Joint Mechanical Properties

Study on the Jointed Rock Mass for
the Excavation of Hyper-KAMIOKANDE
Cavern at Kamioka Mine
Naruki Wakabayashi
Shimizu Corporation Tokyo Japan
1
NNN07 Hamamatsu, Japan 3-5 October 2005
Topics
・Previous Geological Survey and Stability Analysis
for the Hyper-K cavern
・Site Selection
・Isotropic Elastic FEM Analysis for the Investigation of
Cavern Shape, Size and Type
・Ongoing Investigation and Analysis for Jointed
Rock Mass
・Investigation of Joint Orientation
・Obtaining In-Situ Rock Joints and Investigation of
Joint Mechanical Properties
・Pull-out Test of Two Types of Cable Bolt
・Two Type Analysis for Consideration Joint Effects
2
Site Selection
Kamioka Mine Location
Mozumi
mine
Super-K
Kamioka
Mine
Tokyo
Hamamatsu
Proposed Area
Proposed Area in Mozumi Mine
is about 10km South from the
Super-Kamiokande.
Tochibora
mine3
Geological Map of Proposed Site
at Tochibora Mine Plan View of + 550mEL
Core Boring
”NAMARI” Fault
Limestone
Hyper-K
proposed Site
Hornblende
Biotite Gneiss
& Migmatite
Biotite Gneiss
”240゜- ME” Fault
”ANKO” Fault
N
Existing
Tunnel
Surveyed
Proposed Site Formation is
Hornblende Biotite Gneiss and
Migmatite.
Skarn
Orebody
Zone
4
Cylindrical Dome Isotropic Elastic
Huge Tunnel
Larger than Super-K
FEM Analysis
Two Parallel Tunnels
”240°-ME” Fault
”ANKO” Fault
”NAMARI” Fault
Comparison of the Hyper-K Cavern from Various View Points
Cavern Type
Multiple
Domes
Single Tunnel
Two Parallel
Tunnels
Construction Period & Cost
×
○
○
Early Observation Startup
△
△
○
Observation during Maintenance
○
×
○
Cost Performance of Detector Tank
×
○
△
Cavern Stability
◎
○
○
Total Evaluation
×
△
○
Height
Width
Length
Vertical Cross Section Area (m2)
Volume of one Cavern (m3)
Required No. of Caverns
Total Volume of Caverns (m3)
60.0
Φ60
--3,368
152,600
54.0
48.0
500
2,076
1,038,000
54.0
48.0
250
2,076
519,000
7
1
2
1,068,200
1,038,000
1,038,000
Size of one
Cavern (m)
Image Design of Two 250m
Long Parallel Tunnels
5
Summary of Previous Study
Site Selection : Tochibora Mine, +480mEL~+550m EL is the
most appropriate location with very competent rock condition.
Cavern Design: Two 250m Long Parallel Tunnels with Section
of 2,076m2 are capable of being safely excavated.
Cavern Layout : Two Parallel Tunnels as above should be
Located with 80m –100m Spacing and 50m-100m Offset to
avoid the poor Zone of Surrounding Faults.
In Isotropic Elastic FEM Analysis of Previous Study, Young’s
Modulus was empirically decreased as Jointed Rock Mass.
