講義予定 Lecture Schedule 都市基盤工学 (リモートセンシングとGIS) (1) 2016年 4月13日(水)イントロダクション Introduction (2) 2016年 4月20日(水)リモセンの基礎原理1 Fundamentals of RS #1 Liu (3) 2016年 4月27日(水)リモセンの基礎原理2 Fundamentals of RS #2 (4) 2016年 5月 2日(月)衛星とセンサ1 Satellites and sensors #1 (5) 2016年 5月11日(水)画像解析1 Image Analysis #1 Liu (6) 2016年 5月18日(水)画像解析2 Image Analysis #2 Liu (7) 2016年 5月25日(水)衛星とセンサ2 Satellites and sensors #2 (8) 2016年 6月 1日(水)衛星とセンサ3 Satellites and sensors #3 (9) 2016年 6月 8日(水)マイクロ波リモセン#1 Microwave RS #1 (10) 2016年 6月 15日(水)GISの基礎1 Basics of GIS #1 Maruyama (11) 2016年 6月22日(水)GISの基礎2 Basics of GIS #2 Maruyama (12) 2016年 6月29日(水)GISの基礎3 Basics of GIS #3 Maruyama (13) 2016年 7月 6日(水)課題発表1 Presentation by Students #1 (14) 2016年 7月 13日(水)課題発表2 Presentation by Students #2 (15) 2016年 7月27日(水)課題発表3 Presentation by Students #3 Remote Sensing and GIS 第5回 2016. 5. 11 千葉大学 大学院工学研究科 Graduate School of Engineering, Chiba University 建築・都市科学専攻 都市環境システムコース Department of Urban Environment Systems 劉 ウェン Wen LIU http://ares.tu.chiba-u.jp/ 2 Image Interpretation (1) 画像判読 Image Interpretation and Analysis 画像の判読と処理 Interpretation and analysis of remote sensing imagery involves the identification and/or measurement of various targets in an image in order to extract useful information about them. リモセン画像から解析対象物を決める Visual interpretation 目視判読 Digital processing デジタル画像処理 Preprocessing 前処理 Image Enhancement 画像強調 Image Transformation 画像変換 Image Classification & Analysis 画像分類・解析 Integration 統合 3 Visual interpretation and analysis dates back to the early beginnings of remote sensing for air photo interpretation. Digital processing and analysis is more recent with the advent of digital recording of remote sensing data and the development of computers. 目視判読からデジタル画像処理へ Recognizing targets is the key to interpretation and information extraction. Observing the differences between targets and their backgrounds involves comparing different targets based on any, or all, of the visual elements of tone, shape, size, pattern, texture, shadow, and association. 色調,形,大きさ,パターン,テクスチャ,影,付随物 4 Image Interpretation (2) Image Interpretation (3) Tone refers to the relative brightness or color of objects in an image. Generally, tone is the fundamental element for distinguishing between different targets or features. Variations in tone also allows the elements of shape, texture, and pattern of objects to be distinguished. 色調は相対的な明るさや色 Shape refers to the general form, structure, or outline of individual objects. Shape can be a very distinctive clue for interpretation. Straight edge shapes typically represent urban or agricultural (field) targets, while natural features, such as forest edges, are generally more irregular in shape. 形は識別に重要,人工物は整形,自然は不整形 Size of objects in an image is a function of scale. It is important to assess the size of a target relative to other objects in a scene, as well as the absolute size, to aid in the interpretation of that target. 大きさは対象の識別に重要 5 Digital Image Processing Pattern refers to the spatial arrangement of visibly discernible objects. Typically an orderly repetition of similar tones and textures will produce a distinctive and ultimately recognizable pattern. パターンは識別できるものの配置 Texture refers to the arrangement and frequency of tonal variation in particular areas of an image. Rough textures would consist of an irregular tone where the grey levels change abruptly in a small area, whereas smooth textures would have very little tonal variation. テクスチャは色調の変化 Shadow is also helpful in interpretation as it may provide an idea of the profile and relative height of a target or targets which may make identification easier. 影は高さ等の識別を容易にする Association takes into account the relationship between other recognizable objects or features in proximity to the target of interest. The identification of features that one would expect to associate with other features may provide information to facilitate identification. 