHG emissions by 2020.
vii.
Action Plan on Clean and Highly Efficient Use of Coal
The Action Plan on Clean and Highly Efficient Use of Coal was released by China’s National Energy
Administration in May 2015. It provides detailed action plans to address the coal quality upgrading, retrofitting of
coal-fired thermal plants, industrial boilers, coal chemical operations, and the scattered use of coal for residential
purposes.126
49
GSEP Steel Working Group
Figure 40. Overview of the Action Plan on Clean and Highly Efficient Use of Coal
Pillars of
“Action Plan on Clean and Highly Efficient
Use of Coal”
Coal upgrading
Thermal plants & boilers
retrofitting
Coal chemicals upgrading
Residential coal use
Wastes
 More than 70% of the raw coal will be washed in China by 2017, and over 80% by 2020.
 By 2020, China will have 11 large coal storage and blending bases and 30 coal logistics parks each with
annual circulation at 20 million tonnes or above.
 Breakthrough should be achieved in low-rank coal upgrading technology by 2017 and a group of 1 Mtpa
demonstration projects will be built by 2020.
 Coal used by power generation should account for over 60% of the country’s total coal consumption.
 For industrial boilers, by 2020, China will phase out all the coal-fired boilers with capacity of 600,000 T/h.
 Under the action plan, coal-fired industrial boilers will all shift to burn natural gas or clean coal by 2020 in the
Beijing-Tianjin-Hebei city clusters, Pearl River delta and Yangtze River delta area.
 Efficient utilization of coke oven gas, coal tar and other by products.
 Steadily advance modern coal chemical operations through demonstration projects to improve the
technological level and energy conversion efficiency.




Expanding bans on coal burning to include suburban areas.
Promote centralized heating and power supply by natural gas and renewables.
Bans of sale and burning of high-ash coal and high-sulphur coal in the worst affected regions.
Cut coal consumption by over 80 million tonnes by 2017 and more than 160 million tonnes by 2020.
 By 2020, more than 80% of coal gangue should be utilized comprehensively; coal mine gas extraction and
utilization reaches 60%.
(Created by DTC based on China Coal Resource. (2015). China releases clean coal action plan 2015-2020. H. Huo (Ed.). Retrieved from
http://en.sxcoal.com/117736/NewsShow.html)
4.2.2.
Legal Measures to Support the National Targets and Plans
In China, two major laws regarding energy issues (the Law of the People's Republic of China on Energy
Conservation and Renewable Energy Law of the People's Republic of China) were adopted and became the
foundation of other policies and activities in the energy saving sphere.
i.
Law of the People's Republic of China on Energy Conservation
The Law of the People's Republic of China on Energy Conservation was adopted in the 8th National People's
Congress twenty-eighth meeting which was held in November 1997. It was modified in the 10th National People’s
Congress thirtieth meeting which was held in October 2007. The current law was enforced in April 2008. After the
amendment in October 2007, the law became the groundwork for other various policies and activities to promote
GHG emissions reduction and energy saving and develop renewable energy. The overview of the law is shown in
Figure 41.
50
GSEP Steel Working Group
Figure 41. Overview of the Law of the People's Republic of China on Energy Conservation
The law is about;
−
−
−
−
Energy management
Efficient energy use
Development of energy saving technologies
Legal responsibilities regarding energy saving
The law defines and sets;
−
−
−
−
Promotion of energy saving in energy field such as coal and power sector
Acceleration of investment into highly efficient projects
Growing specialists in energy field
Promotion of energy saving technologies development such as
cogeneration
− Penalties to control excessive energy consumption
Points of the law after amendment
Before amendment
“Energy conservation constitutes a long-term
strategic policy in the nation's economic
development.”(Article 4)
6 Chapters
50 Articles
Amendment
Oct. 2007
Improved contents of the regulation such as;
• Strengthening legal responsibility, and
• Promoting energy saving in specific sectors.
Adoption of progress
status as evaluation
standards of local
government
 Each government have to include energy
saving activities into its mid/long-term
plans and report to the General Assembly
local levels.
Introduction of target
responsibility system
and examination
evaluation system
 It is defined that progress status of the
energy saving target become part of
evaluation standards for top of each local
government.
 Local governments have to report the
progress status to State Council every year.
Including more broad
measures to promote
energy saving
 Preferential tax scheme, subsidies, public
procurement, financial support and price policy
are included into the law.
After amendment
“Energy conservation is a basic national
policy of China. The State implements an
energy development strategy of giving
consideration to conservation and
development simultaneously, and placing top
priority on conservation.”(Article 4)
7 Chapters
87 Articles
ii.
Renewable Energy Law of the People's Republic of China
The Renewable Energy Law of the People's Republic of China is the law putting more focus on the development
of renewable energy. Objectives of the law are the following.
−
−
−
−
−
−
Promoting the development and utilization of renewable energy
Increasing the supply of energy
Improving the structure of energy
Safeguarding the safety of energy
Protecting environment
Realizing a sustainable economic and social development
51
GSEP Steel Working Group
4.2.3.
Emissions Reduction Target toward 2030
China has submitted the INDC to UNFCCC in June 2015 and pledged to “lower carbon dioxide emissions per
unit of GDP by 60% to 65% from the 2005 level” as its emissions reduction target toward 2030.127128
In addition to the emissions reduction target, China declared the following targets.
−
−
−
To achieve the peaking of CO2 emissions around 2030 and making best efforts to peak early
To increase the share of non-fossil fuels in primary energy consumption to around 20%
To increase the forest stock volume by around 4.5 billion cubic meters on the 2005 level.
(Created by DTC based on People’s Republic of China. (2015). Enhanced actions on climate change: China’s Intended Nationally Determined
Contributions. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20-%20on%2030%20June%202015.pdf)
China plans to meet the targets through the following action.
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
Implementing Proactive National Strategies on Climate Change
Improving Regional Strategies on Climate Change
Building Low-Carbon Energy System
Building Energy Efficient and Low-Carbon Industrial System
Controlling Emissions from Building and Transportation Sectors
Increasing Carbon Sinks
Promoting the Low-Carbon Way of Life
Enhancing Overall Climate Resilience
Innovating Low-Carbon Development Growth Pattern
Enhancing Support in terms of Science and Technology
Increasing Financial and Policy Support
Promoting Carbon Emission Trading Market
Improving Statistical and Accounting System for GHG Emissions
Broad Participation of Stakeholders
Promoting International Cooperation on Climate Change
(Created by DTC based on People’s Republic of China. (2015). Enhanced actions on climate change: China’s Intended Nationally Determined
Contributions. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20-%20on%2030%20June%202015.pdf)
In addition, the targets of the peak of CO2 emissions and use of non-fossil fuels were primarily included into
the US-China Joint Announcement on Climate Change in 2014.129 Such joint announcements with US and a few
other countries such as EU and France are considered to be the flag to lead the future policy making in China.
4.3. Iron and Steel Industry
4.3.1.
Voluntary Action on Energy Saving and Climate Change
During the GSEP Steel WG held in Paris last year, the following 4 technologies lists were introduced as a case
of specific activities for energy management improvement in China by Mr. XU of NCSC (National Center for
Climate Change Strategy and International Cooperation).
−
−
−
National key sector clean production technology orientation list, issued by State Economic and Trade
Commission, since 2000
National key energy saving technology list for promotion, issued by National Development and Reform
Commission, since 2008
Energy-saving and emission-reduction technology list in iron and steel industry, issued by the Ministry of
52
GSEP Steel Working Group
−
4.3.2.
Science and Technology, the Ministry of Industry and Information Technology
Energy-saving and low-carbon technology list for transfer and promotion, issued by the Ministry of
Science and Technology
The Status of Energy Saving Technology Implementation
According to the result of the questionnaires distributed and collected based on the agreement in the last GSEP
Steel WG, 12 major Chinese steel companies have needs for SOACT as shown below.
Figure 42. Percentage of Companies Having Needs for Each SOACT Technology
(Based on questionnaire targeted at 12 major iron and steel companies in China)
#
Title of Technology (SOACT base)
A
Steelmaking
Ratio of companies being
interested in the
Technology
44%
B
Cokemaking
55%
C
Ironmaking
31%
D
Steelmaking
44%
E
Ladle Refining and Casting
17%
F
Casting
15%
G
Recycling and Waste Reduction
56%
H
Common Systems
28%
I
General Energy Savings & Environmental Measures
60%
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
Among technologies listed on the SOACT Handbook, # I in Figure 42 (General Energy Savings &
Environmental Measures) was the category of the most needed technologies. The technologies included in the
category are listed in Figure 43.
53
GSEP Steel Working Group
Figure 43. Technologies Listed on SOACT Handbook under the Category of “General Energy Saving & Environmental
Measures” and Diffusion Situation of Each Technology
125
Energy Monitoring and Management Systems
Ratio of installed mills
in China
about 50%
126
Cogeneration (include Gas Turbine Combined Cycle (GTCC))
about 30%
127
Technology for Effective Use of Slag
about 70%
128
Hydrogen Production
about 2%
129
Carbonation of Steel Slag
N/A
130
about 80%
134
By-product generator set (NEDO)
Ironworks by-product gas, single-fuel-firing, high-efficiency, combined
generator set (NEDO)
Management of steam traps in steam piping and drain water recovery
(NEDO)
Power recovery by installation of steam turbine in steam pressure reducing
line (NEDO)
Management of Compressed Air Delivery Pressure Optimization (NEDO)
135
Improving thermal insulation in industrial furnace (NEDO)
about 30%
136
Preventive Maintenance (EPA-BACT)
about 10%
ID
131
132
133
General Energy Savings & Environmental Measures
about 85%
about 60%
about 10%
about 10%
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
Among all the technologies listed on SOACT Handbook, steel companies in China showed strong needs for
the technologies shown in Figure 44.
54
GSEP Steel Working Group
Figure 44. Technologies Strong Needs Are Shown by Major 12 Steel Companies in China
(“Yes” means interested, “No” means not interested)
#
a
b
c
d
e
f
g
h
i
j
k
l
1
Sinter Plant Heat Recovery (Steam Recovery from Sinter
Cooler Waste Heat)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
4
Dust Emissions Control
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
5
Exhaust Gas Treatment through Denitrification,
Desulfurization, and Activated Coke Packed Bed Absorption
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
10 Sintering machine ignition oven burner (NEDO)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
12 Coke Dry Quenching
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
15 Stripping of ammonia from the waste water (EU-BAT)
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
16 Waste water treatment (EU-BAT)
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
17 Modern Leak-proof Door
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
18 Cleaning of oven doors and frame seals (EU-BAT)
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Reduction of SO2 by coke oven gas desulphurisation (EUBAT)
Variable pressure regulation of ovens during the coking
21
process (EU-BAT)
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
26 Top Pressure Recovery Turbine
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
27 Pulverized Coal Injection (PCI) System
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
34 Improve Blast Furnace Charge Distribution
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
35 Use of high quality ores (EU-BAT)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
37 Blast Furnace Gas and Cast House Dedusting
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
39 B-gas (fueling) Regerenative Reheating Furnace
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
42 Cast House Dust Suppression
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
43 Treatment and reuse of scrubbing water (EU-BAT)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Blast Furnace – Increase Hot Blast Temperature
(>1100 Deg C)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
49 Improvement of combustion in hot stove (EPA-BACT)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
50 Blast Furnace Heat Recuperation
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
ID
A
B
Title of Technology (SOACT base)
19
C
47
Optimized Blast Furnace Process Control with Expert
System
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
67 Hot Metal Pretreatment
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
68 Programmed and efficient ladle heating (EPA-BACT)
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
70 Use Enclosures for BOF
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
71 Control and Automization of Converter Operation
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
73 Exhaust Gas Cooling System (Combustion System)
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
74 Converter gas recovery device (NEDO)
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
77 VSD on ventilation fans (EPA-BACT)
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
79 Elimination of Radiation Sources in EAF Charge Scrap
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
82 Oxy-fuel Burners/Lancing
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
88 Post-combustion of the flue gases (EPA-BACT)
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
106 Reducing Fresh Water Use
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
107 Slag Recycling
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Bag filter – combined or integrated reduction of solid and
gaseous pollutants (EU-BAT)
Process Heating Assessment and Survey Tool – Identify
119
Heat Efficiency Improvement Opportunities
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
123 Regenerative Burner Total System for reheating furnace
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
124 Techniques to improve heat recovery (EU-BAT)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
125 Energy Monitoring and Management Systems
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
127 Technology for Effective Use of Slag
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
130 By-product generator set (NEDO)
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Ironworks by-product gas, single-fuel-firing, high-efficiency,
combined generator set (NEDO)
Management of steam traps in steam piping and drain water
132
recovery (NEDO)
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
136 Preventive Maintenance (EPA-BACT)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
51
72
OG-boiler System (Non-combustion)/Dry-type Cyclone
Dust Catcher
D
95
G
Exhaust Gas Treatment Through Gas Cooling, Carbon
Injection and Bagfilter Dedusting
112
H
I
131
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 &2015.)
55
GSEP Steel Working Group
5. Republic of India (India)
5.1. Overview of Action on Energy Saving and Climate Change in India
India started taking action on energy saving in 1963 when the government started giving greater focus on the
energy sector. 130 Meanwhile, India announced the National Action Plan on Climate Change in 2008 to tackle
climate change at the national level while participating in international movements such as the Kyoto Protocol.131
Furthermore, it should be noted that India is actively involved in international cooperative initiatives to improve
energy efficiency and reduce GHG emissions.
5.2. Government
5.2.1.
i.
The National Targets and Plans of Action on Energy Saving and Climate Change in India
Twelfth Five Year Plan
Even though energy planning was recognized as essential for the development of India since independence, the
full-scale energy planning started in 1963 with the launch of Energy Survey of India Committee (ESIC). ESIC
researched the energy demand and supply in India and developed the basis of energy development planning for the
government until 1981. Soon after, the government’s Forth Five Year Plan for 1969 to 1974 for the first time
categorized power as a separate focused area for the development of India.132 The latest Twelfth Five Year Plan for
2012 to 2017 points out the importance of active promotion of energy efficiency in industries for the sustainable
growth of India.133 In addition, the Expert Group on Low Carbon Strategies for Inclusive (Expert Group), appointed
by the government to support the development of Twelfth Five Year Plan, has identified major sources of industrial
emissions. The Expert Group gave specific recommendations for sectors such as the iron and steel and cement
(accounting for over 60 per cent of industrial process emissions). It also recommended that green-field plants install
best available technology and that existing plants, SMEs in particular, update and install green technology at an
accelerated phase.134
ii.