It is Important and Necessary to Consider Numerically the
Influence of Joint Orientation and Mechanical Properties.
6
Analysis for Jointed Rock Mass
Discontinuous
Analysis
Composition of Elastic Blocks
Surrounding Joints
Key Block
Distinct Element Method
(DEM)
Equivalent
Continuum Analysis
Anisotropic Young’s Modulus
Considering Joint Orientation and
Mechanical Properties
Damage Tensor
Crack Tensor
・Characteristics of Joint Orientation
・Mechanical Properties of Joint and Rock Core
・Mechanical Properties of Support such as Cable Bolt
7
Investigation of Jointed Rock Mass
-100
大規模地下空洞立地可能性調査
坑道調査(400m)縮尺1:300
凡例
B(B-Ⅰ、B-Ⅱ)
伊西岩
角閃石片麻岩
CH(B-Ⅲ、C-Ⅱ)
スカルン
アプライト
緑泥石化片麻岩
片理面
AP
Ao
Measurement of Joint Orientation
in this Existing Tunnel
Rock Types
Gneiss
Migmatite
岩盤分類凡例
CM(B-Ⅳ、C-Ⅲ)
CL(D-Ⅲ、C-Ⅳ、C-Ⅴ)
D(D-Ⅳ、D-Ⅴ)
20
Ap
30
B-Ⅰ Ap
85
60
Ap
~
B-Ⅱ
Ap
Ap
180
Ap
B-Ⅱ
Ap
200
B-Ⅱ
B-Ⅰ
75
Ap
C-Ⅲ
C-Ⅳ B-Ⅳ
S70E
240°目断層
B-Ⅲ
B-Ⅲ
B-Ⅱ
滴水あり
160
B-Ⅲ
Ap
B-Ⅲ
Ap
Ap
Ap
210
Ao
B-Ⅱ
Ap
Ap
B-Ⅱ
190
Ao
Ao
B-Ⅲ
B-Ⅰ
B-Ⅰ
170
C-Ⅲ
80
Ao
Ao
Ao
80
Ap
Ap
Ao
Ao
Ap
Ap
Ap
Ap
Ap
~
B-Ⅱ
150
B-Ⅱ
Ao
~
Ap
140
160
Ap
Ap
Ap
Ap
Ao
80
Ap
Ap
Ap
Ap
Ap
Ao
~
Ao
Ap
Ap
130
Ap
Ap
Ap
Ap
Ap
B-Ⅲ
170
B-Ⅲ
230
B-Ⅱ
Ao
Ao
Ao
Ap
Ap
B-Ⅲ
60
B-Ⅱ
Ap
B-Ⅰ
Ao
Ap
100
70
240
Ao
Ao
Ao
B-Ⅱ
Ao
Ao
Ao
Ap
B-Ⅱ
Ao
B-Ⅲ
D-Ⅴ
70
80
90
110
N
B-Ⅰ
50
120
220
Ap
40
~~
割れ目
調
査
開
始
点
0
10
~
Rock Classification
B Very Good
CH Good
CM Medium
85
B-Ⅲ
250
D-Ⅳ
-200
-200
260
B-Ⅲ
Ap
B-Ⅱ
Ap
290
B-Ⅱ
300
B-Ⅲ
Ap
180
B-Ⅳ
Ap
Ap
Ap
B-Ⅱ
B-Ⅲ
B-Ⅱ
270
280
B-Ⅲ
Ap
C-Ⅳ
B-Ⅱ
B-Ⅱ
310
320
80
190
C-Ⅳ
330
Ap
Ap
350
B-ⅢAp
B-Ⅱ
B-Ⅱ
C-Ⅲ
B-Ⅱ
B-Ⅲ
Ap
B-Ⅲ
Ap
B-Ⅱ
Ap
70
380
Ao
B-Ⅱ
Ao
B-Ⅲ
Ao
70
Ao
B-Ⅳ
Ap
B-Ⅱ
Ao
B-Ⅱ
Ao
Ao
Ao
200
70
390
400
B-Ⅲ
Ao
Ao
C-Ⅳ
Ao
Ao
210
B-Ⅳ
220
0
+200
Ao
+100
Ao
B-Ⅰ
75
-200
調
査
終
了
点
Ap
Ap
B-Ⅲ
Ap
75
360
370
B-Ⅱ
B-Ⅲ
340
Ap
Ap
Ap
Ap
B-Ⅲ
巻末資料3 岩盤分類図
B-Ⅲ
+550m EL
230
B-Ⅱ
0
85
B-Ⅲ
B-Ⅲ
B-Ⅱ
B-Ⅳ
Ap
Obtaining Rock Joint (3 Places)
Pull-out Test of Cable bolt (6 Places)
8
Investigation of Joint Orientation
・Major Joint Set : Strike E-W and Dip ±70~90°
・Another Joint Set : Strike NE-WS and Dip ± 40~50°
N Migmatite
N
Gneiss
0
0
Projection of Poles
E
W
Joint
E
W
n=130 (P)
Num total: 130
n=131 (P)
Num total: 131
N
Strike
W
Pole S
S
N
Equal angle projection, lower hemisphere
0
Equal angle projection, lower hemisphere
×
0
E
W
S
N
E
Dip
E
W
n=130
max. dens.=5.82 (at 344/ 15)
min. dens.=0.00
Contours at:
0.00,
1.00,
2.00,
3.00,
4.00,
5.00,
(Multiples of random distribution)
n=131
max. dens.=9.44 (at 180/ 5)
min. dens.=0.00
Contours at:
0.00,
1.00,
2.00,
