Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine Naruki Wakabayashi Shimizu Corporation Tokyo Japan 1 NNN07 Hamamatsu, Japan 3-5 October 2005 Topics ・Previous Geological Survey and Stability Analysis for the Hyper-K cavern ・Site Selection ・Isotropic Elastic FEM Analysis for the Investigation of Cavern Shape, Size and Type ・Ongoing Investigation and Analysis for Jointed Rock Mass ・Investigation of Joint Orientation ・Obtaining In-Situ Rock Joints and Investigation of Joint Mechanical Properties ・Pull-out Test of Two Types of Cable Bolt ・Two Type Analysis for Consideration Joint Effects 2 Site Selection Kamioka Mine Location Mozumi mine Super-K Kamioka Mine Tokyo Hamamatsu Proposed Area Proposed Area in Mozumi Mine is about 10km South from the Super-Kamiokande. Tochibora mine3 Geological Map of Proposed Site at Tochibora Mine Plan View of + 550mEL Core Boring ”NAMARI” Fault Limestone Hyper-K proposed Site Hornblende Biotite Gneiss & Migmatite Biotite Gneiss ”240゜- ME” Fault ”ANKO” Fault N Existing Tunnel Surveyed Proposed Site Formation is Hornblende Biotite Gneiss and Migmatite. Skarn Orebody Zone 4 Cylindrical Dome Isotropic Elastic Huge Tunnel Larger than Super-K FEM Analysis Two Parallel Tunnels ”240°-ME” Fault ”ANKO” Fault ”NAMARI” Fault Comparison of the Hyper-K Cavern from Various View Points Cavern Type Multiple Domes Single Tunnel Two Parallel Tunnels Construction Period & Cost × ○ ○ Early Observation Startup △ △ ○ Observation during Maintenance ○ × ○ Cost Performance of Detector Tank × ○ △ Cavern Stability ◎ ○ ○ Total Evaluation × △ ○ Height Width Length Vertical Cross Section Area (m2) Volume of one Cavern (m3) Required No. of Caverns Total Volume of Caverns (m3) 60.0 Φ60 --3,368 152,600 54.0 48.0 500 2,076 1,038,000 54.0 48.0 250 2,076 519,000 7 1 2 1,068,200 1,038,000 1,038,000 Size of one Cavern (m) Image Design of Two 250m Long Parallel Tunnels 5 Summary of Previous Study Site Selection : Tochibora Mine, +480mEL~+550m EL is the most appropriate location with very competent rock condition. Cavern Design: Two 250m Long Parallel Tunnels with Section of 2,076m2 are capable of being safely excavated. Cavern Layout : Two Parallel Tunnels as above should be Located with 80m –100m Spacing and 50m-100m Offset to avoid the poor Zone of Surrounding Faults. In Isotropic Elastic FEM Analysis of Previous Study, Young’s Modulus was empirically decreased as Jointed Rock Mass. It is Important and Necessary to Consider Numerically the Influence of Joint Orientation and Mechanical Properties. 