National Action Plan on Climate Change (NAPCC)
The master plan for action on climate change in India is NAPCC, which was launched by the Prime Minister’s
Council in 2008 to address climate change in the national level. 135136 NAPCC consists of the following eight
National Missions.
56
GSEP Steel Working Group
Figure 45. National Missions under National Action Plan on Climate Change
National Solar Mission
National Mission for
Enhanced Energy
Efficiency
National Mission on
Sustainable Habitat
National Water Mission
National Mission for
Sustaining the Himalayan
Ecosystem
National Mission for a
Green India
National Mission for
Sustainable Agriculture
National Mission on
Strategic Knowledge for
Climate Change
(Created by DTC based on Prime Minister’s Council on Climate Change, Government of India. (n.d.). National Action Plan on Climate Change.
Retrieved from http://www.moef.nic.in/downloads/home/Pg01-52.pdf)
Among the eight National Missions of NAPCC, National Solar Mission and National Mission for Enhanced
Energy Efficiency are especially related to energy and the industry sector.
① National Solar Mission (NSM)
NSM tries to promote solar energy for power generation and other means. Their objectives forward 2017 include
the following.
−
−
−
Delivering at least 80% coverage for all low temperature and at least 60% coverage for medium
temperature applications of solar energy in all urban areas, industries, and commercial establishments
Producing local Photovoltaic from integrated facilities at a level of 1000 MW/annum
Establishing at least 1000 MW of Concentrating Solar Power generation capacity
(Created by DTC based on Prime Minister’s Council on Climate Change, Government of India. (n.d.). National Action Plan on Climate Change.
Retrieved from http://www.moef.nic.in/downloads/home/Pg01-52.pdf)
NSM are responsible for the following.
−
−
−
−
−
Deploying commercial and near commercial solar technologies in the country
Establishing a solar research facility
Realizing integrated private sector manufacturing capacity for solar material, equipment, cells and
modules
Networking of Indian research efforts with international initiatives
Providing funding support for the activities foreseen under the responsibilities above
(Created by DTC based on Prime Minister’s Council on Climate Change, Government of India. (n.d.). National Action Plan on Climate Change.
Retrieved from http://www.moef.nic.in/downloads/home/Pg01-52.pdf)
② National Mission for Enhanced Energy Efficiency (NMEEE)
NMEEE consists of four initiatives to enhance energy efficiency in India. The initiatives are summarized below.
57
GSEP Steel Working Group
Figure 46. Four Initiatives under NMEEE
Initiatives
Summary
Perform Achieve and Trade Scheme
(PAT)
A market based mechanism to enhance the cost effectiveness in improving
the Energy Efficiency in Energy Intensive industries through certification
of energy saving which can be traded
Market Transformation for Energy
Efficiency
Accelerating the shift to energy efficient appliances in designated sectors
through innovative measures to make the products more affordable
Energy
Platform
Creation of mechanisms that would help finance demand side management
programme in all sectors by capturing future energy savings
Efficiency
Financing
Framework for Energy Efficient
Economic Development
Development of fiscal instruments to promote energy efficiency
(Created by DTC based on Ministry of Power, Government of India. (n.d.). Energy Efficiency. Retrieved from http://powermin.nic.in/EnergyEfficiency)
Especially, PAT is the flagship scheme under NMEEE.137 PAT has become effective in April 2012, having the
target of an average 5% reduction in energy consumption in the next 3 years. From the iron and steel sector, 67 units
with minimum annual energy consumption of 30,000 toe have been notified as the objects of the programme.138
Phase I of the programme has just finished, and the analysis and evaluation of Phase I’s result and the planning of
Phase II are in progress.139 The following provides more details.
Figure 47. Details of PAT
Phase I .April 2012-March 2015
Target
Sector
478 Designated Consumers (DCs) in Thermal Power, Iron and Steel, Fertiliser, Cement,
Aluminum, Pulp and Paper, Textile, and Chlor-Alkali sectors
Authority
Bureau of Energy Efficiency (BEE):
A governmental agency to implement the Energy Conservation Act
Energy
Target Specific Energy Consumption (kcal/kWh, toe/t of product) is set for each Designated
Consumer based on actual data during 2007-2010.
Reduction
Target
Reduction target per sector:
−
Iron and steel: 1.49 (million toe)
−
Thermal Power: 3.21
−
Cement: 0.82
−
Fertiliser:0.48
−
Aluminum: 0.46
−
Pulp and Paper: 0.12
−
Textile:0.07
−
Chlor-Alkali: 0.05
Total: 6.69
58
GSEP Steel Working Group
Phase I .April 2012-March 2015
Auditor
Incentive
and Penalty
−
Energy Auditors, accredited by BEE, carry out Mandatory Energy Audits.
−
Empanelled Energy Auditing Agencies carry out the monitoring and verification process.
In case DCs achieve their reduction targets, they can receive Energy Saving Certificates
(ESCerts) for the saved energy and sell them to other units which did not achieve their reduction
targets.
In case DCs fail to achieve their reduction targets, they have to choose one of the options below
for compliance of the targets:
1.
Payment of penalty
2.
Purchase of ESCerts
3.
Combination of above
(Created by DTC based on the Institute of Energy Economics, Japan. (2014). 平成 25 年度 国際エネルギー使用合理化対策事業 インドにお
ける省エネルギー等政策共同研究事業 報告書 [Report of FY2013 Indian energy saving policy joint research project, international energy use
rationalization project]. Retrieved from http://www.meti.go.jp/meti_lib/report/2014fy/E003925.pdf; Ministry of Power, Government of India. (n.d.).
Energy Efficiency. Retrieved from http://powermin.nic.in/Energy-Efficiency; Bureau of Energy Efficiency, Ministry of Power, Government of India,
personal communication, January 27, 2016)
5.2.2.
i.
Legal Measures to Support the National Targets and Plans
Energy Conservation Act
The Energy Conservation Act was enacted in 2001. This Act aims to provide the legal framework and
institutional arrangements for promoting energy efficiency measures for the designated sectors in the country. 140
Major initiatives under the Act are shown below.
Figure 48. Major Initiatives under the Energy Conservation Act
Initiatives
Energy Conservation Building Code
(ECBC)
Standards & Labelling Programme
Summary
−
Launched in 2007 to improve energy efficiency of new commercial
buildings
−
New commercial buildings, which have a connected load of 100 KW
or contract demand of 120 KVA and above have to meet the ECBC’s
minimum energy standards.
−
Each state can adjust the code to fit the local situations.
−
Presently 8 states have notified, and 12 states have amended and likely
to notify.
−
Energy efficiency improvement in existing buildings is taken care by
giving star rating of commercial buildings which include office
buildings, BPO, shopping malls, and hospitals.
−
Started in 2006 to help consumers make informed energy-saving
decisions by giving labels
−
21 equipment and appliances are object to labeling. Labeling has been
mandatory for room air conditioners, fluorescent tube lights, frost free
refrigerators, and distribution transformers since 2010 and recently
became mandatory for cassette and floor standing air conditioners as
well with effect from 2016. The rest is voluntary.
59
GSEP Steel Working Group
Initiatives
Demand Side Management (DSM)*
Scheme
Designated Consumers (DCs)
Certification of Energy Managers &
Energy Auditors
Summary
BEE facilitates projects for:
−
Agriculture DSM
−
Municipal DSM
−
Capacity Building of Distribution Companies
−
Energy Efficiency in SMEs sector
−
The government notified the criteria for DCs in 2007 according to the
Energy Conservation Act.
−
Industrial units from 9 energy intensive sectors (Aluminum, Cement,
Chlor-Alkali, Fertiliser, Iron and Steel, Paper and Pulp, Railways,
Thermal Power, and Textile) have been notified as Designated
Consumers.
−
DCs have to go through Mandatory Energy Audit to identify various
energy saving opportunities since 27th May, 2014.
−
New Sectors- Discoms and refineries have been notified.
−
PAT Cycle-1 notified 478 units.
−
PAT Cycle-11 identified 447 new units.
−
BEE runs a certification programme (training modules and regular
National level examination) to increase energy managers and auditors
who are professionally qualified with expertise in policy analysis,
project management, financing and implementation of energy
efficiency projects.
−
Accredited energy auditors, who were recommended by
“Accreditation Advisory Committee,” would undertake mandatory
energy audits in energy intensive industry as mandated in the Energy
Conservation Act.
*DSM is an energy stabilization approach to reduce energy consumption instead of increasing power generation.
(Created by DTC based on Ministry of Power, Government of India. (n.d.). Energy Efficiency. Retrieved from http://powermin.nic.in/EnergyEfficiency; Bureau of Energy Efficiency, Ministry of Power, Government of India. (n.d.). Designated Consumers. Retrieved from
https://beeindia.gov.in/content/designated-consumers; Bureau of Energy Efficiency, Ministry of Power, Government of India, personal
communication, January 27, 2016)
5.2.3.
Emissions Reduction Target toward 2030
India is a signatory to the Kyoto Protocol linked to UNFCCC. It is actively engaged in the multilateral
negotiations in the UNFCCC in a positive and constructive manner to tackle climate change with other countries.141
In October 2015, India submitted the INDC and pledged to “reduce the emissions intensity of its GDP by 33 to 35
percent by 2030 from 2005 level.”142143
In addition to the emissions reduction target, India declared the following targets.
−
−
−
To put forward and further propagate a healthy and sustainable way of living based on traditions and
values of conservation and moderation
To adopt a climate friendly and a cleaner path than the one followed hitherto by others at corresponding
level of economic development
To achieve about 40 percent cumulative electric power installed capacity from non-fossil fuel based
60
GSEP Steel Working Group
−
−
−
−
energy resources by 2030 with the help of transfer of technology and low cost international finance
including from Green Climate Fund
To create an additional carbon sink of 2.5 to 3 billion tonnes of CO2 equivalent through additional forest
and tree cover by 2030
To better adapt to climate change by enhancing investments in development programmes in sectors
vulnerable to climate change, particularly agriculture, water resources, Himalayan region, coastal regions,
health and disaster management
To mobilize domestic and new & additional funds from developed countries to implement the above
mitigation and adaptation actions in view of the resource required and the resource gap
To build capacities, create domestic framework and international architecture for quick diffusion of
cutting edge climate technology in India and for joint collaborative Research and Development (R&D)
for such future technologies
(Created by DTC based on India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf)
As well as continuing the current interventions and sophisticating the existing policies, India will introduce the
following measures to achieve the national targets.144
−
−
−
−
−
−
−
−
Introducing new, more efficient and cleaner technologies in thermal power generation
Promoting renewable energy generation and increasing the share of alternative fuels in overall fuel mix
Reducing emissions from transportation sector
Promoting energy efficiency in the economy, notably in industry, transportation, buildings and appliances.
Reducing emissions from waste
Developing climate resilient infrastructure
Full implementation of Green India Mission and other programmes of afforestation
Planning and implementation of actions to enhance climate resilience and reduce vulnerability to climate
change
(Created by DTC based on India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf)
5.2.4.
Collaborative Action with the International Society
India has developed systems and took opportunities to collaborate with other countries and the international
initiatives to run projects for energy saving and GHG emissions reduction.
i.
The Clean Development Mechanism (CDM) Projects
CDM, defined in Article 12 of the Kyoto Protocol, allows a country with emissions reduction or emissions
limitation commitment to implement emissions reduction projects in developing countries. Such projects can earn
saleable Certified Emission Reduction credits. Each credit is equivalent to one tonne of CO2. National Clean
Development Mechanism Authority (NCDMA) evaluates CDM project proposals and gives Host Country Approval
(HCA) at the national level.145 NCDMA assesses projects based on the probability of successful implementation
and consistency with sustainable development objectives and national priorities. 146 After NCDMA’s HCA, the
Executive Board in Bonn, Germany, gives the final approval to CDM projects. Ministry of Steel is a member of the
NCDMA and coordinates the approval of CDM projects in the iron and steel sector in the country.147
Previous CDM Projects in India includes the following.
−
Top Gas Pressure Recovery based Power Generation from ‘G’ Blast Furnace
61
GSEP Steel Working Group




−
Location: Jamshedpur, Jharkhand
Company: Tata Steel Limited
Crediting Period: April 2010-November 2019
Operational Period: December 2009 – November 2029
Greenhouse gas abatement through waste heat recovery power based generation
 Location: Orissa
 Company: Seven Star Steels Ltd.
 Period: December 2011-November 2012
(Created by DTC based on Tata Steel Limited, personal communication, January 16, 2016; National CDM Authority, Ministry of Environment,
Forests and Climate Change, Government of India. (n.d.). Previous project. Retrieved from http://www.ncdmaindia.gov.in/PreviousProjects.aspx)
ii.
United Nations Development Programme (UNDP) Projects
The government of India promotes energy efficiency in SMEs sector. One example is the projects for the Steel
Re-rolling Mills (SRRMs) sector, which are being run by the government in collaboration with UNDP.
① United Nations Development Programme-Global Environment Facility-Ministry of Energy Project
India is the 4th largest steel producer in the world and is expected to become the 2nd after China every soon.
India has set an ambitious target of production capacity of 300 million tonne by 2025.148 At the same time, in the
Indian iron and steel industry, the majority of SRRMs still use obsolete technology, and their high energy intensity
has negatively impacted the energy supply and the environment in India. To improve the situation, the United
Nations Development Programme-Global Environment Facility (UNDP-GEF) and Ministry of Steel (MoS) in India
launched a project called “Removal of Barriers to Energy Efficiency in the Steel Re-Rolling Mill Sector in India”
in 2004.149
The project’s major accomplishments by 2013 are the following.
−
−
Successful implementation of energy efficient technologies in 34 model units
In the model unites:
 Reductions of specific thermal energy consumption by 20%–50% and specific electrical energy
consumption by 10%–30%
 Annual monetary savings of between USD 200,000 to USD 500,000
Influence on the implementation of energy efficient technologies in other SRRMs
(Created by DTC based on Srinivas, S. N., Das, A. C. R., & Iyer, S. (Eds.). (2013). Energy-efficient steel re-rolling: How a
pioneering project is transforming the Indian secondary steel sector. Retrieved from
http://in.one.un.org/img/uploads/STEEL_BOOK_Low_res_for_upload.pdf)
② United Nations Development Programme-Ministry of Energy-Australian Agency for International
Development Project
Recognizing the success of the first project, in 2013, UNDP and MoS launched a new project to extend the
support for SRRMs to install energy efficient technologies across the country. This project is also supported by
Australian Agency for International Development (AusAID).150 The project’s activities include the following.