3.00,
4.00,
5.00,
6.00,
7.00,
8.00,
9.00,
(Multiples of random distribution)
Pole Density Contours
9
S
Equal angle projection, lower hemisphere
S
Equal angle projection, lower hemisphere
Situation of Obtaining In-Site Rock Joints
Diamond Drilling
Joint
Recovered Core with Joint
Joint
10
Joint Mechanical Properties
Direct Shear Test of Rock Joints
・Joint Deformability Parameters such as
Normal and Shear Stiffness, Dilatancy
Angle
・Joint Shear Strength such as Cohesion
and Internal Friction Angle
Rock Joint Specimen
with extensometers
Normal Stress
Shear Test Equipment
(Normal and Shear load are 1MN)
Shear Displacement
11
Strength (N/mm2)
Shear せん断強度(N/mm2)
Stress) (N/mm2)
Normal垂直応力 (N/mm
Results of Direct Shear Test
shear-3-1-v
12
σn=10N/mm2
2
10
8
6
4
Normal
Stiffness
=67N/mm2/mm
2
0
0.00
0.05
0.10
0.15
0.20
0.25
16
Cohesion=0.57N/mm2
tan54°
Internal Frictionτ=σn
angle
12
=33°
14
10
8
6
4
τ=0.5+σn tan33°
2
0
0
0.30
16
2
2/mm
せん断剛性=60N/mm
/mm
Shear Stiffness=60N/mm
14
12
Shear Strength
10
3-1(σn=10MPa)
2-1(σn=5MPa)
1-1(σn=5MPa)
2-2(σn=2MPa)
8
6
4
2
0
0.0
1.0
2.0
3.0
4.0
せん断変位(mm)
Shear Displacement
(mm)
5.0
(mm)
Normal Displacement
垂直変位(mm)
Stress (N/mm2)
Shear
せん断応力(N/mm2)
垂直変位 (mm)
Normal Displacement
(mm)
2
4
6
8
10
Normal 鉛直応力(N/mm2)
Stress (N/mm2)
12
0.6
3-1(σn=10MPa)
2-1(σn=5MPa)
1-1(σn=5MPa)
2-2(σn=2MPa)
0.5
0.4
0.3
0.2
Dilatancy angle=2.4°
0.1
0
-0.1
-0.2
0.0
1.0
Shear
2.0
3.0
せん断変位(mm)
Displacement
4.0
(mm)
5.0
12
Pull-Out Test of Two Type Cable Bolts
Economical Support System should be used
・Usual Support System for Large Cavern is Rock Anchor → Expensive
・Proposed Support System is Rock Bolt and Cable Bolt → Economical
・Special Cable Bolt with Dimples has very high Strength
・Mechanical Properties of Cable bolt was estimated by Pull-Out Test
Usual Cable Bolt without Dimples
(PC-Cable Bolt)
Special Cable Bolt with Dimples
(ST-Cable Bolt)
13
Situation of Pull-Out Tests
Diamond Drilling
Inserting Cable Bolts
ST-Cable Bolt
PC-Cable bolt
Setting up Equipments
Pull-Out Test
Jock and Dial Gauge
Pressure Pump
14
Results of Pull-Out Tests
Cable bolt model
Gneiss (B)
片麻岩B級
250
ST
荷重(kN)
(kN)
Load
200
No.1-L
No.2-L
No.2-上
No.1-R
No.2-R
No.2-下
150
付着強度
Strength (kN/m)
付着剛性
Stiffness (kN/m/m)
100
50
PC
1.40E+05
△Gneiss (CH)
□Gneiss (B) 片麻岩CM級(ST)
伊西岩CH級(ST)
ST ◇Migmatite(B)
○Migmatite(CH)
片麻岩CM級(PC)
△Gneiss (CH)
□Gneiss (B) 伊西岩CH級(PC)
PC ◇Migmatite(B)
○Migmatite(CH)
片麻岩B級(ST)
伊西岩B級(ST)
片麻岩B級(PC)
伊西岩B級(PC)
0
0
2
4
6
8
変位(mm)
10
12
14