6 Analysis for Jointed Rock Mass Discontinuous Analysis Composition of Elastic Blocks Surrounding Joints Key Block Distinct Element Method (DEM) Equivalent Continuum Analysis Anisotropic Young’s Modulus Considering Joint Orientation and Mechanical Properties Damage Tensor Crack Tensor ・Characteristics of Joint Orientation ・Mechanical Properties of Joint and Rock Core ・Mechanical Properties of Support such as Cable Bolt 7 Investigation of Jointed Rock Mass -100 大規模地下空洞立地可能性調査 坑道調査(400m)縮尺1:300 凡例 B(B-Ⅰ、B-Ⅱ) 伊西岩 角閃石片麻岩 CH(B-Ⅲ、C-Ⅱ) スカルン アプライト 緑泥石化片麻岩 片理面 AP Ao Measurement of Joint Orientation in this Existing Tunnel Rock Types Gneiss Migmatite 岩盤分類凡例 CM(B-Ⅳ、C-Ⅲ) CL(D-Ⅲ、C-Ⅳ、C-Ⅴ) D(D-Ⅳ、D-Ⅴ) 20 Ap 30 B-Ⅰ Ap 85 60 Ap ~ B-Ⅱ Ap Ap 180 Ap B-Ⅱ Ap 200 B-Ⅱ B-Ⅰ 75 Ap C-Ⅲ C-Ⅳ B-Ⅳ S70E 240°目断層 B-Ⅲ B-Ⅲ B-Ⅱ 滴水あり 160 B-Ⅲ Ap B-Ⅲ Ap Ap Ap 210 Ao B-Ⅱ Ap Ap B-Ⅱ 190 Ao Ao B-Ⅲ B-Ⅰ B-Ⅰ 170 C-Ⅲ 80 Ao Ao Ao 80 Ap Ap Ao Ao Ap Ap Ap Ap Ap ~ B-Ⅱ 150 B-Ⅱ Ao ~ Ap 140 160 Ap Ap Ap Ap Ao 80 Ap Ap Ap Ap Ap Ao ~ Ao Ap Ap 130 Ap Ap Ap Ap Ap B-Ⅲ 170 B-Ⅲ 230 B-Ⅱ Ao Ao Ao Ap Ap B-Ⅲ 60 B-Ⅱ Ap B-Ⅰ Ao Ap 100 70 240 Ao Ao Ao B-Ⅱ Ao Ao Ao Ap B-Ⅱ Ao B-Ⅲ D-Ⅴ 70 80 90 110 N B-Ⅰ 50 120 220 Ap 40 ~~ 割れ目 調 査 開 始 点 0 10 ~ Rock Classification B Very Good CH Good CM Medium 85 B-Ⅲ 250 D-Ⅳ -200 -200 260 B-Ⅲ Ap B-Ⅱ Ap 290 B-Ⅱ 300 B-Ⅲ Ap 180 B-Ⅳ Ap Ap Ap B-Ⅱ B-Ⅲ B-Ⅱ 270 280 B-Ⅲ Ap C-Ⅳ B-Ⅱ B-Ⅱ 310 320 80 190 C-Ⅳ 330 Ap Ap 350 B-ⅢAp B-Ⅱ B-Ⅱ C-Ⅲ B-Ⅱ B-Ⅲ Ap B-Ⅲ Ap B-Ⅱ Ap 70 380 Ao B-Ⅱ Ao B-Ⅲ Ao 70 Ao B-Ⅳ Ap B-Ⅱ Ao B-Ⅱ Ao Ao Ao 200 70 390 400 B-Ⅲ Ao Ao C-Ⅳ Ao Ao 210 B-Ⅳ 220 0 +200 Ao +100 Ao B-Ⅰ 75 -200 調 査 終 了 点 Ap Ap B-Ⅲ Ap 75 360 370 B-Ⅱ B-Ⅲ 340 Ap Ap Ap Ap B-Ⅲ 巻末資料3 岩盤分類図 B-Ⅲ +550m EL 230 B-Ⅱ 0 85 B-Ⅲ B-Ⅲ B-Ⅱ B-Ⅳ Ap Obtaining Rock Joint (3 Places) Pull-out Test of Cable bolt (6 Places) 8 Investigation of Joint Orientation ・Major Joint Set : Strike E-W and Dip ±70~90° ・Another Joint Set : Strike NE-WS and Dip ± 40~50° N Migmatite N Gneiss 0 0 Projection of Poles E W Joint E W n=130 (P) Num total: 130 n=131 (P) Num total: 131 N Strike W Pole S S N Equal angle projection, lower hemisphere 0 Equal angle projection, lower hemisphere × 0 E W S N E Dip E W n=130 max. dens.=5.82 (at 344/ 15) min. dens.=0.00 Contours at: 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, (Multiples of random distribution) n=131 max. dens.=9.44 (at 180/ 5) min. dens.=0.00 Contours at: 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, (Multiples of random distribution) Pole Density Contours 9 S Equal angle projection, lower hemisphere S Equal angle projection, lower hemisphere Situation of Obtaining In-Site Rock Joints Diamond Drilling Joint Recovered Core with Joint Joint 10 Joint Mechanical Properties Direct Shear Test of Rock Joints ・Joint Deformability Parameters such as Normal and Shear Stiffness, Dilatancy Angle ・Joint Shear Strength such as Cohesion and Internal Friction Angle Rock Joint Specimen with extensometers Normal Stress Shear Test Equipment (Normal and Shear load are 1MN) Shear Displacement 11 Strength (N/mm2) Shear せん断強度(N/mm2) Stress) (N/mm2) Normal垂直応力 (N/mm Results of Direct Shear Test shear-3-1-v 