−
−
Implementing energy efficient technologies in 300 units from SRRM sector. These interventions are
expected to save INR 1000 to 1250 million (USD 20-25 million) annually in energy costs
Implementing energy efficient technologies in five units in other subsectors of small scale steel industry
62
GSEP Steel Working Group
−
−
such as Induction furnace units
Developing knowledge products to propagate widespread replication of the technologies in the target
sector
Accelerating awareness in the sector about energy efficiency intervention that leads to huge savings in
GHG emissions and improve productivity
(Created by DTC based on United Nations Development Programme. (n.d.). Upscaling energy efficient production in small scale steel industry in
India: What is the project about. Retrieved from
http://www.in.undp.org/content/india/en/home/operations/projects/environment_and_energy/upscaling-energy-efficient-production-in-small-scalesteel-indus.html)
iii.
NEDO Projects
New Energy and Industrial Technology Development Organization (NEDO) is one of the major public R&D
management organizations in Japan. 151 NEDO aims to solve energy issues and raise the level of industrial
technology by managing technology development projects in Japan and other countries.152 India collaborated with
NEDO through projects such as the following.
Figure 49. Summary of the Sinter Cooler Waste Heat Recovery Model Project
Technology
Sinter Cooler Waste Heat Recovery
Location
Visakhapatnam, Andhra Pradesh
Company
Rastriya Ispat Nigam Limited
Period
2008-2014
Impact
−
Observed energy saving by 6% in the plant
which the system was installed
−
Expected energy saving by approx. 34,000
toe/year and approx. 104,000 t CO2/year
(Created by DTC based on New Energy and Industrial Technology Development Organization. (2014). インドの製鉄所で排熱回収発電設備を実
証―消費電力 6%削減が可能に― [Verified sinter cooler waste heat recovery facility in an Indian plant: Made it possible to save 6% of energy use].
Retrieved from http://www.nedo.go.jp/news/press/AA5_100295.html)
Figure 50. Summary of the Coke Dry Quenching Model Project
Technology
Coke Dry Quenching
Location
Jamshedpur, Jharkhand
Company
Tata Steel Limited
Period
2006-2011
Impact
−
Expected waste heat recovery by 84%
−
Expected energy saving by approx. 50,000
toe/year and approx. 137,000 t CO2/year
63
GSEP Steel Working Group
(Created by DTC based on New Energy and Industrial Technology Development Organization. (2011). インドにおける製鉄所のエネルギー効率
を大幅に改善―コークスの排熱利用をインド政府と共同で実証― [Major improvement in energy intensity in an Indian plant: Verified coke dry
quenching technology with the government of India]. Retrieved from http://www.nedo.go.jp/news/press/AA5_100069.html)
Figure 51. Summary of the Blast Furnace Stove Waste Heat Recovery Model Project
Technology
Blast Furnace Stove Waste Heat Recovery
Location
Jamshedpur, Jharkhand
Company
Tata Steel Limited
Period
2001-2004
Impact
−
Observed cokes intensity reduction in blast furnaces
(Created by DTC based on New Energy and Industrial Technology Development Organization. (n.d.). インドにおける NEDO 事業例 [NEDO
Project Cases in India]. Retrieved from http://www.nedo.go.jp/content/100522921.pdf; 表-2.6.1 [Table-2.6.1]. (n.d.). Retrieved from
http://www.enecho.meti.go.jp/interface/enecho/search?q=%E9%AB%98%E7%82%89%E7%86%B1%E9%A2%A8%E7%82%89%E6%8E%92%E3
%82%AC%E3%82%B9%E9%A1%95%E7%86%B1%E6%9C%89%E5%8A%B9%E5%88%A9%E7%94%A8%E3%83%A2%E3%83%87%E3%83
%AB%E4%BA%8B%E6%A5%AD&client=enecho&output=xml_no_dtd&proxystylesheet=enecho&sort=date%3AD%3AL%3Ad1&oe=utf8&ie=utf-8&ud=1&exclude_apps=1&site=enecho_meti)
5.2.5.
Collaborative Action within the Country with the Iron and Steel Industry
In addition, the Indian government encourages the iron and steel industry to reduce energy consumption and
develop energy-efficient technologies through incentives such as the following.
i.
Charter on Corporate Responsibility for Environment Protection (CREP)
Ministry of Environment and Forests, Government of India, launched CREP in 2003 with the purpose to go
beyond the compliance of regulatory norms for prevention and control of pollution through various measures,
including waste minimization, in-plant process control, and adoption of clean technologies.153154 The government
interacted with highly polluting industries to include mutually agreed targets and action points for each industry in
the charter.155156 The iron and steel industry has targets and action points regarding reducing environment pollution,
water consumption, and energy consumption.157 This initiative is voluntary for industries; however, task forces of
experts and members from institutions and industry associations monitor the progress of the implement of action
plans.158159
ii.
Support for R&D to Address Raw Material Constraints
One of the constraints in lowering energy consumption in Indian steel plants is the higher gangue (alumina and
Silica) content of iron ore and high ash in Indian Coal. There are some available technologies for beneficiation of
iron ore and coal. However, R&D interventions are required to develop relevant technologies for beneficiating low
grade/lean ores as well as coal with an optimum yield.160 The Indian government is facilitating R&D in this sector
through various means such as financial assistance through Steel Development Fund and a scheme called Promotion
of R&D in Iron and Steel Sector and the establishment of Steel Research and Technology Mission of India.161
64
GSEP Steel Working Group
5.3. Iron and Steel Industry
Based on the agreement made in the GSEP Steel WG last year, some questions regarding energy saving were
asked to the participants in different countries. The following are based on the information given by Tata Steel
Limited (Tata Steel), a world-leading Indian steel company.
5.3.1.
i.
Voluntary Action on Energy Saving and Climate Change
Energy Saving Measures
In addition to participating in PAT that the government operates under the Energy Conservation Act, Tata Steel
is taking the following voluntary measures for energy saving.162
−
−
−
−
Regular energy audit of process and equipment
Waste heat recovery
Energy efficient projects
Improvement projects under Kar Vijay Har Shikhar – Continuous improvement programme*
*KVHS is an analytical process with review systems. The process includes six steps that involves TQM and statistical tools. Energy
efficiency is one of the focuses of improvement projects under KVHS.
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.; Tata Steel Limited. (n.d.). 106th Annual report
2012-2013. Retrieved from http://www.tatasteel.com/investors/annual-report-2012-13/html/pdf/Tata%20Steel%20Annual%20Report%2012-13.pdf)
5.3.2.
i.
The Status of Energy Saving Technology Implementation
Installed Technologies
The following technologies have been installed and actively used in Tata Steel’s plants. They were picked up in
the questionnaire from the list of technologies that are considered to be significantly effective for energy
conservation and environmental protection.
−
−
−
−
−
−
−
−
−
−
−
−
High Efficient Burner in Ignition Furnace for Sinter Plant
Coke Dry Quenching.
Coke Plant – Automation and Process Control System
Top Pressure Recovery Turbine
Pulverized Coal Injection System
Hot Metal Pretreatment
Converter gas recovery device
BOF Bottom Stirring
Thin Slab Casting and Hot Rolling
Regenerative Burner Total System for reheating furnace
Energy Monitoring and Management Systems
Power recovery by installation of steam turbine in steam pressure reducing line
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
In addition to the technologies on the list, Tata Steel has also installed the following energy saving technologies.
−
−
VVF drive in energy consuming equipment
LED Lights
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
65
GSEP Steel Working Group
ii.
Technologies to Install and the Challenges
The following are the energy saving technologies that Tata Steel would like to adopt in the future and the
challenges for installation.
Figure 52. Energy Saving Technologies to Adopt and the Challenges
Technology
Sinter Plant Heat Recovery
(Steam Recovery from Sinter Cooler Waste Heat)
Sinter Plant Heat Recovery
(Power Generation from Sinter Cooler Waste Heat)
OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher
Cogeneration (include GTCC)
Challenge
Financial, Retrofitting
Financial, Retrofitting
Financial, Technical, Retrofitting
Financial, Technical, Infrastructure
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
66
GSEP Steel Working Group
6. Republic of Korea (Korea)
6.1. Overview of Action on Energy Saving and Climate Change in Korea
Korea has experienced the incredibly rapid economic growth in the past few decades. For example, the Korean
government notes that the GDP per capita in Korea increased from US$60 in 1948 to US$26,205 in 2013. 163
However, the country is recently facing a challenge to keep the high competitiveness due to various factors such as
climate change, international environmental regulations, and the high energy prices. Considering those factors, the
Korean government realized that the inefficient and high energy consuming structure of its economy was not feasible
in the competitive world anymore. In 2008, the President declared a new vision called Low-carbon Green Growth
that aims to shift the society that depends on fossil fuel to the one that utilizes clean energy.164 Since then, the
government has developed national strategies and plans, created and amended laws, and implemented useful
syestems. Those efforts have contributed to the world movement against global warming while securing the
country’s growth.
6.2. Government
6.2.1.
i.
The National Targets and Plans of Action on Energy Saving and Climate Change in Korea
Low-Carbon Green Growth
In order to address the current problems such as energy crisis and unemployment and realize sustainable growth
of Korea, in 2008, the President announced the Low-carbon Green Growth vision for the next 60 years.165166 The
vision aims to shift the current growth paradigm that depends on fossil fuels to the one that bases on clean energy
and technologies. The President claimed that clean energy and technologies would create employment, change the
lack of oil sources to a chance for Korea, and enable Korea to lead the environmental revolution of the world.167
ii.
Energy Master Plan
The government developed the First Energy Master Plan as “a backbone support for ‘Low-Carbon, Green
Growth’ paradigm in the energy sector” in 2008.168 This plan was the first long-term plan for the next 20 years in
Korea, and it was supposed to be revised in every five years.169 As the implementation strategy for the vision, the
master plan set the following targets.
−
Rationalize energy intensity* to 0.185 in 2031 from 0.341 in 2007
*Energy volume (toe) consumed for production per each US$1,000 in GDP
−
−
−
Reduce fossil energy rate to 61% from 83% while increasing the new and renewable energy rate 4.6 times
Upgrade green technology to the world-class level
Expand self-development rate in oil and gas to 40% by 2030
(Created by DTC based on Blue-Ocean Content and Strategy. (n.d.). National Basic Energy Plan, Korea (2008-2030). Retrieved from
http://www.energyplus.or.kr/pdf/11_ing/110207_t2.pdf)
To achieve the targets, for example, the government supports R&D in high energy consuming industries to
enhance their energy efficiency.170 The master plan was revised in 2014 as the Second Energy Master Plan.171 The
67
GSEP Steel Working Group
government set six main tasks and specific objectives for the plan.
Figure 53. Six Major Tasks and Objectives of the Second Energy Master Plan
#
Major Task
Transition to energy policies focused on demand
management
Objective
Reduce electricity demand by 15% by 2035
2
Build a distributed generation system
Supply more than 15% of power from distributed
generation by 2035
3
Strike a balance with environmental and safety
concerns
Apply the latest GHG reduction technology to new
power plants
4
Enhance energy security and energy supply stability
5
Establish a stable supply system for each energy
source
Build overseas resource development capacity and
achieve a renewable energy deployment rate of 11%
by 2035
Secure a stable supply of conventional energy
sources, such as oil and gas
6
Shape energy policy to reflect public opinion
Introduce an “Energy Voucher System” in 2015
1
(Created by DTC based on Ministry of Trade, Industry and Energy (2014). Korea Energy Master Plan: Outlook & Policies to 2035. Retrieved from
http://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwi3jsX1wezJAhXEIaYKHcm_AuEQFggeMAA&url=http%
3A%2F%2Fwww.motie.go.kr%2Fcommon%2Fdownload.do%3Ffid%3Dbbs%26bbs_cd_n%3D72%26bbs_seq_n%3D209286%26file_seq_n%3D2&
usg=AFQjCNFKJUFmTUVh7ZoRQ0OkDLjnsyUYbw)
iii.
Green Growth National Strategy and Five-Year Plans
Meanwhile, in accordance with the Low-carbon Green Growth vision, the government of Korea also presented
the Green Growth National Strategy and the First Five-Year Plan in 2009. While the Green Growth National
Strategy presents a long-term vision of the country’s growth, the First Five-Year Plan was a mid-term plan for 2009
to 2013. The core aim of the Green Growth National Strategy is to assure both the environmental security and
sustainable economic growth in Korea.172 The Green Growth National Strategy consists of 3 strategic directions
and subdivided 10 policy directions.173
Figure 54. Directions of the Green Growth National Strategy
3 Strategic Directions
Adaptation to climate change and
energy independence
Creation of new engines of growth
1.
2.
3.
4.
Improvement in quality of life and
enhancement of national prestige
5.
6.
7.
8.
9.
10 Policy Directions
Efficient reduction of GHGs
Strengthening energy independence from fossil fuels
Enhancing capacity for climate change adaptation
Development of green technologies and utilizing them as new growth
engines
Greening of industries and fostering green businesses
Advancement of industrial structure
Formation of a foundation for green economy
Launching of green transportation
Green revolution in daily life
68
GSEP Steel Working Group
3 Strategic Directions
10 Policy Directions
10. Realization of a model, world-class nation of green growth
(Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure].)
The major concept of the First Five-Year Plan was to establish an institutional foundation for the Green Growth
National Strategy. The Second Five-Year Plan was established in 2014 to produce substantial outcomes by using
the institutional foundation that had been developed.174 The plan is to be implemented from 2014 to 2018 with the
objectives of “establishing a low-carbon socioeconomic infrastructure,” “achieving a creative economy through the
convergence of green technology and ICT,” and “building a pleasant living environment safe from the harms of
climate change.”175
6.2.2.
Legal Measures to Support the National Targets and Plans
The Energy Use Rationalization Act has been playing the role of developing rules to encourage energy efficiency
in Korea. 176 Meanwhile, the Framework Act on Low Carbon Green Growth has been the legal basis of the
implementation measures of the Green Growth National Strategy.177
i.