1.20E+05
Displacement (mm)
200
付着剛性(kN/m/m)
(kN/m/m)
Stiffness
伊西岩B級
Migmatite
(B)
1.00E+05
8.00E+04
No.3-L
No.6-L
No.3-R
6.00E+04
No.6-R
ST
荷重(kN)
(kN)
Load
150
100
50
PC
ST:付着強度above
270kN/m以上
ST Strength
270kN/m
付着剛性 53900kN/m/m.以上
Stiffness above 53MN/m/m
PC:付着強度
53kN/m以上
PC
Strength
above 53kN/m
付着剛性 40100kN/m/m.以上
Stiffness above 40MN/m/m
4.00E+04
2.00E+04
0.00E+00
0
0
0
2
4
6
8
変位(mm)
10
Displacement (mm)
12
14
50
100
150
200
250
付着強度(kN/m)
Strength
(kN/m)
300
350
400
15
Mechanical Properties
Properties
Rock Mass
Same as
Intact Rock
Young’s Modulus=64.3 kN/mm2 Poisson’s Ratio=0.25
Density=0.26NM/m3
Joint
Normal Stiffness=67N/mm2/mm
Shear Stiffness=60N/mm2/mm Dairatancy Angle=2.4°
Cohesion=0.57N/mm2 Internal Frictional angle=33°
ST-Cable Bolt
Shear Strength= 270kN/m Shear Stiffness=53MN/m/m
PC-Cable Bolt Shear Strength= 53kN/m
Shear Stiffness=40MN/m/m
Mechanical Properties of Intact Rock Core
Migmatite
Gneiss
Compressive Strength (N/mm2)
191
176
Young’s Modulus (kN/mm2)
60.4
64.3
Poisson’s Ratio
0.24
0.26
Density (MN/m3)
0.027
0.027
16
Discontinuous Analysis by DEM
”NAMARI”
NAMARI” Fault
240゜- ME”
ME” Fault
”240゜
Cavern Direction is East and West
W48m×H54m
2070m2
N
ANKO” Fault
”ANKO”
DEM Analysis is Performed to
Establish the Behavior of Jointed Rock
Mass and the Effect of Support
System.
Huge Tunnnel
Cavern Type and Direction
Analysis Cases
Support
Case 1 Without Support
Rock Bolt (Length=6m :Space=2m)
Case 2
Double PC-Cable Bolt (Length=15m :Space=2m)
Case 3
Rock Bolt (Length=6m :Space=2m)
Double ST-Cable Bolt (Length=15m :Space=2m)
In-Situ Stress
Isotropic Stress
σH=σv=14.4
(N/mm2)
(Overburden:500m)
17
Procedure of Analysis
200m
Second
Step
200m
First Step
Strike E-W Strike NS-WS
Dip ±70~90° Dip ± 40~50°
Analysis Model
Joints are Generated
Statistically According to
the Joint Orientation
Third
Step
Fourth
Step
Establishing Support System after
Each Excavation Step
18
Displacement Vector and Cable Axial Force
45
93
89
17
35
(mm)17
15
Case 1:Without Support
Displacement of Right
and Left Side Wall are
nearly same because of
Symmetrical Joint Dip
Angle (±70~90°).
41
67
10
13
(mm)
284
15
Case 2:RB+PC-Cable Bolt (Double)
32
37
60
Failure
×
(kN)
620 618
13
(mm)
10
15
Displacement of Case-3
is smaller than Case-2
because of Support
Effect
(kN)
415 464
474
19
Case 3: RB+ST-Cable Bolt (Double)
Equivalent Continuum Analysis by Crack Tensor
Case 1
Joint Strike
”NAMARI”
NAMARI” Fault
240゜- ME”
ME” Fault
”240゜
N
ANKO” Fault
”ANKO”