12 σn=10N/mm2 2 10 8 6 4 Normal Stiffness =67N/mm2/mm 2 0 0.00 0.05 0.10 0.15 0.20 0.25 16 Cohesion=0.57N/mm2 tan54° Internal Frictionτ=σn angle 12 =33° 14 10 8 6 4 τ=0.5+σn tan33° 2 0 0 0.30 16 2 2/mm せん断剛性=60N/mm /mm Shear Stiffness=60N/mm 14 12 Shear Strength 10 3-1(σn=10MPa) 2-1(σn=5MPa) 1-1(σn=5MPa) 2-2(σn=2MPa) 8 6 4 2 0 0.0 1.0 2.0 3.0 4.0 せん断変位(mm) Shear Displacement (mm) 5.0 (mm) Normal Displacement 垂直変位(mm) Stress (N/mm2) Shear せん断応力(N/mm2) 垂直変位 (mm) Normal Displacement (mm) 2 4 6 8 10 Normal 鉛直応力(N/mm2) Stress (N/mm2) 12 0.6 3-1(σn=10MPa) 2-1(σn=5MPa) 1-1(σn=5MPa) 2-2(σn=2MPa) 0.5 0.4 0.3 0.2 Dilatancy angle=2.4° 0.1 0 -0.1 -0.2 0.0 1.0 Shear 2.0 3.0 せん断変位(mm) Displacement 4.0 (mm) 5.0 12 Pull-Out Test of Two Type Cable Bolts Economical Support System should be used ・Usual Support System for Large Cavern is Rock Anchor → Expensive ・Proposed Support System is Rock Bolt and Cable Bolt → Economical ・Special Cable Bolt with Dimples has very high Strength ・Mechanical Properties of Cable bolt was estimated by Pull-Out Test Usual Cable Bolt without Dimples (PC-Cable Bolt) Special Cable Bolt with Dimples (ST-Cable Bolt) 13 Situation of Pull-Out Tests Diamond Drilling Inserting Cable Bolts ST-Cable Bolt PC-Cable bolt Setting up Equipments Pull-Out Test Jock and Dial Gauge Pressure Pump 14 Results of Pull-Out Tests Cable bolt model Gneiss (B) 片麻岩B級 250 ST 荷重(kN) (kN) Load 200 No.1-L No.2-L No.2-上 No.1-R No.2-R No.2-下 150 付着強度 Strength (kN/m) 付着剛性 Stiffness (kN/m/m) 100 50 PC 1.40E+05 △Gneiss (CH) □Gneiss (B) 片麻岩CM級(ST) 伊西岩CH級(ST) ST ◇Migmatite(B) ○Migmatite(CH) 片麻岩CM級(PC) △Gneiss (CH) □Gneiss (B) 伊西岩CH級(PC) PC ◇Migmatite(B) ○Migmatite(CH) 片麻岩B級(ST) 伊西岩B級(ST) 片麻岩B級(PC) 伊西岩B級(PC) 0 0 2 4 6 8 変位(mm) 10 12 14 1.20E+05 Displacement (mm) 200 付着剛性(kN/m/m) (kN/m/m) Stiffness 伊西岩B級 Migmatite (B) 1.00E+05 8.00E+04 No.3-L No.6-L No.3-R 6.00E+04 No.6-R ST 荷重(kN) (kN) Load 150 100 50 PC ST:付着強度above 270kN/m以上 ST Strength 270kN/m 付着剛性 53900kN/m/m.以上 Stiffness above 53MN/m/m PC:付着強度 53kN/m以上 PC Strength above 53kN/m 付着剛性 40100kN/m/m.以上 Stiffness above 40MN/m/m 4.00E+04 2.00E+04 0.00E+00 0 0 0 2 4 6 8 変位(mm) 10 Displacement (mm) 12 14 50 100 150 200 250 付着強度(kN/m) Strength (kN/m) 300 350 400 15 Mechanical Properties Properties Rock Mass Same as Intact Rock Young’s Modulus=64.3 kN/mm2 Poisson’s Ratio=0.25 Density=0.26NM/m3 Joint Normal Stiffness=67N/mm2/mm Shear Stiffness=60N/mm2/mm Dairatancy Angle=2.4° Cohesion=0.57N/mm2 Internal Frictional angle=33° ST-Cable Bolt Shear Strength= 270kN/m Shear Stiffness=53MN/m/m PC-Cable Bolt Shear Strength= 53kN/m Shear Stiffness=40MN/m/m Mechanical Properties of Intact Rock Core Migmatite Gneiss Compressive Strength (N/mm2) 191 176 Young’s Modulus (kN/mm2) 60.4 64.3 Poisson’s Ratio 0.24 0.26 Density (MN/m3) 0.027 0.027 16 Discontinuous