Energy Use Rationalization Act
The Energy Use Rationalization Act was established in 1979, and it has been the legal basis of policies for energy
demand management such as the following systems and program.178
① Energy Management System (EnMS)
EnMS, “a standard or an energy management protocol” for energy saving and GHG emissions reduction, became
part of the national policies when the plans to promote the system were included in the Fourth Basic Plan for
Rational Energy Utilization and the First Energy Master Plan in 2008.179180 Since then the government has been
facilitating the implementation of the system and development of the national standard such as KS A 4000 and KS
A ISO 50001.181 The EnMS encouragement program, which is managed by a government agency called Korean
Energy Agency (KEA), is summarized below.
69
GSEP Steel Working Group
Figure 55. The EnMS Program of KEA
Objective
Activity
Phase I
2006-2011
Build foundation for EnMS
Introduce EnMS to Korea
−
−
−
−
−
Created KS A ISO 50002
(Oct. ’11)
Laid foundation for
Korean ISO 50001
certification system
Run pilot EnMS
certification programs
(’08~’11)
Developed and operated
training courses for
EnMS auditors and
working-level staffs
(’08~’13)
Developed and
distributed materials on
technology (run a
homepage)
Phase II
2011-2014
Conduct more detailed
programs for the introduction
of EnMS (Quantify the results
of EnMS)
− Implemented Korean ISO
50001 certification
system (Nov. ’12)
− Designated the first
certification institution in
Korea by KS A ISO
50001 (May ’13)
− Conducted a feasibility
assessment of adopting
international standards for
energy management
performance evaluation
(’13) (the assessment was
conducted on 8 industrial
facilities and 2
commercial buildings)
− Developed Korean
national standards for
energy management
evaluation and a related
software
− Participated in ISO TC
242 to develop
international standards
and establish foundation
for GSEP
− Developed and operated
EnMS experts training
courses (’14~)
− Built infrastructure of
EnMS and provided
supports to energy
management evaluation
of SMEs (’14)
Phase III
2015Implement government
support programs for EnMS
−
−
−
Implements government
support programs for
EnMS
Offers supports and
incentives to companies
partnered with the
governments
Work on EnMS
international cooperation
projects (ISO TC 242 and
GSEP)
(Created by DTC based on Korea Energy Agency. (n.d.). Energy Management System (EnMS). Retrieved from
http://www.energy.or.kr/renew_eng/energy/industry/enms.aspx)
② Financial Loan Assistance Program
The Energy Use Rationalization Act provides support for energy saving efforts such as subsidies and tax breaks
to investments in energy-saving facilities.182 One notable example is the Energy Service Company (ESCO) program.
Through this program, the government has been offering loans to ESCOs’ energy-efficient facility implementation
projects since 1991, having the Energy Use Rationalization Act as a legal basis.183 Figure 56 illustrates the flowchart
of the program, and the overview of the program is shown in Figure 57.
70
GSEP Steel Working Group
Figure 56. Flowchart of the ESCO Program
Government
Budget
Allocation
Reporting
Implementing Agency (KEA)
Loan,
Guideline,
Commission
Report on
Financing Status
Documentation/
Request for Loan
Financial Institution
Repayment
Loan
Project development and
implementation
End User
ESCO
Payment
(Created by DTC based on Morgado, D. (2014). Energy service companies and financing [PDF document]. Retrieved from
https://www.iea.org/media/training/presentations/latinamerica2014/8A_Energy_Service_Companies_and_Financing.pdf)
Figure 57. Overview of the ESCO Program
Purpose
Project
Conductor
Eligible Project
Covered Cost
Loan Term
Program Benefit
To bring in more voluntary participation of private entities, shifting the initiative from the
government to the private sector
− ESCO—a company equipped with required facilities, capital and technology and
registered to the Ministry of Trade, Industry and Energy
− ESCOs obtain financing for the installation of energy-saving facilities, execute the
project, guarantee energy savings and share the energy cost savings with energy users.
− Management services for energy conservation
− Investments in energy-saving facilities
− R&D of energy-saving facilities and equipment
Costs of:
− the facility and equipment
− construction and installation
− design and supervision
− start-up
− Interest rate: Quarterly adjustable rate linked to average rate of return of 3 year
negotiable Korean treasury bond or fixed-rate
− Terms of repayment: Payable in installments in five years with a three-year grace
period
− Limit: Maximum 30 billion won
Energy Users can:
− install energy-saving facilities and reduce energy costs
− reduce technological risks for the investment in the energy-saving facilities
− receive systematic and expert service on energy-saving facilities provided by ESCO
− receive financial supports and Tax incentives in connection with ESCO projects
(Created by DTC based on Korea Energy Agency. (n.d.). Energy Service Companies (ESCO). Retrieved from
71
GSEP Steel Working Group
http://www.energy.or.kr/renew_eng/energy/industry/esco.aspx)
③ Energy Audit System
The Energy Audit System was created in 2007 based on the Energy Use Rationalization Act in response to the
oil price and climate change.184 It aims to reduce energy consumption and GHG emissions of the industrial and
building sectors by examining businesses with excessive energy consumption.185 From 2007 to 2014, energy audits
were done for 4,111 companies, and the potential energy-saving amount was reported as 3,944ktoe/year, which is
4.9% of total energy consumption.186 The flowchart of the system is below.
Figure 58. Flowchart of the Energy Audit System Program
Ministry of
Trade, Industry & Energy
KEA
•
A report on areas of
improvement
• A feasibility study to the
company
Notification of the
requirements for an audit
Application for an audit
Energy Intensive Company
 Energy Intensive Companies—
Companies whose annual energy
consumption exceeds 2,000 toe per year
Every 5 years
• Audit
 Inspections of
 Facilities
 Processes
 Operating
conditions
To determine
 Energy loss factors
 Areas of improvement
Energy Audit Company
 Energy Audit Companies—
Registered companies with expertise
and experience
• Post Audit
 Technical advice
 Support to implement
proposals reported
(Created by DTC based on Korea Energy Management Corporation. (n.d.). Energy audit. Retrieved from
http://www.kemco.or.kr/new_eng/pg02/pg02060000.asp)
ii.
Framework Act on Low Carbon Green Growth
The Framework Act on Low Carbon Green Growth was enacted in 2010, after many discussions among various
stakeholders from public and private sectors in Korea. Since the enactment, it has been the legal foundation for the
effective implementation of the Green Growth National Strategy.187 In addition, it is a precedent for other Acts
related to the Low-carbon Green Growth vision.188 The following are some examples of policies based on the
72
GSEP Steel Working Group
Framework Act on Low Carbon Green Growth.
① GHG and Energy Target Management System (TMS)
TMS is one of the systems that were developed based on the Framework Act on Low Carbon Green Growth.189
The system was enacted in 2012 to achieve the mid-term national target of reducing GHG emissions by 30% in
2020 from the BAU level, which is also stated in the Framework Act on Low Carbon Green Growth.190191 TMS
sets the ceilings for GHG emissions for large emitters (controlled entities), which covered 68% of total GHG
emissions in Korea as of 2012, and obligates them to meet their targets. Administrative and financial penalties are
given for the controlled entities in case of non-compliance.192 In addition, controlled entities have to include the
calculation methods that they use to measure their energy consumption and GHG emissions into their reports.193
Figure 59 is the flowchart of the system, and Figure 60 shows the standards of controlled entities.
Figure 59. Flowchart of TMS
Ministry of Environment
Comprehensive
Monitoring/Evaluation
Report
Supervising Agencies
Agriculture & Livestock
Ministry for Food,
Agriculture, Forestry and
Fisheries
Step 1.
Designation of
controlled entities
and notification of
GHG and energy
reduction targets
Industry & Power
generation
Ministry of Trade,
Industry and Energy
Waste
Building & Transport
Ministry of Environment
Ministry of Land,
Transport and Maritime
Affairs
Step 2.
Submission of an
implementation
performance report
Step 3.
Submission of an
implementation plan
Step 4.
An improvement
order in case of
unachieved targets or
unsatisfactory
performance
Controlled Entity
(Created by DTC based on Lim, D. (2012). Target Management System (TMS) and ETS in Republic of Korea [PDF document]. Retrieved from
http://www.iges.or.jp/en/archive/cdm/pdf/regional/20130306/1_Korea_Prof.Lim.pdf; Korea Energy Agency. (n.d.). GHG and Energy Target
Management Scheme. Retrieved from http://www.energy.or.kr/renew_eng/climate/foundation/scheme.aspx)
73
GSEP Steel Working Group
Figure 60. Standards of Controlled Entities
Category
GHG
(CO2)
Energy
(terajoules)
-2011
Company
Facility
2012-2013
Company
Facility
2014Company
Facility
125,000
25,000
87,500
20,000
50,000
15,000
500
100
350
90
200
80
(Created by DTC based on Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in
Korea: Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from
http://faolex.fao.org/docs/pdf/kor102410.pdf)
② Korea Emission Trading Scheme (KETS)
Having the Framework Act on Low Carbon Green Growth as a legal foundation and TMS as a precursor, KETS
was launched in 2015.194195196 After a few years of debates and planning, the Act on the Allocation and Trading of
Greenhouse Gas Emissions Permits finally passed the congress in 2012, and it was decided that KETS would start
in January 2015.197 Later in 2012, the rules of KETS was determined when the Enforcement Decree of Allocation
and Trading of Greenhouse Gas Emissions Rights Act passed the cabinet.198 According to International Carbon
Action Partnership (ICAP), as of 2015, KETS is “the first nation-wide cap-and-trade program in operation in Asia,”
having the second largest scale in the world.199 ICAP expects that the scheme would help Korea achieve its GHG
emissions reduction goals toward 2030.200 The highlights of KETS are shown below.
Figure 61. Highlights of KETS
Cap
Allowances
Allocation
Target GHG
Target Sector and
Company/Facility
Carbon Offset
Required
Procedure
Penalty
Phase I
2015-2017
1687 MtCO2e
Phase II
2018-2020
TBA
Free Allowance: 100% to
Free Allowance: 97%
most sectors based on their
Auction: 3 %
average GHG emissions in
the base year
CO2, CH4, N2O, HFC, PFC, SF6
Phase III
2021-2025
TBA
Free Allowance: Less than
90%
Auction: More than 10 %
23 sub-sectors from steel,
N/A
N/A
cement, petro-chemistry,
refinery, power, buildings,
waste sectors and aviation
Company >125,000 tCO2/year, Facility >25,000 tCO2/year
Only domestic emissions reduction projects International credits for up to 50% of the
for up to 10% of the entity’s obligation
entity’s total offsets
Strict Measure, Reporting, and Verification (MRV) system was taken over from the GHG
and Energy Target Management Scheme, which requires target entities to:
− submit annual emission reports
− get emissions verification from the third party
Three times or less the average market price of allowances of the given compliance year
or KRW 100,000/ton
(International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme. Retrieved from
https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47; Kim, Y. (2012). Emissions
Trading Scheme for Low-Carbon Green Growth in Korea [PDF document]. Retrieved from http://unfccc.int/files/bodies/awg-
74
GSEP Steel Working Group
lca/application/pdf/20120517_korea_1117.pdf)
6.2.3.
Emissions Reduction Target toward 2030
Korea has submitted the INDC to UNFCCC in June 2015 and declared its emissions reduction target toward
2030. The target is “to reduce its greenhouse gas emissions by 37% from the business-as-usual (BAU, 850.6
MtCO2eq) level by 2030 across all economic sectors.” 201202 In addition to TMS, KETS, and other sectorial
measures, which Korea has already developed for GHG mitigation, a detailed implementation plan for the target
toward 2030 will be developed by the Korean government, following the finalization of the international target.203
In addition, the Korean government, Ministry of Trade, Industry and Energy (MOTIE) specifically, recently
announced to establish the department of energy-related new industries to mitigate climate change with the policy
of energy-related new industries in July 2015.204 MOTIE describes the energy-related new industries as “‘problemsolving industries’ that address major issues in the energy sector, including climate change, energy security and
demand management.”205 It also explains that “such industries represent new types of businesses that utilize and
commercialize novel technologies and information/communication technologies in ways that fit the latest market
trends.”206 MOTIE has a plan to issue a roadmap and establish a special law in terms of the energy-related new
industries.207 The recent business models of energy-related new industries include “demand management programs,
energy management services, electric vehicle services, energy independent islands, solar energy rental services, use
of thermal effluent from power plants.”208
6.3. Iron and Steel Industry
6.3.1.
Voluntary Action on Energy Saving and Climate Change
In addition, Korea Iron and Steel Association and firms such as POSCO in the Korean iron and steel industry
have taken action on energy saving and climate change as well.
i.
Korea Iron and Steel Association (KOSA)
KOSA was established in 1975, and it “aims to contribute in Korea’s economic development and to promote
friendship between the members by strengthening the competitiveness of steel industry and seeking sustainable
growth.”209210 KOSA’s one of the major activities is “Green Growth and technical cooperation,” which includes the
following.
−
−
−
−
Building countermeasure plans for UN Climate Change Convention
Seeking for expanding ways to recycle the recycling of by-products
Strengthening the technological exchange and cooperation
Investigating and providing information on statistics related to production capacity, facility investment,
and energy consumption
(Created by DTC based on Korea Iron and Steel Association. (n.d.). Activities. Retrieved from https://www.kosa.or.kr/sub/eng/about/sub01.jsp)
ii.
POSCO
POSCO is a Korean world-leading steelmaker established in 1968, and it has been making an effort to reduce
75
GSEP Steel Working Group
energy consumption and CO2 emissions for years.211212 Since 1999, POSCO has been participating in the Voluntary
Agreement program sponsored by the government and as a result reduced 2.9 million toe by 2008.213 In the program,
industries voluntarily set targets for energy use and CO2 emissions reduction, and the government provides them
with funds.214 POSCO’s recent notable action is having set the voluntary target of cutting CO2 intensity per 1 ton
steel production by 9% by 2020 compared to the average level of 2007-2009. To achieve the target, POSCO takes
measures to increase energy efficiency, reduce coal usage, and develop innovative technologies for CO2
reduction.215 In addition, POSCO has implemented the government policy for energy and climate change. For
example, it has implemented Energy Storage System along with the Second Energy Master Plan focused on the
energy demand management policy.