Joint Strike
”NAMARI”
NAMARI” Fault
240゜- ME”
ME” Fault
”240゜
Case 2
234m
In-Situ Stress is Isotropic
σH=σv=14.4 (N/mm2)
Case 1:Cavern Direction is East and
West, parallel Joint Strike
Case 2:Cavern Direction is North and
South, right-angled Joint Strike
N
ANKO” Fault
”ANKO”
Crack Tensor Analysis is Performed to
Estimate the Relation between Tunnel
Direction and Joint Orientation.
54m
240m 48m 240m
240
m
Huge Tunnnel
W48m×H54m
2070m2
Z
X
Cavern Type and Region (528m×528m)
Model
20
Displacement
Side Wall Displacement of Case 1 is 2 times Larger than Case 2
because of influence of Joint Strike Direction.
15mm
Output Set: I-DEAS Case 1
Deformed(0.0391): Total Translation
Case 1
Joint Strike
”NAMARI”
NAMARI” Fault
240゜- ME”
ME” Fault
”240゜
9mm
39mm 39mm
N
ANKO” Fault
”ANKO”
ANKO” Fault
”ANKO”
Joint Strike
”NAMARI”
NAMARI” Fault
240゜- ME”
ME” Fault
”240゜
N
8mm
18mm 18mm
12mm
Output Set: I-DEAS Case 1
Deformed(0.0181): Total Translation
Case 2
21
Summary
Joint Orientation : At Proposed Site in Tochibora Mine, Major
Joint Set Strike Direction is E-W and Dip Angle is ±70~90°
Joint Properties : Normal and Shear Stiffness, Shear Strength
are Estimated.
Cable Bolt Properties : Shear Strength and Stiffness of ST and
PC Cable Bolt are Estimated. Shear Strength of ST-Cable
Bolt is 5 Times Higher than PC-Cable Bolt. ST-Cable Bolt is
very Effective Support.
Results of Analysis : Discontinuous and Equivalent Continuum
Analysis are able to Estimate the Effect of Rock Support
System and the Anisotropic Behavior of Jointed Rock Mass.
Joint Orientation is very Important factor to decide the Cavern
Axis.
Further Investigation : It is Necessary for Accurate Joint
Orientation to investigate in Different Direction Tunnel or Bore
Hole.
Measurements of In-Situ Initial Stresses and In-Situ Tests on
22
Rock Mass Deformability are indispensable.
END
23
24
ボルトの引き抜き試験の解析
補強要素(ボルト)
グラウト孔
掘削
m
ボルトの軸剛性
m
付着節点
m
すべり(ボルト/グラウト
の粘着力= sbond)
ボルト/グラウト
のせん断剛性= kbond
cable bolt
ST cable bolt
250
100
in-situ test
in-situ test
200
80
load (kN)
load (kN)
simulation
150
100
60
40
50
20
0
0
0
2
4
6
8
displacement (mm)
10
12
14
simulation
0
2
4
6
8
10
dispplacement (mm)
12
14
25
50
空洞の安定解析
個 数 :123
平均値 :91.8°
標準偏差:24.8°
片麻岩
40
30
例数
南北の鉛直面に亀裂傾斜を投影し、統計
的に亀裂を発生させてモデルを作成
20
200m
10
0
0
20
40
60
80 100 120 140 160 180
傾斜角(deg)
範囲
50
個 数 :125
平均値 :87.0°
標準偏差:10.6°
伊西岩
30
例数
200m
40
20
10
0
0
20
40
60
80 100 120 140 160 180
範囲
傾斜角(deg)
26
クラックテンソルによる解析手法の概要
クラックテンソルによる不連続性岩盤の巨視的な応力とひずみ関係
1