付随物は対象の識別を容易にする 6 Preprocessing 前処理 デジタル画像処理 In order to process remote sensing imagery digitally, the data must be recorded and available in a digital form suitable for storage on a computer tape or disk. デジタル画像処理にはデジタルデータ Preprocessing functions involve those operations that are normally required prior to the main data analysis and extraction of information, and are generally grouped as radiometric or geometric corrections. 前処理には放射量補正と幾何補正がある Today virtually all image interpretation and analysis involves digital processing. Several commercially available software systems have been developed specifically for remote sensing image processing and analysis. 市販の画像解析用ソフト Most of the common image processing functions available in image analysis systems can be categorized into the following four categories: Preprocessing 前処理 Image Enhancement 画像強調 Image Transformation 画像変換 Image Classification & Analysis 画像分類・解析 7 Radiometric corrections include correcting the data for sensor irregularities and unwanted sensor or atmospheric noise, and converting the data so they accurately represent the reflected or emitted radiation measured by the sensor. 放射量補正は,センサや大気の不整・ノイズを除く Geometric corrections include correcting for geometric distortions due to sensor-Earth geometry variations, and conversion of the data to real world coordinates (e.g. latitude and longitude) on the Earth‘s surface. 幾何補正はセンサと地球の位置関係などの歪みを是正 8 Radiometric corrections (2) Atmospheric Correction Radiometric corrections (1) 放射量補正 周辺減光 Randomness of sensitivity センサ補正 A sensor will receive not only the direct reflected or emitted radiation from a target, but also the scattered radiation from a target and the scattered radiation from the atmosphere, which is called path radiance. Atmospheric correction is used to remove these effects. The atmospheric correction method is classified into the method using the radiative transfer equation, the method using ground truth data and other methods. 太陽高度・地形補正 大気補正 大気補正は放射伝達方程式を利用す るか,地上観測値を利用する 直達光・反射光の減衰 天空光:大気によって 散乱された光 光路放射: センサに届く、対象物からの反射,放射以外に大 気によって散乱された光 Vignetting: With the use of a lens, a fringe area in the corners becomes darker as compared with the central area. 周辺減光:光学系レンズで中心部より周辺が暗くなる現象 9 Geometric Distortions 幾何学的ひずみ 走査線のひずみ 縮尺誤差 射影ひずみ 縦横比のひずみ 地球曲率によるひずみ 中心投影方式のセンサの外部ひずみ 多重反射 Geometric Registration Geometric distortion is an error on an image, between the actual image coordinates and the ideal image coordinates which would be projected theoretically with an ideal sensor and under ideal conditions. 平行移動 反射光の散乱 光学センサの入射光の 大気による影響 10 位置合わせ To correct unsystematic or random errors, geometric registration of the imagery to a known ground coordinate system must be performed. 幾何的なランダム誤差を除くには地球座標系との位置合わせが必要 The geometric registration process involves identifying the image coordinates of several clearly discernible points, called ground control points (or GCPs), in the distorted image (A - A1 to A4), and matching them to their true positions in ground coordinates.地上基準点 The true ground coordinates are typically measured from a map (B B1 to B4), either in paper or digital format. This is image-to-map registration. 画像の地図への位置合わせ Geometric registration may also be performed by registering one images to another image, called image-to-image registration, and is often done prior to performing various image transformation procedures. 多時期画像を用いる時などは画像同士の位 置合わせが必要 斜めひずみ 地形起伏による ひずみ 11 12 Image-to-Image registration for change detection Resampling and Interpolation (1) 再配列と内挿 2時期画像の変化抽出 In order to geometrically correct the original distorted image, a procedure called resampling is used to determine the digital values to place in the new pixel locations of the corrected output image. The resampling process calculates the new pixel values from the original digital pixel values in the uncorrected image. 元の幾何的に歪んだ画像を修正するには, 再配列が必要. Pre-event Post-event Master image Master image Slave image GCP: Well defined shapes, like road intersections, border of dams, distinctive water bodies, rivers, etc. (i,j) (i,j+1) u=f(x,y) v=g(x,y) (i+1,j) Slave image i’ (i+1,j+1) j’ 13 There are three common methods for resampling: nearest neighbor, bilinear interpolation, and cubic convolution. 