Analysis by DEM ”NAMARI” NAMARI” Fault 240゜- ME” ME” Fault ”240゜ Cavern Direction is East and West W48m×H54m 2070m2 N ANKO” Fault ”ANKO” DEM Analysis is Performed to Establish the Behavior of Jointed Rock Mass and the Effect of Support System. Huge Tunnnel Cavern Type and Direction Analysis Cases Support Case 1 Without Support Rock Bolt (Length=6m :Space=2m) Case 2 Double PC-Cable Bolt (Length=15m :Space=2m) Case 3 Rock Bolt (Length=6m :Space=2m) Double ST-Cable Bolt (Length=15m :Space=2m) In-Situ Stress Isotropic Stress σH=σv=14.4 (N/mm2) (Overburden:500m) 17 Procedure of Analysis 200m Second Step 200m First Step Strike E-W Strike NS-WS Dip ±70~90° Dip ± 40~50° Analysis Model Joints are Generated Statistically According to the Joint Orientation Third Step Fourth Step Establishing Support System after Each Excavation Step 18 Displacement Vector and Cable Axial Force 45 93 89 17 35 (mm)17 15 Case 1:Without Support Displacement of Right and Left Side Wall are nearly same because of Symmetrical Joint Dip Angle (±70~90°). 41 67 10 13 (mm) 284 15 Case 2:RB+PC-Cable Bolt (Double) 32 37 60 Failure × (kN) 620 618 13 (mm) 10 15 Displacement of Case-3 is smaller than Case-2 because of Support Effect (kN) 415 464 474 19 Case 3: RB+ST-Cable Bolt (Double) Equivalent Continuum Analysis by Crack Tensor Case 1 Joint Strike ”NAMARI” NAMARI” Fault 240゜- ME” ME” Fault ”240゜ N ANKO” Fault ”ANKO” Joint Strike ”NAMARI” NAMARI” Fault 240゜- ME” ME” Fault ”240゜ Case 2 234m In-Situ Stress is Isotropic σH=σv=14.4 (N/mm2) Case 1:Cavern Direction is East and West, parallel Joint Strike Case 2:Cavern Direction is North and South, right-angled Joint Strike N ANKO” Fault ”ANKO” Crack Tensor Analysis is Performed to Estimate the Relation between Tunnel Direction and Joint Orientation. 54m 240m 48m 240m 240 m Huge Tunnnel W48m×H54m 2070m2 Z X Cavern Type and Region (528m×528m) Model 20 Displacement Side Wall Displacement of Case 1 is 2 times Larger than Case 2 because of influence of Joint Strike Direction. 15mm Output Set: I-DEAS Case 1 Deformed(0.0391): Total Translation Case 1 Joint Strike ”NAMARI” NAMARI” Fault 240゜- ME” ME” Fault ”240゜ 9mm 39mm 39mm N ANKO” Fault ”ANKO” ANKO” Fault ”ANKO” Joint Strike ”NAMARI” NAMARI” Fault 240゜- ME” ME” Fault ”240゜ N 8mm 18mm 18mm 12mm Output Set: I-DEAS Case 1 Deformed(0.0181): Total Translation Case 2 21 Summary Joint Orientation : At Proposed Site in Tochibora Mine, Major Joint Set Strike Direction is E-W and Dip Angle is ±70~90° Joint Properties : Normal and Shear Stiffness, Shear Strength are Estimated. Cable Bolt Properties : Shear Strength and Stiffness of ST and PC Cable Bolt are Estimated. Shear Strength of ST-Cable Bolt is 5 Times Higher than PC-Cable Bolt. ST-Cable Bolt is very Effective Support. Results of Analysis : Discontinuous and Equivalent