1 1
1
ij   1   ik jl  ij kl    Fijkl  ik Fjl   jk Fil  ilFjk   jlFjk kl
4g
h g
E

n
( -)
・ 岩盤基質部の弾性係数、 ポ アソン 比
( E, ν)
a
b
・ 不連続面の垂直剛性と せん 断剛性
に 関す る パ ラメータ
n ( +)
( h, g )
r
・ 不連続面の幾何学特性を 表す
2 階、 4 階の クラックテンソル
( Fi j , Fi j kl )
多数の不連続面 a: 垂直方向の スプ リング
b: せん断方向の スプ リング
を 含む岩盤
τ σn
ク ラ ッ ク テ ン ソ ル 垂直剛性 , せん 断剛性
( h, g )
( Fi j , Fi j kl )
27
不連続性岩盤を対象とした解析手法
解析手法
弾性解析
F
E
M
連
続
体
解
析
不
連
続
体
解
析
等
方
亀裂のモデル化
×
亀裂の存在を岩盤の物性
低下で考慮
弾塑性解析
亀裂がない、または、ランダムな方向性の無
数の亀裂を有する岩盤
非線形粘弾性解析
等
価
適用岩盤の概念
NAPIS
MBC
EQR
複合降伏モデル
クラックテンソル
損傷テンソル
ジョイント要素
RBSM
DEM
キーブロック解析
DDA
マニホールド法
○
無数にある亀裂の効果を
等価な連続体で表現。
「亀裂の開口」と「亀裂の
卓越方向に沿った変形」
を剛性低下で表現可能。
方向性を持った無数の亀裂を有する岩盤
○
個々の亀裂を解析メッ
シュ上でモデル化。
「亀裂の開口」と「亀裂の
卓越方向に沿った変形」
を表現可能(キーブロッ
ク解析を除く)
。
比較的少数の特定の長い亀裂を有する岩盤や
有限個の亀裂に囲まれた岩盤ブロック
28
1.原位置岩盤のクラックテンソルの決定
クラックテンソルの算定
■三次元のNij , Nijkl
 N1111 N1122

N 2222






 Sym.
 0.055
0.630
N13  0.238
N 23   
N 33   Sym.
N1133
N 2233
N 3333
N1112
N 2212
N 3312
N1212
N1123
N 2223
N 3323
N1223
N 2323
 0.008 
 0.012 
0.132 
N1131  0.120
N 2231 
N 3331 

N1231  
N 2331 
 
N 3131  Sym.
・調査坑道10mあたり4本の不連続面を想定
・不連続面の寸法(等価円の直径r)
不連続面の面積:S=2.6m×2.6m=6.76m2 (5)
r  2 S   2 6.76   2.9m (6)
(1)
0.089 0.029
0.493 0.048
0.055
 0.023
 0.027
 0.005
0.089
 0.007
 0.008
0.003
 0.004
0.048
 0.002 
 0.004 
 0.002 

 0.007 
 0.005 

0.029 
(2)
・F0の算定
F0 


4V
調査坑道を横切る
不連続面
 r 
M
(k ) 3
k 1

4  2.6  2.6 10
 1.13
2.9 3  4
2.6m
 N11 N12

N 22

Sym.
■F0の算定
(7)
∴F0=1.0
■二次元断面上のNij
 N11 N13  0.800
 Sym. N   
33 
 Sym.

 N1111 N1133

N 3333

 Sym.
, Nijkl
0.029 
0.200 
N1131  0.716
N 3331  
N 3131 
0.084
0.116
2.6m
(8)
■二次元断面上のFij , Fijkl
(3)
0.024 
0.006 
0.084 
10m
Fij  F0 N ij , Fijkl  F0 N ijkl
 F11 F13  0.800
 Sym. F   
33 
 Sym.