Figure 62. POSCO’s Target to Reduce CO2 Emission Intensity
(t-CO2/t-S)
2.20
2.18
-9%
2.06
2007-2009
2010
2011
1.98
1.98
2012
2013
2.00
2.00
2014
2020 target
(Created by DTC based on POSCO. (n.d.). Climate change /energy: Vision and strategies to mitigate climate change. Retrieved from
http://www.posco.com/homepage/docs/eng5/jsp/sustain/environ/environment_03_02.jsp)
Also, based on the agreement made in the GSEP Steel WG held in Paris last year, some questions regarding
energy saving were asked to the participants in different countries. POSCO Research Institute (POSRI) explained
the status of energy management in the Korean iron and steel industry as below.
−
−
The following laws encourage the industry to transform into an environment-friendly structure.
 Energy Use Rationalization Act (1979 the first enactment, 2015.1.28 the latest revision)
 Framework Act on Low Carbon Green Growth (2010.4)
 Act on the Allocation and Trading of Greenhouse Gas Emission Permits (2012.11)
EnMS based on ISO 50001 etc. has been operating for achieving the industry’s target in accordance with
the government’s allowances system, and the target is to be achieved.
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
6.3.2.
The Status of Energy Saving Technology Implementation
POSRI also informed the current status of technology implementation in the Korean iron and steel industry as
76
GSEP Steel Working Group
below.
−
−
−
The industry has already installed and are actively using most of the energy saving technologies listed in
the questionnaire as significantly effective measures for energy saving and environmental protection.
Some of the installed technologies are sometimes not suitable or in fair conditions for Korean steel makers.
E.g. Exhaust Gas Treatment through Low-Temperature Plasma, High Pressure Ammonia Liquor
Aspiration System, VSD COG compressor (EPA-BACT), COG-non-recovery Coke Battery, Direct
injection of used oils, fats and emulsions as reducing agents and of solid iron residues (EU-BAT).
The industry has not installed some of the technologies due to technical and financial challenges.
(Created by DTC based on the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.)
77
GSEP Steel Working Group
Appendix
The Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire & Answer Sheet,
2014 & 2015
Global Superior Energy Performance Partnership (GSEP)
Steel Working Group
Questionnaire & Answer Sheet, 2014 & 2015
Dear Sir/Madam,
This is a request for you to answer the questionnaire from Global Superior Energy Performance
Partnership (GSEP) Steel Working Group.
The GSEP Steel Working Group focuses on improving the energy efficiency and environmental
performance of the iron and steel sector as one of the most energy-intensive industrial sectors. The
activities are carried out in a bottom-up manner through public-private partnerships.
In the last meeting on September 12, 2014, over 30 participants from public and private sector in the
United States, European Union, India, China, South Korea, Japan and IEA exchanged the latest
information on the current status and challenges in the public/private sector and necessity of
technology introduction etc. Participants agreed to have the Action Plan as attached and are
requested to answer the questionnaire herewith.
Through this questionnaire, we, the Secretariat of GSEP Steel Working Group, would like to ask the
private sector to describe the current situation and future prospect of adopting technologies regarding
energy-saving and environmental protection and implementing energy management activities. On the
other hand, it is expected that the public sector would answer the latest policies/activities and issues in
order to promote efficient technology introduction and energy management.
All responses that we receive will be used for the sole purpose for the next GSEP Steel WG Meeting to
be held in the middle of 2015.
We appreciate it very much if you could answer the questionnaire by March 6, 2015. Thank you very
much in advance for your cooperation.
Please answer the following questions and send it back to the following three people.
Mr. Yuki Ogura, Deloitte Tohmatsu Consulting, [[email protected]]
Mr. Yukihiro Uchida, Deloitte Tohmatsu Consulting, [[email protected]]
GSEP Steel WG Secretariat via email.
* Answers will not be open to public and will be treated in a strictly confidential manner. If it is necessary to disclose
any part of your answers, we will contact for your permission in writing in advance.
Please fill the information about yourself.
Date of answer
Name of personnel
Tel/Fax
E-mail
Designation
Department
Organization
Address
Country
/
/
Notes:
If you belong to private sector, please describe your answer of Questions marked with
For Private Sector
If you belong to public sector, please describe your answer of Questions marked with
For Public Sector
78
GSEP Steel Working Group
For Private Sector
Q1: Current situation and future prospect for utilizing technologies
1) Please choose the ID# of technologies from Table 1 (please refer to P.5-7 ANNEX) that you have
installed and answer “Adoption Status.”(Refer to Table 1, multiple answers allowed.)
Answer Sheet Q1-1
ID
(Choose ID# from
Table 1)
A: Installed and
actively used
Adoption Status (put “X”)
B: Installed but not
C: Installed but
actively used
removed
D: Others
2) If you have any other technologies, please describe your answer in the box below.
Answer Sheet Q1-2
3) Please choose the ID of technologies from Table 1 that you would like to adopt in the future and
answer the challenges/issues/problems to introduce the chosen technologies? ( (please refer to P.5-7
ANNEX) , Multiple answers allowed)
Answer Sheet Q1-3
ID
(Choose ID# from
Table 1)
Challenges (put “X”)
A:
B:
Financial Technical
C:
Infra
-stracture
D:
Retro
-fitting
E:
Others (specific reasons)
4) If you have any other technologies, please describe your answer in the box below.
Answer Sheet Q1-4
79
GSEP Steel Working Group
For Private Sector
Q2: Current status and challenges for energy management in the iron and steel plant
1) Do you recognize any regulations which have impacts on your plants from the perspectives of
energy management?
If Yes,
- Please name the regulations.
- Are you currently in progress of any action plans for the regulations? If yes, Please briefly describe the action plan.
- Could you tell us your prospects for achieving the target of your company/facilities set by the regulation?
- Have you considered or Are you considering any plan to implement any particular measures to achieve that target?
If No,
- Are you currently in progress of any independent action plans for self-improvement on energy management? If yes,
Please briefly describe the action plan.
- Could you tell us your thoughts on effectiveness of the action plans?
Please describe your answer in the box below.
Answer Sheet Q2
80
GSEP Steel Working Group
For Public Sector
Q3: The information on policies and action plans relating to energy management in the iron and
steel industry
1) Please describe or send the related documents on the policies/regulations and action plans for
energy management in the iron and steel industry. (For example, the regulation or govnernmental
system of GHG reduction and energy saving, status of ETS)
Answer Sheet Q3
For Public Sector
Q4: Challenges, issues and necessity of assistance from other countries relating to technology
introduction, technical development and energy management
1) Are there any challenges and issues in the implementation of the above-mentioned action plans? If
your answer is YES, please describe the details in the box below. In addition, if you have any idea to
solve the challenges, please also describe them. Please describe your answer in the box below.
<Possible barriers> Initial Cost, Lack of financial support, Lack of technical support, Need of Infrastructure,
Maintenance, Space constraint for suitable layout, etc.)
<Possible Countermeasures> Financial Support, Training, Incentives, etc
Answer Sheet Q4
For Private Sector
For Public Sector
*GSEP Steel Working Group Members only
Q5: Expectation and comments for GSEP Steel WG
1) Are there any expectation and comments for GSEP Steel WG? For example, the discussion issues
which you would like to solve in cooperation with other countries. Please describe them.
Please describe your answer in the box below.
Answer Sheet Q5
Thank you for your cooperation.
Please answer the following questions and send it back to the following three members
Mr. Yuki Ogura, Deloitte Tohmatsu Consulting, [[email protected]]
Mr. Yukihiro Uchida, Deloitte Tohmatsu Consulting, [[email protected]]
GSEP Steel WG Secretariat via email.
81
GSEP Steel Working Group
Table 1:List of Technologies
Technologies listed in the Table 1 are considered to be significant countermeasures to tackle with energy conservation and environmental
protection issues of iron and steel industry according to SOACT, NEDO, EU-BAT and EPA-BACT.
Technologies Reference[*7]
ID
Title of Technology (SOACT base)[*1]
SOAC
EU
EPA
NEDO
T
-BAT -BACT
Sintering
○
1
Sinter Plant Heat Recovery (Steam Recovery from Sinter Cooler Waste Heat)
2
Sinter Plant Heat Recovery (Power Generation from Sinter Cooler Waste Heat) [*2]
3
District Heating Using Waste Heat
○
4
Dust Emissions Control
○
5
Exhaust Gas Treatment through Denitrification, Desulfurization, and Activated Coke Packed
Bed Absorption
○
6
Exhaust Gas Treatment through Selective Catalytic Reduction
○
7
Exhaust Gas Treatment through Low-Temperature Plasma
○
8
High Efficient (COG) Burner in Ignition Furnace for Sinter Plant [*3]
○
9
Exhaust Gas Treatment Through Additive Injection and Bagfilter Dedusting
○
10
Sintering machine ignition oven burner (NEDO)
11
Partial recycling of waste gas (EU-BAT)
○
○
○
○
○
Cokemaking
12
Coke Dry Quenching
○
○
13
Coal Moisture Control
○
○
○
○
14
High Pressure Ammonia Liquor Aspiration System
○
15
Stripping of ammonia from the waste water (EU-BAT)
16
Waste water treatment (EU-BAT)
17
Modern Leak-proof Door
18
Cleaning of oven doors and frame seals (EU-BAT)
19
Reduction of SO2 by coke oven gas desulphurisation (EU-BAT)
20
Land Based Pushing Emission Control System
21
Variable pressure regulation of ovens during the coking process (EU-BAT)
22
VSD COG compressor (EPA-BACT)
23
Coke Plant – Automation and Process Control System
○
○
○
24
COG-non-recovery Coke Battery [*3]
○
○
○
25
Waste Plastics Recycling Process Using Coke Ovens [*4]
-
○
○
○
○
○
○
○
○
○
○
○
○
Ironmaking
26
Top Pressure Recovery Turbine
○
○
○
○
27
Pulverized Coal Injection (PCI) System
○
○
○
○
28
Pulverized coal injection to 225 kg/ton iron (EPA-BACT)
29
Oxy-oil injection (EU-BAT)
○
○
30
Gas injection (EU-BAT)
○
○
31
Injection of COG and BOF gas (EPA-BACT)
32
Plastic injection (EU-BAT)
○
33
Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues
(EU-BAT)
○
34
Improve Blast Furnace Charge Distribution
35
Use of high quality ores (EU-BAT)
36
Charging carbon composite agglomerates (EPA-BACT)
37
Blast Furnace Gas and Cast House Dedusting
38
Blast furnace gas recycling (EPA-BACT)
39
B-gas (fueling) Regerenative Reheating Furnace [*5]
-
40
B-gas (fueling) Ignition Burner of Sinter [*6]
-
41
Direct injection of used oils, fats and emulsions as reducing agents and of solid iron residues
(EU-BAT)
42
Cast House Dust Suppression
43
Treatment and reuse of scrubbing water (EU-BAT)
44
Hydrocyclonage of blast furnace sludge (EU-BAT)
45
Slag Odor Control
46
Slag heat recovery (EPA-BACT)
47
Blast Furnace – Increase Hot Blast Temperature (>1100 Deg C)
○
48
Blast Furnace – Increase Blast Furnace Top Pressure (>0.5 Bar Gauge)
○
49
Improvement of combustion in hot stove (EPA-BACT)
50
Blast Furnace Heat Recuperation
○
51
Optimized Blast Furnace Process Control with Expert System
○
52
Alternative Ironmaking: Direct Reduction (DRI/HBI) and Direct Smelting
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
82
○
○
○
○
GSEP Steel Working Group
Technologies Reference[*7]
Title of Technology (SOACT base)[*1]
ID
EPA
EU
SOAC
NEDO
-BAT -BACT
T
53
Smelting Reduction Processes
○
54
Direct Reduction Processes
○
55
Coal Based Rotary Hearth Furnace Type Ironmaking Process [*3]
○
56
Paired Straight Hearth Furnace
○
57
Coal and Lump Ore Based Smelting-Reduction Type Ironmaking Process [*3]
○
58
Finex Process
○
59
Rotary Kiln Direct Reduction
○
60
Coal and Fine Ore Based DRI/HBI Production Process [*3]
○
61
Natural Gas Based Zero-Reforming DRI/HBI Production Process using Fine Ore [*3]
○
62
Coal Synthesis Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production
Process [*3]
○
63
Natural Gas and Lump Ore/Pellet Based Shaft Furnace Type DRI/HBI Production Process
with CO2 Removal System [*3]
○
64
High-efficiency cupola (NEDO)
○
○
○
Steelmaking
○
On-line Feedback Analyzer for Efficient Combustion [*3]
ProVision Lance-based Camera System for Vacuum Degasser - Real-time Melt Temperature
Measurement
○
67
Hot Metal Pretreatment
○
68
Programmed and efficient ladle heating (EPA-BACT)
69
Increase Thermal Efficiency by Using BOF Exhaust Gas as Fuel
○
70
Use Enclosures for BOF
○
○
71
Control and Automization of Converter Operation
○
○
○
72
OG-boiler System (Non-combustion)/Dry-type Cyclone Dust Catcher
○
73
Exhaust Gas Cooling System (Combustion System)
○
○
○
74
Converter gas recovery device (NEDO)
75
Laser Contouring System to Extend the Lifetime of BOF Refractory Lining
○
76
BOF Bottom Stirring
○
77
VSD on ventilation fans (EPA-BACT)
78
Dust hot briquetting and recycling with recovery of high zinc concentrated pellets for
external reuse (EU-BAT)
79
Elimination of Radiation Sources in EAF Charge Scrap
○
80
Improved Process Control (Neural Networks)
○
81
Hot DRI/HBI Charging to the EAF
○
82
Oxy-fuel Burners/Lancing
○
83
Scrap Preheating
○
84
New scrap-based steelmaking process predominantly using primary energy
○
85
Twin-shell DC with scrap preheating (EPA-BACT)
○
86
Bottom stirring/stirring gas injection (EPA-BACT)
○
87
Eccentric bottom tapping on existing furnace (EPA-BACT)
○
88
Post-combustion of the flue gases (EPA-BACT)
○
89
Engineered refractories (EPA-BACT)
○
90
Adjustable speed drives (ASDs) (EPA-BACT)
○
91
Transformer efficiency—ultra-high power transformers (EPA-BACT)
92
Control and Automation for EAF Optimization
○
93
Slag Foaming, Exchangeable Furnace and Injection Technology
○
94
Airtight operation (EPA-BACT)
95
Exhaust Gas Treatment Through Gas Cooling, Carbon Injection and Bagfilter Dedusting
○
96
Ecological and Economical Arc Furnace [*3][*9]
○
97
Waste Heat Recovery from EAF [*2][*9]
98
DC arc furnace (NEDO)
99
Shaft-type Continuous EAF [*3] (EPA-BACT)
65
66
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
Ladle Refining and Casting
100
○
Efficient caster ladle/tundish heating (EPA-BACT)
Casting
101
Strip Casting Technology [*3]
○
102
Thin Slab Casting and Hot Rolling
○
○
103
Hot Charging to Reheat Furnace of Rolling Mills
○
○
83
GSEP Steel Working Group
Technologies Reference[*7]
ID
Title of Technology (SOACT base)[*1]
SOAC
EU
EPA
NEDO
T
-BAT -BACT
○
104
Near net shape strip casting (EU-BAT)
105
Near net shape casting - strip (EPA-BACT)
○
○
Recycling and Waste Reduction
106
Reducing Fresh Water Use
○
107
Slag Recycling
○
108
Pressurization-type Steam Aging Equipment for Steel Slag
○
109
EAF slag processing (EU-BAT)
110
Treatment of high alloyed and stainless steel EAF slags (EU-BAT)
111
Rotary Hearth Furnace Dust Recycling System
112
Bag filter – combined or integrated reduction of solid and gaseous pollutants (EU-BAT)
○
○
○
○
○
Common Systems
113
Auditing Rotary Machines for Pump Efficiency
○
114
AIRMaster+ Software Tool – Improved Compressed Air System Performance
○
115
Combined Heat and Power Tool – Improved Overall Plant Efficiency and Fuel Use
○
116
Fan System Assessment Tool – Efficiency Enhancement for Industrial Fan Systems
○
117
MotorMaster+ International – Cost-Effective Motor System Efficiency Improvement
NOx and Energy Assessment Tool – Reduced NOx Emissions and Improved Energy
Efficiency
Process Heating Assessment and Survey Tool – Identify Heat Efficiency Improvement
Opportunities
○
120
Quick Plant Energy Profiler – First Step to Identify Opportunities for Energy Savings
○
121
Steam System Tools – Tools to Boost Steam System Efficiency
○
122
Inverter (VVVF; Variable Voltage Valiable Frequency) Drive for Motors [*3]
○
○
123
Regenerative Burner Total System for reheating furnace [*8]
○
○
124
Techniques to improve heat recovery (EU-BAT)
118
119
○
○
○
○
○
○
○
General Energy Savings & Environmental Measures
125
Energy Monitoring and Management Systems
○
126
Cogeneration (include Gas Turbine Combined Cycle (GTCC))
○
○
127
Technology for Effective Use of Slag
○
128
Hydrogen Production
○
129
Carbonation of Steel Slag
○
130
By-product generator set (NEDO)
○
131
Ironworks by-product gas, single-fuel-firing, high-efficiency, combined generator set (NEDO)
○
132
Management of steam traps in steam piping and drain water recovery (NEDO)
○
133
Power recovery by installation of steam turbine in steam pressure reducing line (NEDO)
○
134
Management of Compressed Air Delivery Pressure Optimization [*3] (NEDO)
○
135
Improving thermal insulation in industrial furnace (NEDO)
○
○
○
○
○
○
136 Preventive Maintenance (EPA-BACT)
*1) Description within ( ) indicates the technologies reference name. The title without ( ) refers to SOACT.