3つの再配列法 Nearest neighbor resampling uses the digital value from the pixel in the original image which is nearest to the new pixel location in the corrected image. This is the simplest method and does not alter the original values, but may result in some pixel values being duplicated while others are lost. This method also tends to result in a disjointed or blocky image appearance. 最近隣内挿法:最も近いピクセルの値に置き換える方法 14 Nearest-neighbor Resampling and Interpolation (2) 再配列と内挿 Bilinear interpolation resampling takes a weighted average of four pixels in the original image nearest to the new pixel location. The averaging process alters the original pixel values and creates entirely new digital values in the output image. This may be undesirable if further processing and analysis is to be done. 共1次内挿法は4つのピクセルの値の線形式 Cubic convolution resampling goes even further to calculate a distance weighted average of a block of sixteen pixels from the original image which surround the new output pixel location. As with bilinear interpolation, this method results in completely new pixel values. However, these two methods both produce images which have a much sharper appearance and avoid the blocky appearance of the nearest neighbor method. 3次たたみ込み内挿法は16ピクセルの3次式に よる内挿.鮮鋭化の効果あり Interpolation methods 内挿法 15 Remote Sensing Note, Japan Association on Remote Sensing, 1996. 16 Area correlation of Two Images in Sub-pixel Level Synthetic Middle-Resolution Images and Offset 52 pixels x 28.8 m 1.5km Low resolution image Reference image High resolution image Template From: 2.4m To: 28.8 m Offset N K M Assumed Point Spread Function (PSF) Synthetic Middle-Resolution Image with different offset Correction Matrix 1.0 Coefficient of determination L i Coefficient of Determination vs. Offset 0.9 Band1 0.8 Band2 Band3 Band4 0.7 0.6 j 0.5 M rij 0.4 0.3 0.2 0.1 0.0 2.4 0 7.2 5 14.4 10 21.6 15 20 28.8 25 30 Offset (m) N (T m 1 n 1 m,n T )( Si m, j n S ) 1/ 2 M N M N (Tm,n T ) ( Si m, j n S ) m 1 n 1 m 1 n 1 17 Registration – Location of the GCP’s (Maximum Value of the Spatial Cross-correlation) Sub-scene from the target image Sub-sampled up to 1/12 (cubic convolution) 624 pixels 200 pixels Cross-Correlation of 7.2m Offset - Template 08 0.8 100 0.6 200 300 0.4 400 0.2 500 0 600 -0.2 700 624 pixels -0.4 800 Correlation matrix showing the maximum cross-correlation 100 200 300 400 500 600 700 800 By Dr. Miguel Estrada 18 Image Enhancement (1) 画像強調 Location of the offset by spatial cross-correlation index 200 pixels Reference image 1/ 2 pixel: 302 line: 301 19 Image enhancement is solely to improve the appearance of the imagery to assist in visual interpretation and analysis. Examples of enhancement functions include contrast stretching to increase the tonal distinction between various features in a scene. 判読や解析を容易にするための画像色調の改善 The advantage of digital imagery is that it allows us to manipulate the digital pixel values in an image. Although radiometric corrections for illumination, atmospheric influences, and sensor characteristics may be done prior to distribution of data to the user, the image may still not be optimized for visual interpretation. デジタル画像は数値の操作が容易 With large variations in spectral response from a diverse range of targets (e.g. forest, deserts, snowfields, water, etc.) no generic radiometric correction could optimally account for and display the optimum brightness range and contrast for all targets. Thus, a custom adjustment of the range and distribution of brightness values is usually necessary.様々な対象物に対応するには,適宜,明度の修正が必要 20 Image Enhancement (2) In raw imagery, the useful data often populates only a small portion of the available range of digital values. 