(4)
0.029 
0.200 
 F1111 F1133 F1131  0.716

F3333 F3331  

 Sym.
F3131 
0.084
0.116
(9)
0.024 
0.006 
0.084 
(10)
29
クラックテンソルによる解析手法の概要
クラックテンソルによる不連続性岩盤の巨視的な応力とひずみ関係
1

1 1
1
ij   1   ik jl  ij kl    Fijkl  ik Fjl   jk Fil  ilFjk   jlFjk kl
4g
h g
E

n
( -)
・ 岩盤基質部の弾性係数、 ポ アソン 比
( E, ν)
a
b
・ 不連続面の垂直剛性と せん 断剛性
に 関す る パ ラメータ
n ( +)
( h, g )
r
・ 不連続面の幾何学特性を 表す
2 階、 4 階の クラックテンソル
( Fi j , Fi j kl )
多数の不連続面 a: 垂直方向の スプ リング
b: せん断方向の スプ リング
を 含む岩盤
τ σn
ク ラ ッ ク テ ン ソ ル 垂直剛性 , せん 断剛性
( h, g )
( Fi j , Fi j kl )
30
X
S
Z 軸は鉛直方向
W
調査坑道方向
X
Z 軸は鉛直方向
W
調査坑道方向
等方弾性解析
S
N
N
Y
空洞軸
空洞軸
Y
E
E
解析結果
36mm
52mm52mm
47mm
Output Set: I-DEAS Case 1
Deformed(0.0522): Total Translation
9mm
39mm 39mm
15mm
Output Set: I-DEAS Case 1
Deformed(0.0391): Total Translation
8mm
18mm 18mm
12mm
Output Set: I-DEAS Case 1
Deformed(0.0181): Total Translation
ケース3
ケース1
変形図(200倍)
空洞軸を東西方向とするケース2では、二次元断面上の不連続面が鉛直方向(Z方向)に卓越するため
それに垂直な方向となるX方向に変形が大きく生じる変形モードとなる。
一方、空洞軸を南北方向とするケース3では、空洞軸方向に対して直交する不連続面が卓越するため、XZ方向の変形
は小さく、空洞軸方向の変形が大きく生じる変形モードとなる。
31
解析結果
ケース1
ケース2
ケース3
天端①
-36.18
-35.21
-35.88
右側壁②
-24.39
-23.77
-24.23
右偶角③
-36.14
-35.71
-36.21
左側壁④
-24.39
-23.69
-24.26
左偶角⑤
-36.14
-35.73
-36.18
底盤⑥
-18.65
-20.55
-19.34
N
N
調査坑道方向
調査坑道方向
Y
空洞軸
W
等方弾性解析
Y
Z 軸は鉛直方向
E
空洞軸
W
X
S
④
⑤⑥ ③
Output Set: I-DEAS Case 1
Contour: Solid Y Normal Stress
ケース1
S
0.
0.
-5.
-5.
-5.
-10.
-10.
①
-15.
②
E
0.
-10.
①
X
Z 軸は鉛直方向
-20.
-25.
④
①
-15.
②
⑤⑥ ③
-20.
-25.
④
-15.
②
⑤⑥ ③
-20.
-25.
-30.
-30.
-30.
-35.
-35.
-35.
-40.
-40.
-40.
Output Set: I-DEAS Case 1
Contour: Solid Y Normal Stress
ケース2
最大主応力分布(N/mm2)
Output Set: I-DEAS Case 1
Contour: Solid Y Normal Stress
ケース3
32
解析結果
ケース1
ケース2
ケース3
天端①
-1.49
-1.45
-1.46
右側壁②
-0.48
-0.47
-0.47
右偶角③
-4.80
-5.10
-5.06
左側壁④
-0.48
-0.46
-0.48
左偶角⑤
-4.80
-4.95
-5.14
底盤⑥
-0.03
-0.03
-0.03
N
N
調査坑道方向
調査坑道方向
Y
空洞軸
W
等方弾性解析
Y
Z 軸は鉛直方向
空洞軸
E
W
X
S
①
④
⑤⑥ ③
S
0.
0.
0.
-2.5
-2.5
-2.5
-5.
-5.
-5.
①
-7.5
②
-10.
-12.5
④
②
⑤⑥ ③
-17.5
-20.
ケース1
①
-7.5
-15.
Output Set: I-DEAS Case 1
Contour: Solid X Normal Stress
E