*2) JP Steel plantech Co.
*3) Arranged title after replacing trademark or trade name with technical terms
*4) http://www.nsc.co.jp/en/tech/report/pdf/n9413.pdf, http://www-cycle.nies.go.jp/precycle/kokus/about.html
*5) Referred to APP Research Report in China
*6) Referred to NEDO Research Report in China
*7) SOACT; The State–of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook (2nd Edition, 2010)
http://asiapacificpartnership.org/pdf/Projects/Steel/SOACT-Handbook-2nd-Edition.pdf
NEDO; Japanese Technologies for Energy Savings/GHG Emissions Reduction 《2008 Revised Edition》
http://ietd.iipnetwork.org/sites/ietp/files/Japanese%20Technologies%20for%20Energy%20Saving.pdf
EU-BAT; Best Available Techniques (BAT) Reference Document for Iron and Steel Production (2013)
http://eippcb.jrc.ec.europa.eu/reference/BREF/IS_Adopted_03_2012.pdf
EPA-BACT; Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry(2012)
http://www.epa.gov/nsr/ghgdocs/ironsteel.pdf
*8) Arranged in a comprehensible title
*9) Preconditions below are applied to calculate effects for technologies of #96, 97
<Electric Arc Furnace>
- 100% of scraps are utilized
- Non of preheating for scraps exists
- Batch type scrap supplier
- Electric power consumption rate: 430
kWh/ton
- CO2 emission factor of electric power: 0.80
tonCO2/M Wh
<Reheating Furnace>
- Heating temperature for billet: 1,100 degC
- Consumption of natural gases
- Preheating air temperature: 300 degC
- Fuel consumption rate: 350 M cal/ton
- Low calorific power of natural gas: 10.5
M cal/m3N
- CO2 emission factor of natural gas: 2.53
kgCO2/m3N
84
○
○
GSEP Steel Working Group
1
World Steel Association. (n.d.). Steel facts: Integrity is at the heart of the steel industry. Retrieved from
https://www.worldsteel.org/Steel-facts.html
2 International Energy Agency. (2015). Tracking clean energy progress 2015: Energy technology perspectives 2015 excerpt IEA
input to the clean energy ministerial. Retrieved from
http://www.iea.org/publications/freepublications/publication/Tracking_Clean_Energy_Progress_2015.pdf
3 International Energy Agency. (2015). Tracking clean energy progress 2015: Energy technology perspectives 2015 excerpt IEA
input to the clean energy ministerial. Retrieved from
http://www.iea.org/publications/freepublications/publication/Tracking_Clean_Energy_Progress_2015.pdf
4 World Steel Association. (n.d.). Steel's contribution to a low carbon future and climate resilitent societies. Retrieved from
https://www.worldsteel.org/publications/position-papers/Steel-s-contribution-to-a-low-carbon-future.html
5 Quoted from Janjua, R. (n.d.). Energy use in the steel industry [PDF document], p. 3. Retrieved from
https://www.iea.org/media/workshops/2014/industryreviewworkshopoct/8_Session2_B_WorldSteel_231014.pdf
6 Ministry of Economy, Trade, and Industry, Japan. (n.d.). GSEP: Sectoral Working Groups (Power WG, Steel WG, Cement WG), p.
3. Retrieved from
http://www.meti.go.jp/policy/energy_environment/global_warming/pdf/Update_of_the_GSEP_Sectoral_WG_METI.pdf
7 European Commission. (2014). The EU explained: Energy. Retrieved from http://europa.eu/pol/ener/index_en.htm
8 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
9 Europe, Russia and CIS Division, Overseas Research Department, JETRO. (2011, February). EU のエネルギー新戦略の概要
[Summary of EU energy new strategy]. ユーロトレンド [Euro Trend], 1-12. Retrieved from
https://www.jetro.go.jp/ext_images/jfile/report/07000536/eurotrend_feb2011_R3.pdf
10 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
11 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
12 Quoted from European Commission. (n.d.). Energy: 2030 Energy Strategy. Retrieved from
http://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy
13 Roadmap 2050. (n.d.). Roadmap 2050. Retrieved from http://www.roadmap2050.eu/project/roadmap-2050
14 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
15 Roadmap 2050. (n.d.). Roadmap 2050. Retrieved from http://www.roadmap2050.eu/project/roadmap-2050
16
European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
17 European Union. (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy
efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Retrieved from
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027
18 European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/energy-efficiency-directive
19 European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/energy-efficiency-directive
20 European Union. (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy
efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Retrieved from
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027
21 European Commission. (n.d.). Energy: Energy Efficiency Directive. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/energy-efficiency-directive
22 European Union. (2010). Directive 2010/31/EU of The European Parliament and of the Council of 19 May 2010 on the energy
performance of buildings. Retrieved from http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32010L0031
23
European Commission. (n.d.). Energy: Buildings. Retrieved from https://ec.europa.eu/energy/en/topics/energyefficiency/buildings
24 European Union. (2009). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing
a framework for the setting of ecodesign requirements for energy-related products. Retrieved from http://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX%3A32009L0125
25 European Union. (2010). Directive 2010/30/EU of the European Parliament and of the Council of 19 May 2010 on the indication
by labelling and standard product information of the consumption of energy and other resources by energy-related products.
Retrieved from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0001:0012:en:PDF
26 European Commission. (2015). Commission staff working document: Evaluation of the Energy Labelling and Ecodesign
Directives. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_autre_document_travail_service_part1_v2.pdf
27 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
28 Office of Market Mechanisms, Ministry of the Environment. (2014). 諸外国における排出量取引の実施・検討状況 [The
operation and examination status of Energy Trading Scheme in other countries] [PDF document]. Retrieved from
http://www.env.go.jp/earth/ondanka/det/os-info/jokyo.pdf
29
European Commission. (2014). The European Union explained: Climate action. Retrieved from
85
GSEP Steel Working Group
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
30 European Commission. (n.d.). Climate action: Monitoring, reporting and verification of EU ETS emissions: Policy. Retrieved
from http://ec.europa.eu/clima/policies/ets/monitoring/index_en.htm
31 European Commission. (2012). Guidance document: The monitoring and reporting regulation – General guidance for
installations. Retrieved from http://ec.europa.eu/clima/policies/ets/monitoring/docs/gd1_guidance_installations_en.pdf
32 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
33 European Commission. (n.d.). Climate action: Effort Sharing Decision: Documentation. Retrieved from
http://ec.europa.eu/clima/policies/effort/documentation_en.htm
34 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
35 European Commission. (n.d.). Climate action: Effort Sharing Decision: Policy. Retrieved from
http://ec.europa.eu/clima/policies/effort/index_en.htm
36 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
37
Office of Market Mechanisms, Ministry of the Environment. (2014). 諸外国における排出量取引の実施・検討状況 [The
operation and examination status of Energy Trading Scheme in other countries] [PDF document]. Retrieved from
http://www.env.go.jp/earth/ondanka/det/os-info/jokyo.pdf
38 European Commission. (n.d.). Climate action: Structural reform of the European carbon market: Policy. Retrieved from
http://ec.europa.eu/clima/policies/ets/reform/index_en.htm
39 Tezuka, H. (2014). EU の 2030 年 40%削減目標は野心的か?(第 2 回): EU の 2030 年目標を分析して見ると・・ [Is the
EU 2030 target of cutting 40% of CO2 emissions ambitious? (Vol.2): Analysis of the EU 2030 Target]. Retrieved from
http://ieei.or.jp/wp-content/uploads/2014/03/exp140307.pdf
40 Quoted from European Union. (2015). Decision (EU) 2015/1814 of the European Parliament and of the Council of 6 October
2015 concerning the establishment and operation of a market stability reserve for the Union greenhouse gas emission trading scheme
and amending Directive 2003/87/EC (Text with EEA relevance). Retrieved from http://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=uriserv:OJ.L_.2015.264.01.0001.01.ENG
41 European Committee for Standardization. (n.d.). Who we are. Retrieved from https://www.cen.eu/about/Pages/default.aspx
42 The European Committee for Standardization., & the European Committee for Electrotechnical Standardization. (n.d.). About us:
Mission & objectives. Retrieved from http://www.cencenelec.eu/aboutus/Mission/Pages/default.aspx
43 European Committee for Standardization. (n.d.). CEN/TC 264 - Air quality: CEN/TC 264 Work programme. Retrieved from
http://standards.cen.eu/dyn/www/f?p=204:22:0::::FSP_ORG_ID,FSP_LANG_ID:6245,25&cs=188DC176A2CD0B647551520F9AF
099B6D
44 European Committee for Standardization. (n.d.). CEN/TC 264 - Air quality: FprEN 19694-2. Retrieved from
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_LANG_ID:38640,25&cs=13F4A3EB327B0157B4E7F2D3
A272DA6C2
45 European Committee for Standardization. (n.d.). Who we are: Our role in Europe. Retrieved from
https://www.cen.eu/about/RoleEurope/Pages/default.aspx
46 Quoted from Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry PublicPrivate Partnership: Stronger smarter swifter [Brochure], p. 1. Retrieved from
http://www.spire2030.eu/uploads/Modules/Publications/20131210-spire_brochure_web---final.pdf
47 Sustainable Process Industry through Resource and Energy Efficiency. (n.d.). SPIRE PPP - Sustainable Process Industries
through Resource & Energy Efficiency - [PDF document].
48 European Commission. (n.d.). What is Horizon 2020? Retrieved from https://ec.europa.eu/programmes/horizon2020/en/whathorizon-2020
49 Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry Public-Private
Partnership: Stronger smarter swifter [Brochure]. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210spire_brochure_web---final.pdf
50 Bøwadt, S. (n.d.). SPIRE PPP (Sustainable Process Industry through Resource and Energy Efficiency) [PDF document].
51 Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry Public-Private
Partnership: Stronger smarter swifter [Brochure]. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210spire_brochure_web---final.pdf
52 Bøwadt, S. (n.d.). SPIRE PPP (Sustainable Process Industry through Resource and Energy Efficiency) [PDF document].
53 Sustainable Process Industry through Resource and Energy Efficiency. (2013). Sustainable Process Industry Public-Private
Partnership: Stronger smarter swifter [Brochure]. Retrieved from http://www.spire2030.eu/uploads/Modules/Publications/20131210spire_brochure_web---final.pdf
54 Sustainable Process Industry through Resource and Energy Efficiency. (n.d.). SPIRE PPP - Sustainable Process Industries
through Resource & Energy Efficiency - [PDF document].
55 TASIO. (n.d.). Waste Heat Recovery for Power Valorisation with Organic Rankine Cycle Technology in Energy Intensive
Industries. Retrieved from http://www.tasio-h2020.eu/
56 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
57 European Commission. (n.d.). Climate action: NER 300 programme: Policy. Retrieved from
http://ec.europa.eu/clima/policies/lowcarbon/ner300/index_en.htm
58 European Commission. (2014). The European Union explained: Climate action. Retrieved from
86
GSEP Steel Working Group
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
59 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
60 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
61 European Commission. (n.d.). Climate action: LIFE climate action: Policy. Retrieved from
http://ec.europa.eu/clima/policies/budget/life/index_en.htm
62 European Commission. (2014). The European Union explained: Climate action. Retrieved from
http://europa.eu/pol/pdf/flipbook/en/climate_action_en.pdf
63 European Union. (n.d.). European Commission: Overview. Retrieved from http://europa.eu/about-eu/institutions-bodies/europeancommission/index_en.htm
64 Quoted from Latvia and the European Commission on behalf of the European Union and its Member States. (2015). Submission
by Latvia and the European Commission on behalf of the European Union and its Member states, p. 1. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/Latvia/1/LV-03-06-EU%20INDC.pdf
65 EUROFER – The European Steel Association. (n.d.). About us: Welcome to EUROFER, the European Steel Association.
Retrieved from http://www.eurofer.org/About%20us/Eurofer%20Portrait.fhtml
66 EUROFER – The European Steel Association. (n.d.). About us: Members. Retrieved from
http://www.eurofer.org/About%20us/Members.