可能な輝度値の範囲の一部しか 使っていない場合が多い. Image Enhancement (3) 8-bit image (0 - 255 brightness levels) Contrast enhancement involves changing the original values so that more of the available range is used, thereby increasing the contrast between targets and their backgrounds. コントラスト強調はより広い輝度値の範囲に広げる A histogram is a graphical representation of the brightness values that comprise an image. The brightness values are displayed along the x-axis of the graph. The frequency of occurrence of each of these values in the image is shown on the y-axis. ヒストグラムは画像の輝度値の頻度分布を示す By manipulating the range of digital values, we can apply various enhancements to the data. The simplest type of enhancement is a linear contrast stretch. This involves identifying lower and upper bounds from the histogram and applying a transformation to stretch this range to fill the full range. 最も単純なコントラスト強調は線形ヒストグラム伸張 輝度値のヒストグラム x-axis = 0 to 255 y-axis = pixel数 21 After Stretch 22 Image Enhancement (4) Example of Linear Contrast Stretch A uniform distribution of the input range of values across the full range may not always be an appropriate enhancement, particularly if the input range is not uniformly distributed. In this case, a histogram-equalized stretch may be better. 輝度値が均一分布でないときは頻度を平滑 化するような伸張も考えられる 画像表示例:明るさの自動調整(多バンド) Funabashi, Chiba Prefecture, Landsat TM 1984 Band 1,2,3 True color The histogram-equalized stretch assigns more display values (range) to the frequently occurring portions of the histogram. In this way, the detail in these areas will be better enhanced relative to those areas of the original histogram where values occur less frequently. ヒストグラム平滑化により頻度の高い 領域をより詳細に見ることが可能 Linear stretch 線形ストレッチ 「はじめてのリモートセンシング-地球観測衛星ASTERで見る」,山口靖・八木令子・小田島高之監修(ジオ テクノス発行),4000円,CD-ROM付き,2004年. Before Stretch 23 24 ヒストグラム変換 Histogram Conversion Histogram equalization ヒストグラム平滑化 Example of Histogram Equalization 画像表示例:ヒストグラム平滑化による明るさの調整 Histogram normalization ヒストグラム正規化 Funabashi, Chiba Prefecture, Landsat TM 1984 Band 1,2,3 True color ヒストグラム ヒストグラム Histogram equalization ヒストグラム平滑化 原画像のヒストグラムを正規分布に なるように変換 累積ヒストグラム 原画像のヒストグラムを頻度が一定になる ように変換 25 Correction of Shadow from Digital Images 11:30 13:30 15:30 日向 白板反射量 (12/04) Under Sunshine 日向 12:30 14:30 16:00 In the 日影 白板反射量 shadow (12/04) 日影 160 B 140 G R 画像における影補正 11:30 13:30 15:30 12:30 14:30 16:00 26 Shadow Correction of VHR Satellite Images Original image 高解像度衛星画像の影補正 Corrected shadow-free image 35 NIR B 30 G R NIR 120 反 射 量 100 Irradiance Irradiance 反 射 量 80 60 25 20 15 10 40 20 5 0 350 450 550 650 750 850 950 0 1050 350 Wavelength [nm] Wavelength (nm) 450 550 650 750 850 950 1050 Wavelength [nm] Wavelength (nm) Ratio= Shadow/Sunlit 日影/日向 (12/04) 100% B 80% G R 11:30 13:30 15:30 12:30 14:30 16:00 950 1050 NIR 60% 40% 20% 0% 350 450 550 650 750 Wavelength (nm) Wavelength [nm] 850 •Various darkness in shadow. •The intensity ratio of shadow and sunlit areas are time-, season-, and location-dependent. •The ratio is also wavelengthdependent. Even the NDVI is time-dependent. 27 ■■■ Object-Based Shadow Extraction and Correction of High-Resolution Optical Satellite Images, W. Liu, F. Yamazaki, IEEE JSTARS, 8, pp. 1-7, 2012. Shadow and non-shadow pairs 28 Free Software for Image Analysis Free Satellite Images (Landsat) 画像処理の無料ソフト • 「RSP Ver2.03」 http://www.ctie.co.jp/software/rsp/#ttl06 • Download the zip file and decompress it ダウンロードして解凍する 29 Landsat Image Searching Band name Landsat 4/5 (TM) Landsat 8 (OLI) Costal Aerosol - 1 Blue 1 2 Green 2 3 Red 3 4 Near Infrared (NIR) 4 5 SWIR 1 5 6 SWIR 2 7 7 Panchromatic 8 (15 m) 8 (15 m)) Cirrus - 9 Thermal Infrared (TIRS) 1 6 (120 m) 10 (60 m) Thermal Infrared (TIRS) 2 6 (120 m) 11 (60 m) Resolution 30 m 30 Limit the Target Area Obtain the free Landsat images from the USGS website http://landsat.usgs.gov/index.php 31 • Find the Path and Row numbers for the target area using LandsatLook Viewer 32 Searching the satellite images Limit Date Range and Data Type • Search the Landsat images using EarthExploxer • Input the Path and Row number to limit the searching area • Input the date range and data type for searching 33 Add Cloud Cover Condition 34 Data for Image Analysis • Less than 10% • Search the Landsat 8 image taken on March 28, 2014, coving Kanto area. 35 36
© Copyright 2024 ExpyDoc