X
Z 軸は鉛直方向
-10.
-12.5
④
-7.5
②
⑤⑥ ③
-10.
-12.5
-15.
-15.
-17.5
-17.5
-20.
-20.
Output Set: I-DEAS Case 1
Contour: Solid X Normal Stress
ケース2
最小主応力分布(N/mm2)
Output Set: I-DEAS Case 1
Contour: Solid X Normal Stress
ケース3
33
解析結果
N
N
調査坑道方向
Y
調査坑道方向
空洞軸
空洞軸
W
等方弾性解析
Y
Z 軸は鉛直方向
W
E
ケース1
E
X
S
S
Output Set: I-DEAS Case 1
Contour: Solid Z Normal Stress
X
Z 軸は鉛直方向
4.
4.
4.
3.5
3.5
3.5
3.
3.
3.
2.5
2.5
2.5
2.
2.
2.
1.5
1.5
1.5
1.3
1.3
1.3
1.
1.
1.
0.
0.
0.
Output Set: I-DEAS Case 1
Contour: Solid Z Normal Stress
ケース2
Output Set: I-DEAS Case 1
Contour: Solid Z Normal Stress
ケース3
安全率分布
34
ラフネスの定量的評価
30
JRC 値に対応する典型的な粗さ形状
0~2
2
2~4
3
4~6
4
6~8
5
8~10
6
10~12
7
12~14
8
14~16
9
16~18
10
500cm
20
JRC=5
50cm
500cm
5
10
10cm
50cm
500cm
JRC=10
50cm
500cm
18~20
0
JRC= (Df-1)/(4.413×10-5)
Lee et al.
50cm
JRC
1
10
cm
0
1.00
1.01
1.02
1.03
フラクタル次元
JRC=20
亀裂面のラフネスを測定
し、フラクタル次元を算出
↓
JRCを評価
総延長(log(N*r+ε))
フラクタル次元
0.05
0.045
y = -0.0158x + 0.0286
0.04
0.035
y = -0.0157x + 0.0238
0.03
0.025
0.02
0.015
y = -0.0125x + 0.0162
0.01
0.005
0
-1.5
-1
-0.5
0
0.5
1
1.5
半径(log(r))
2-1-1
2-1-2
2-1-3
線形 (2-1-3)
線形 (2-1-1)
線形 (2-1-2)
35
ラフネスの測定例(1)
80
LD mm
片麻岩
70
Df=1.0071→JRC=12
LD mm
LD mm
60
80 0
20
40
60
80
100
120
140
160
180
距離(mm)
70
Df=1.0264→JRC=24
60
80 0
20
40
60
80
100
120
140
160
距離(mm)
70
Df=1.0302→JRC=26
60
0
20
40
60
80
100
120
140
距離(mm)
Df=1.0121→JRC=16
0
LD mm
-10
10 0
20
40
60
80
Df=1.0072→JRC=12
距離(mm)
100
120
140
160
180
0
20
40
60
80
100
距離(mm)
120
140
160
180
0
20
40
60
80
120
140
160
180
0
-10
10
LD mm
片麻岩
LD mm
10
Df=1.0082→JRC=13
0
-10
100
距離(mm)
36
ラフネスの測定例(2)
90
80
100 0
LD mm
片麻岩
LD mm
100
20
40
60
80
100
120
140
160
距離(mm)
90
80
100 0
LD mm
Df=1.0125→JRC=16
Df=1.0158→JRC=18
20
40
60
80
100
120
140
160
距離(mm)
Df=1.0157→JRC=18
90
80
0
20
40
60
80
100
120
140
160
距離(mm)
90
LD mm
80
100 0
Df=1.0077→JRC=13
20
40
60
80
100
120
140
160
距離(mm)
90
80
110 0
LD mm
片麻岩
LD mm
100
Df=1.0117→JRC=16
20
40
60
100
80
100
120
140
Df=1.0108→JRC=15
距離(mm)
160
90
0
20
40
60
80
距離(mm)
100
120
37
140