67 EUROFER – The European Steel Association. (n.d.). About us: Associated Members. Retrieved from
http://www.eurofer.org/About%20us/Associated%20Members
68 EUROFER – The European Steel Association. (n.d.). Sustainable steel: Steel and climate protection: applied CO mitigation.
2
Retrieved from http://www.eurofer.org/Sustainable%20Steel/Steel%20and%20Climate%20Protection.fhtml
69 EUROFER – The European Steel Association. (2013). A steel roadmap for a low carbon Europe 2050. Retrieved from
http://www.nocarbonnation.net/docs/roadmaps/2013-Steel_Roadmap.pdf
70 EUROFER – The European Steel Association., & IndustriAll – European Trade Union. (2013). Joint EUROFER-industriAll
declaration on the European Steel Action Plan. Retrieved from
http://www.eurofer.be/Issues%26Positions/Social%20Affairs/Joint%20EUROFERindustriAll%20Declaration%20on%20the%20European%20Steel%20Action%20Plan.pdf
71 EUROFER – The European Steel Association. (2015). Expectations of the European Steel Industry on the results of the Paris
COP21 Climate Change Negotiations. Retrieved from
http://www.eurofer.org/Issues%26Positions/Communication/20151124%20%20EUROFER%20position%20paper%20COP21.pdf
72 EUROFER – The European Steel Association. (2014.). Energy Efficiency of the EU Steel Industry [PDF document].
73 De Lamberterie, B. (2014). Steel production - energy efficiency working group: Final report, January 2014.
74 EUROFER – The European Steel Association. (2014.). Energy Efficiency of the EU Steel Industry [PDF document].
75 De Lamberterie, B. (2014). c.
76 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r
eport_clean_stc.pdf
77 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r
eport_clean_stc.pdf
78 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r
eport_clean_stc.pdf
79 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r
eport_clean_stc.pdf
80 ULCOS. (n.d.). About ULCOS: Overview. Retrieved from http://www.ulcos.org/en/about_ulcos/home.php
81 EUROFER – The European Steel Association. (2013). A steel roadmap for a low carbon Europe 2050. Retrieved from
http://www.nocarbonnation.net/docs/roadmaps/2013-Steel_Roadmap.pdf
82 ICF Consulting Limited. (2015). Study on energy efficiency and energy saving potential in industry and on possible policy
mechanisms. Retrieved from
https://ec.europa.eu/energy/sites/ener/files/documents/151201%20DG%20ENER%20Industrial%20EE%20study%20-%20final%20r
eport_clean_stc.pdf
83 Energy Conservation and Renewable Energy Department, Agency for Natural Resources and Energy, Ministry of Economy, Trade
and Industry, Government of Japan. (2014). 省エネ法の改正について [About the amendment of the Energy Saving Act] [PDF
document]. Retrieved from
http://www.enecho.meti.go.jp/category/saving_and_new/saving/summary/pdf/140401_syouenehoukaisei.pdf
84 Government of Japan. (2008). 京都議定書目標達成計画 [Kyoto Protocol Target Achievement Plan]. Retrieved from
http://www.env.go.jp/earth/ondanka/kptap/plan080328/full.pdf
85 Government of Japan. (2008). 京都議定書目標達成計画 [Kyoto Protocol Target Achievement Plan]. Retrieved from
87
GSEP Steel Working Group
http://www.env.go.jp/earth/ondanka/kptap/plan080328/full.pdf
86 Prime Minister of Japan and His Cabinet. (2007). 地球温暖化対策に関する内閣総理大臣演説
美しい星へのいざない
「Invitation to 『 Cool Earth 50 』」 ~ 3つの提案、3つの原則 ~ 国際交流会議「アジアの未来」晩餐会にて [Prime
Minister’s speech on climate action: Invitation to Cool Earth “Invitation to ‘Cool Earth 50’” ~ three proposals, three principles ~ at
a banquet of International Conference on The Future of Asia]. Retrieved from
http://www.kantei.go.jp/jp/abespeech/2007/05/24speech.html
87 Quoted from ACE: Actions for Cool Earth: Japan’s diplomatic strategy for countering global warming. (n.d.). [PDF document], p.
1.
88 Innovation for Cool Earth Forum. (n.d.). ICEF とは [What's ICEF?]. Retrieved from http://www.icefforum.org/jp/what_icef/index.html
89 Quoted from Innovation for Cool Earth Forum. (n.d.). What's ICEF? Retrieved from http://www.icef-forum.org/what_icef/
90 Innovation for Cool Earth Forum. (n.d.). Innovation for Cool Earth Forum: 1st annual meeting. Retrieved from http://www.icefforum.org/icef_2014/index.html
91 The Nikkei. (2015). 温暖化ガス削減の仕組み導入を
国際会議が声明 [An international conference called for the
introduction of a scheme for GHG emissions reduction]. Retrieved from
http://www.nikkei.com/article/DGXLASFS08H6R_Y5A001C1EE8000/
92 The Nikkei. (2015). 温暖化ガス削減の仕組み導入を
国際会議が声明 [An international conference called for the
introduction of a scheme for GHG emissions reduction]. Retrieved from
http://www.nikkei.com/article/DGXLASFS08H6R_Y5A001C1EE8000/
93 Energy Conservation and Renewable Energy Department, Agency for Natural Resources and Energy, Ministry of Economy, Trade
and Industry, Government of Japan. (2014). 省エネ法の改正について [About the amendment of the Energy Saving Act] [PDF
document]. Retrieved from
http://www.enecho.meti.go.jp/category/saving_and_new/saving/summary/pdf/140401_syouenehoukaisei.pdf
94 Quoted from Ministry of Justice, Government of Japan. (2009). エネルギーの使用の合理化に関する法律: Act on the Rational
Use of Energy [Act on the Rational Use of Energy: Act on the Rational Use of Energy]. Retrieved from
http://www.japaneselawtranslation.go.jp/law/detail/?ft=1&re=01&dn=1&co=01&ia=03&x=0&y=0&ky=%E5%9C%B0%E7%90%8
3%E6%B8%A9%E6%9A%96%E5%8C%96&page=2
95 The Ministry of the Environment, Government of Japan., & Ministry of Economy, Trade and Industry, Government of Japan.
(2015). 地球温暖化対策の推進に関する法律に基づく温室効果ガス排出量算定・報告・公表制度による平成 24(2012)
年度温室効果ガス排出量の集計結果 [Collected results of GHG emissions in 2012 with the system of GHS emissions calculation,
reporting, and announcement based on the Act on Promotion of Global Warming Countermeasures]. Retrieved from
https://www.env.go.jp/press/files/jp/27440.pdf
96 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from
http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx
97 Quoted from Japan. (2015). Submission of Japan’s Intended Nationally Determined Contribution (INDC), p. 3. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/Japan/1/20150717_Japan's%20INDC.pdf
98 Terao, M. (2015). Domestic and global energy saving activities of Japanese steel industry [PowerPoint slides].
99 The Japan Iron and Steel Federation, personal communication, December 10, 2015.
100 The Japan Iron and Steel Federation, personal communication, December 10, 2015.
101 Keidanren. (n.d.). 経団連環境自主行動計画の概要 [Summary of Keidanren’s Commitment to a Low Carbon Society].
Retrieved from http://www.keidanren.or.jp/japanese/policy/pol133/outline.html
102 Keidanren. (n.d.). 経団連環境自主行動計画の概要 [Summary of Keidanren’s Commitment to a Low Carbon Society].
Retrieved from http://www.keidanren.or.jp/japanese/policy/pol133/outline.html
103 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from
https://www.keidanren.or.jp/policy/2013/003_honbun.pdf
104 産業構造審議会・総合資源エネルギー調査会 自主行動計画フォローアップ合同小委員会 [Joint Subcommittee on
Voluntary Action Plan Follow-Up, Industrial Structural Council & Advisory Committee for Natural Resources and Energy, Ministry
of Economy, Trade and Industry, Government of Japan]., & 中央環境審議会 自主行動計画フォローアップ専門委員会
[Expert Committee on Voluntary Action Plan Follow-Up, Central Environment Council, Ministry of the Environment, Government
of Japan]. (2007). 2006 年度 自主行動計画フォローアップ 結果及び今後の課題等 [Voluntary Action Plan follow-up:
Results and future tasks etc.]. Retrieved from http://www.meti.go.jp/policy/energy_environment/global_warming/pdf/2006vap.pdf
105 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from
https://www.keidanren.or.jp/policy/2013/003_honbun.pdf
106 Keidanren. (2015). 低炭素社会実行計画
2015 年度フォローアップ結果 総括編 <2014 年度実績> [速報版]
[Summary of the results of fiscal 2015 follow-up to the KEIDANREN's Commitment to a Low Carbon Society (Fiscal 2014
performance) (Preliminary version)]. Retrieved from https://www.keidanren.or.jp/policy/2015/102_all.pdf
107 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from
https://www.keidanren.or.jp/policy/2013/003_honbun.pdf
108 Keidanren. (2009). 経団連 低炭素社会実行計画: Keidanren's Commitment to a Low Carbon Society [Keidanren's
Commitment to a Low Carbon Society: Keidanren's Commitment to a Low Carbon Society]. Retrieved from
http://www.keidanren.or.jp/japanese/policy/2009/107.html
109 Keidanren. (2015). 2030 年に向けた 経団連低炭素社会実行計画(フェーズⅡ)-経済界のさらなる挑戦- [Keidanren's
Commitment to a Low Carbon Society (Phase II) toward 2030: Further challenge of the business community]. Retrieved from
88
GSEP Steel Working Group
http://www.keidanren.or.jp/policy/2015/031_honbun.pdf
110 Keidanren. (2016). 経団連低炭素社会実行計画 [Keidanren Voluntary Action Plan on the Environment]. Retrieved from
https://www.keidanren.or.jp/policy/2013/003_honbun.pdf
111 Keidanren. (2015). 2030 年に向けた 経団連低炭素社会実行計画(フェーズⅡ)-経済界のさらなる挑戦- [Keidanren's
Commitment to a Low Carbon Society (Phase II) toward 2030: Further challenge of the business community]. Retrieved from
http://www.keidanren.or.jp/policy/2015/031_honbun.pdf
112 Quoted from Fujimoto, K. (2015). Current status and future prospect of Japanese steel industry [PowerPoint slides], p. 8.
113 Fujimoto, K. (2015). Current status and future prospect of Japanese steel industry [PowerPoint slides], p. 8.
114 Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度
エネルギー使用合理化国際標準化推
進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方
法)に関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international
standardization promotion project (Joint research and development and foundation development project for dissemination of energysaving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2
emissions amount and intensity)): Research report].
115 Okazaki, T., Tezuka, H., Nakano. N., & Terashima, K. (2012). GSEP 鉄鋼 WG について [About GSEP Steel WG]. 環境管理
[Environment Management], 48(7), 38-46. Retrieved from http://www.e-jemai.jp/jemai_club/update/pdf/p038046_0710_%E7%89%B9%E9%9B%862_GSEP%E9%89%84%E9%8B%BCWG%E3%81%AB%E3%81%A4%E3%81%84%E3%
81%A6.pdf
116 Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度
エネルギー使用合理化国際標準化推
進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方
法)に関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international
standardization promotion project (Joint research and development and foundation development project for dissemination of energysaving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2
emissions amount and intensity)): Research report].
117 Deloitte Tohmatsu Consulting Co., Ltd., & JP Steel Plantech Co. (2015). 平成 26 年度
エネルギー使用合理化国際標準化推
進事業委託費(省エネルギー等国際標準共同研究開発・普及基盤構築事業: ISO14404(鉄鋼 CO2 排出量・原単位計算方
法)に関する普及基盤構築): 調査報告書 [Fiscal 2014 consignment costs for energy use utilization international
standardization promotion project (Joint research and development and foundation development project for dissemination of energysaving international standards: Foundation development for dissemination regrading to ISO14404 (calculation method of CO2
emissions amount and intensity)): Research report].
118 Wada, M. (2015). Introduction of Technology Customized List for ASEAN Ver. 1.0 [PowerPoint slides].
119 Quoted from the Japan Iron and Steel Federation. (2014). Overview of energy saving activities in Japanese steel industry and
ISO14404 [PowerPoint slides], p. 11.
120 Wada, M. (2015). Introduction of Technology Customized List for ASEAN Ver. 1.0 [PowerPoint slides].
121 Terao, M. (2015). Domestic and global energy saving activities of Japanese steel industry [PowerPoint slides].
122 Terao, M. (2015). Domestic and global energy saving activities of Japanese steel industry [PowerPoint slides].
123 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
124 Sano, J. (2011). 「第 12 次 5 カ年計画」の主要目標と実現に向けた施策―7%成長を掲げた背景―」[Major goals and
measures of “the 12th Five-Year Plan”: Background of targeting 7% growth]. 環太平洋ビジネス情報 RIM [The Pacific Rim
Business Information RIM], 11(43). 95-112.
125 Haacke, O. (2015). Understanding China’s 13th Five-Year Plan. The China Business Review. Retrieved from
http://www.chinabusinessreview.com/understanding-chinas-13th-five-year-plan/
126 China Coal Resource. (2015). China releases clean coal action plan 2015-2020. H. Huo (Ed.). Retrieved from
http://en.sxcoal.com/117736/NewsShow.html
127 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from
http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx
128 Quoted from People’s Republic of China. (2015). Enhanced actions on climate change: China’s Intended Nationally Determined
Contributions, p. 5. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20-%20on%2030%20June%2020
15.pdf
129 The White House, Government of the United States of America. (2014). U.S.-China Joint Announcement on Climate Change.
Retrieved from https://www.whitehouse.gov/the-press-office/2014/11/11/us-china-joint-announcement-climate-change
130 Filho, W. L., & Voudouris, V. (Eds.). (2013). Global energy policy and security. Retrieved from
https://books.google.co.jp/books?id=yn68BAAAQBAJ&pg=PA217&lpg=PA217&dq=Energy+Survey+Committee+of+India+(ESCI)
&source=bl&ots=Vr_ZAALMSX&sig=BRCAqNUtT7qduZADUJ4EC4hpjpM&hl=en&sa=X&ved=0ahUKEwjMvcey7fXJAhUCU
KYKHQnCA3MQ6AEIHDAA#v=onepage&q=Energy%20Survey%20Committee%20of%20India%20(ESCI)&f=false
131 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
132 Filho, W. L., & Voudouris, V. (Eds.). (2013). Global energy policy and security. Retrieved from
https://books.google.co.jp/books?id=yn68BAAAQBAJ&pg=PA217&lpg=PA217&dq=Energy+Survey+Committee+of+India+(ESCI)
&source=bl&ots=Vr_ZAALMSX&sig=BRCAqNUtT7qduZADUJ4EC4hpjpM&hl=en&sa=X&ved=0ahUKEwjMvcey7fXJAhUCU
KYKHQnCA3MQ6AEIHDAA#v=onepage&q=Energy%20Survey%20Committee%20of%20India%20(ESCI)&f=false
133 Planning Commission, Government of India. (2013). Twelfth Five Year Plan (2012–2017) (Vols. 1-3). Retrieved from
89
GSEP Steel Working Group
http://planningcommission.gov.in/plans/planrel/fiveyr/welcome.html
134 Planning Commission, Government of India. (2011). Faster, sustainable and more inclusive growth: An approach to the Twelfth
Five Year Plan. Retrieved from http://planningcommission.gov.in/plans/planrel/12appdrft/appraoch_12plan.pdf
135 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
136 Planning Commission, Government of India. (2013). Twelfth Five Year Plan (2012–2017) (Vols. 1-3). Retrieved from
http://planningcommission.gov.in/plans/planrel/fiveyr/welcome.html
137 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
138 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
139 The Institute of Energy Economics, Japan. (2014). 平成 25 年度
国際エネルギー使用合理化対策事業 インドにおける
省エネルギー等政策共同研究事業 報告書 [Report of FY2013 Indian energy saving policy joint research project, international
energy use rationalization project]. Retrieved from http://www.meti.go.jp/meti_lib/report/2014fy/E003925.pdf
140 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
141 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
142 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from
http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx
143 Quoted from India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice, p. 29.
Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf
144 Republic of India. (2015). India’s Intended Nationally Determined Contribution: Working towards climate justice. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf
145 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
146 National CDM Authority, Ministry of Environment and Forests, Government of India. (n.d.). About us. Retrieved from
http://www.cdmindia.gov.in/aboutus.php
147 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
148
Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
149 Srinivas, S. N., Das, A. C. R., & Iyer, S. (Eds.). (2013). Energy-efficient steel re-rolling: How a pioneering project is
transforming the Indian secondary steel sector. Retrieved from
http://in.one.un.org/img/uploads/STEEL_BOOK_Low_res_for_upload.pdf
150 United Nations Development Programme. (2013). Improved energy efficiency in steel re-rolling sector results in higher profits
and more jobs [Press release]. Retrieved from
http://www.in.undp.org/content/india/en/home/presscenter/pressreleases/2013/11/25/improved-energy-efficiency-in-steel-re-rollingsector-results-in.html
151 New Energy and Industrial Technology Development Organization. (n.d.). About NEDO. Retrieved from
http://www.nedo.go.jp/english/introducing_index.html
152 New Energy and Industrial Technology Development Organization. (n.d.). NEDO project activities (budget: 131.9 billion yen).
Retrieved from http://www.nedo.go.jp/english/introducing_pja.html
153 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
154 Central Pollution Control Board Ministry of Environment and Forests, Government of India. (n.d.). CREP: Charter on Corporate
Responsibility for Environmental Protection (CREP). Retrieved from http://cpcb.nic.in/crep.php
155 Central Pollution Control Board Ministry of Environment and Forests. (2003). Charter on Corporate Responsibility for
Environmental Protection: Action points for 17 categories of industries. Retrieved from http://www.indiansugar.com/PDFS/CREP2003-FullText.pdf
156 Central Pollution Control Board Ministry of Environment and Forests, Government of India. (n.d.). CREP: Charter on Corporate
Responsibility for Environmental Protection (CREP). Retrieved from http://cpcb.nic.in/crep.php
157 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
158 Ministry of Environment and Forests. (n.d.). Annual report 2005-2006. Retrieved from
http://www.moef.nic.in/report/0506/Chap%2004.pdf
159 Central Pollution Control Board Ministry of Environment and Forests, Government of India. (n.d.). CREP: Charter on Corporate
Responsibility for Environmental Protection (CREP). Retrieved from http://cpcb.nic.in/crep.php
160 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
Answer Sheet, 2014 & 2015.
161 Ministry of Steel, Government of India. (n.d.). Research & development in iron & steel sector: Background. Retrieved from
http://steel.gov.in/Scheme%20for%20promotion%20of%20Research%20&%20Development%20in%20Indian%20Iron%20&%20St
eel%20Industry.htm#
162 Referred to the response to the Global Superior Energy Performance Partnership (GSEP) Steel Working Group Questionnaire &
90
GSEP Steel Working Group
Answer Sheet, 2014 & 2015.
163 Korea.net. (n.d.). The Korean economy - the miracle on the Hangang River. Retrieved from
http://www.korea.net/AboutKorea/Economy/The-Miracle-on-The-Hangang
164 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1).
Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20
and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf
165 Shin, S. (2009). Korea’s National Green Growth Strategy and environmental policy. Korea Environmental Policy Bulletin, 17(1).
Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20
and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf
166 제 63 주년 광복절 및 대한민국 건국 60 년 경축사 "위대한 국민, 새로운 꿈" 위대한 국민, 기적의 역사 [Vision for
the next 60 years: Low-carbon Green Growth]. (n.d.).
167
제 63 주년 광복절 및 대한민국 건국 60 년 경축사 "위대한 국민, 새로운 꿈" 위대한 국민, 기적의 역사 [Vision for
the next 60 years: Low-carbon Green Growth]. (n.d.).
168 Quoted from Blue-Ocean Content and Strategy. (n.d.). National Basic Energy Plan, Korea (2008-2030), p. 4. Retrieved from
http://www.energyplus.or.kr/pdf/11_ing/110207_t2.pdf
169 Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea:
Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from
http://www.moleg.go.kr/english/korLawEng?pstSeq=54792
170 Blue-Ocean Content and Strategy. (n.d.). National Basic Energy Plan, Korea (2008-2030). Retrieved from
http://www.energyplus.or.kr/pdf/11_ing/110207_t2.pdf
171 Korea Energy Agency. (2015). KEA Annual Report 2014. Retrieved from
http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf
172 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1).
Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20
and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf
173
Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure].
174 Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure].
175 Quoted from Committee on Green Growth, Government of Korea. (n.d.). Green Growth Korea: Now & the future [Brochure], p.
20.
176 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on
Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf
177 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1).
Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20
and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf
178 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on
Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf
179 Quoted from Korea Energy Management Corporation. (n.d.). Energy Management System (EnMS). Retrieved from
http://www.kemco.or.kr/new_eng/pg02/pg02100330.asp
180 Korea Energy Agency. (n.d.). Energy Management System (EnMS). Retrieved from
http://www.energy.or.kr/renew_eng/energy/industry/enms.aspx
181 Korea Energy Management Corporation. (n.d.). Energy Management System (EnMS). Retrieved from
http://www.kemco.or.kr/new_eng/pg02/pg02100330.asp
182 Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea:
Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from
http://www.moleg.go.kr/english/korLawEng;jsessionid=kjmTtZQPu1bQdxjokg86YsuCywByy3tgSiusGLC4IveVo6lbrwpeogUfqbY0
IIYw?pstSeq=54783&brdSeq=33
183 Korea Energy Agency. (n.d.). Energy Service Companies (ESCO). Retrieved from
http://www.energy.or.kr/renew_eng/energy/industry/esco.aspx
184 Korea Energy Agency. (2015). KEA Annual Report 2014. Retrieved from
http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf
185 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on
Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf
186
Korea Energy Agency. (2015). KEA Annual Report 2014. Retrieved from
http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf
187 Shin, S. (2009). Korea’s National Green Growth Strategy and Environmental Policy. Korea Environmental Policy Bulletin, 17(1).
Retrieved from http://apps.unep.org/redirect.php?file=/publications/pmtdocuments/Korea%20Environmental%20Policy%20Bulletin%20-%20Korea%e2%80%99s%20National%20Green%20Growth%20Strategy%20
91
GSEP Steel Working Group
and%20Environmental%20Policy2009Korea's%20National%20Green%20Growth%20Strategy%20and%20Environmental%20Policy_KEPB2009.pdf
188 International Emissions Trading Association. (2014). South Korea: The world’s carbon markets: A case study guide to emissions
trading. Retrieved from
https://www.edf.org/sites/default/files/South-Korea-ETS-Case-Study-March-2014.pdf
189 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on
Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf
190 Kim, Y. (2012). Emissions Trading Scheme for Low-Carbon Green Growth in Korea [PDF document]. Retrieved from
http://unfccc.int/files/bodies/awg-lca/application/pdf/20120517_korea_1117.pdf
191 The Republic of Korea. (2015). Submission by the Republic of Korea: Intended Nationally Determined Contribution. Retrieved
from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20
the%20Republic%20of%20Korea%20on%20June%2030.pdf
192 Kim, Y. (2012). Emissions Trading Scheme for Low-Carbon Green Growth in Korea [PDF document]. Retrieved from
http://unfccc.int/files/bodies/awg-lca/application/pdf/20120517_korea_1117.pdf
193 Ministry of Government Legislation of Republic of Korea. (2010). Laws on Green Growth, and Economic Investment in Korea:
Korea’s Low Carbon, Green Growth Policy and Law Laws Concerning Green Growth. Retrieved from
http://faolex.fao.org/docs/pdf/kor102410.pdf
194 Yoo, C. (2012). South Korea streams ahead. Global Carbon Autumn 2012, 16-17. Retrieved from
https://www.pwc.com/gx/en/sustainability/publications/assets/pwc-emmisions-trading-south-korea.pdf
195 Office of Market Mechanisms, Ministry of the Environment. (2013). 韓国温室効果ガス排出権取引制度の概要 [Summary of
Korea Emissions Trading Scheme]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/mats/kr20130110.pdf
196 International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme. Retrieved from
https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47
197 Yoo, C. (2012). South Korea streams ahead. Global Carbon Autumn 2012. Retrieved from
https://www.pwc.com/gx/en/sustainability/publications/assets/pwc-emmisions-trading-south-korea.pdf
198 Ministry of the Environment Office of Market Mechanisms. (2013). 韓国温室効果ガス排出権取引制度の概要 [Summary of
Korea Emissions Trading Scheme]. Retrieved from http://www.env.go.jp/earth/ondanka/det/os-info/mats/kr20130110.pdf
199 Quoted from International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme, p. 1. Retrieved from
https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47
200 International Carbon Action Partnership. (2015). Korea Emissions Trading Scheme. Retrieved from
https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&systems%5B%5D=47
201 United Nations Framework Convention on Climate Change. (n.d.). INDCs as communicated by Parties. Retrieved from
http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx
202 Quoted from The Republic of Korea. (2015). Submission by the Republic of Korea: Intended Nationally Determined
Contribution, p. 1. Retrieved from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20
the%20Republic%20of%20Korea%20on%20June%2030.pdf
203 The Republic of Korea. (2015). Submission by the Republic of Korea: Intended Nationally Determined Contribution. Retrieved
from
http://www4.unfccc.int/submissions/INDC/Published%20Documents/Republic%20of%20Korea/1/INDC%20Submission%20by%20
the%20Republic%20of%20Korea%20on%20June%2030.pdf
204 Ministry of Trade, Industry and Energy, Government of Korea. (2015). 산업통상자원부, 기후변화 대응과 에너지신산업의
체계적 육성을 위해 「에너지신산업정책단」 출범 [Ministry of Trade, Industry and Energy launched the Department of energyrelated new industries for climate change and systematic development of energy-related new industries] [Press release].
205 Quoted from Ministry of Trade, Industry and Energy, Government of Korea. (2014). Energy-related new industries. Retrieved
from http://english.motie.go.kr/?p=5452
206 Quoted from Ministry of Trade, Industry and Energy, Government of Korea. (2014). Energy-related new industries. Retrieved
from http://english.motie.go.kr/?p=5452
207 Ministry of Trade, Industry and Energy, Government of Korea. (2015). 산업통상자원부, 기후변화 대응과 에너지신산업의
체계적 육성을 위해 「에너지신산업정책단」 출범 [Ministry of Trade, Industry and Energy launched the Department of energyrelated new industries for climate change and systematic development of energy-related new industries] [Press release].
208 Quoted from Ministry of Trade, Industry and Energy, Government of Korea. (2014). Energy-related new industries. Retrieved
from http://english.motie.go.kr/?p=5452
209 Korea Iron and Steel Association. (n.d.). History. Retrieved from https://www.kosa.or.kr/sub/eng/about/sub01.jsp
210 Quoted from Korea Iron and Steel Association. (n.d.). Activities. Retrieved from https://www.kosa.or.kr/sub/eng/about/sub01.jsp
211 POSCO. (n.d.). History of POSCO: vision 1965~1969. Retrieved from
http://www.posco.com/homepage/docs/eng5/jsp/company/posco/s91a1000012c.jsp
212 POSCO. (n.d.). History of POSCO: Success 1993~. Retrieved from
http://www.posco.com/homepage/docs/eng5/jsp/company/posco/s91a1000015c.jsp
213 Park, K. (2010). Green Growth Strategy of POSCO [PDF document]. Retrieved from http://www.oecd.org/sti/ind/45009940.pdf
214 The Republic of Korea. (n.d.). Korea’s Third National Communication under the United Nations Framework Convention on
Climate Change: Low Carbon, Green Growth. Retrieved from http://unfccc.int/resource/docs/natc/kornc3.pdf
215 POSCO. (n.d.). Climate change /energy: Vision and strategies to mitigate climate change. Retrieved from
http://www.posco.com/homepage/docs/eng5/jsp/sustain/environ/environment_03_02.jsp
92