Continuum Analysis are able to Estimate the Effect of Rock Support System and the Anisotropic Behavior of Jointed Rock Mass. Joint Orientation is very Important factor to decide the Cavern Axis. Further Investigation : It is Necessary for Accurate Joint Orientation to investigate in Different Direction Tunnel or Bore Hole. Measurements of In-Situ Initial Stresses and In-Situ Tests on 22 Rock Mass Deformability are indispensable. END 23 24 ボルトの引き抜き試験の解析 補強要素(ボルト) グラウト孔 掘削 m ボルトの軸剛性 m 付着節点 m すべり(ボルト/グラウト の粘着力= sbond) ボルト/グラウト のせん断剛性= kbond cable bolt ST cable bolt 250 100 in-situ test in-situ test 200 80 load (kN) load (kN) simulation 150 100 60 40 50 20 0 0 0 2 4 6 8 displacement (mm) 10 12 14 simulation 0 2 4 6 8 10 dispplacement (mm) 12 14 25 50 空洞の安定解析 個 数 :123 平均値 :91.8° 標準偏差:24.8° 片麻岩 40 30 例数 南北の鉛直面に亀裂傾斜を投影し、統計 的に亀裂を発生させてモデルを作成 20 200m 10 0 0 20 40 60 80 100 120 140 160 180 傾斜角(deg) 範囲 50 個 数 :125 平均値 :87.0° 標準偏差:10.6° 伊西岩 30 例数 200m 40 20 10 0 0 20 40 60 80 100 120 140 160 180 範囲 傾斜角(deg) 26 クラックテンソルによる解析手法の概要 クラックテンソルによる不連続性岩盤の巨視的な応力とひずみ関係 1 1 1 1 ij 1 ik jl ij kl Fijkl ik Fjl jk Fil ilFjk jlFjk kl 4g h g E n ( -) ・ 岩盤基質部の弾性係数、 ポ アソン 比 ( E, ν) a b ・ 不連続面の垂直剛性と せん 断剛性 に 関す る パ ラメータ n ( +) ( h, g ) r ・ 不連続面の幾何学特性を 表す 2 階、 4 階の クラックテンソル ( Fi j , Fi j kl ) 多数の不連続面 a: 垂直方向の スプ リング b: せん断方向の スプ リング を 含む岩盤 τ σn ク ラ ッ ク テ ン ソ ル 垂直剛性 , せん 断剛性 ( h, g ) ( Fi j , Fi j kl ) 27 不連続性岩盤を対象とした解析手法 解析手法 弾性解析 F E M 連 続 体 解 析 不 連 続 体 解 析 等 方 亀裂のモデル化 × 亀裂の存在を岩盤の物性 低下で考慮 弾塑性解析 亀裂がない、または、ランダムな方向性の無 数の亀裂を有する岩盤 非線形粘弾性解析 等 価 適用岩盤の概念 NAPIS MBC EQR 複合降伏モデル クラックテンソル 損傷テンソル ジョイント要素 RBSM DEM キーブロック解析 DDA マニホールド法 ○ 無数にある亀裂の効果を 等価な連続体で表現。 「亀裂の開口」と「亀裂の 卓越方向に沿った変形」 を剛性低下で表現可能。 方向性を持った無数の亀裂を有する岩盤 ○ 個々の亀裂を解析メッ シュ上でモデル化。 「亀裂の開口」と「亀裂の 卓越方向に沿った変形」 を表現可能(キーブロッ ク解析を除く) 。 比較的少数の特定の長い亀裂を有する岩盤や 有限個の亀裂に囲まれた岩盤ブロック 28 1.原位置岩盤のクラックテンソルの決定 クラックテンソルの算定 ■三次元のNij , Nijkl N1111 N1122 N 2222 Sym. 0.055 0.630 N13 0.238 N 23 N 33 Sym. N1133 N 2233 N 3333 N1112 N 2212 N 3312 N1212 N1123 N 2223 N 3323 N1223 N 2323 0.008 0.012 0.132 N1131 0.120 N 2231 N 3331 N1231 N 2331 N 3131 Sym. ・調査坑道10mあたり4本の不連続面を想定 ・不連続面の寸法(等価円の直径r) 不連続面の面積:S=2.6m×2.6m=6.76m2 (5) r 2 S 2 6.76 2.9m (6) (1) 0.089 0.029 0.493 0.048 0.055 0.023 0.027 0.005 0.089 0.007 0.008 0.003 0.004 0.048 0.002 0.004 0.002 0.007 0.005 0.029 (2) ・F0の算定 F0 4V 調査坑道を横切る 不連続面 r M (k ) 3 k 1 4 2.6 2.6 10 1.13 2.9 3 4 2.6m N11 N12 N 22 Sym. ■F0の算定 (7) ∴F0=1.0 ■二次元断面上のNij N11 N13 0.800 Sym. N 33 Sym. N1111 N1133 N 3333 Sym. , Nijkl 0.029 0.200 N1131 0.716 N 3331 N 3131 0.084 0.116 2.6m (8) ■二次元断面上のFij , Fijkl (3) 0.024 0.006 0.084 10m Fij F0 N ij , Fijkl F0 N ijkl F11 F13 0.800 Sym. F 33 Sym. (4) 0.029 0.200 F1111 F1133 F1131 0.716 F3333 F3331 Sym. F3131 0.084 0.116 (9) 0.024 0.006 0.084 (10) 29 クラックテンソルによる解析手法の概要 クラックテンソルによる不連続性岩盤の巨視的な応力とひずみ関係 1 1 1 1 ij 1 ik jl ij kl Fijkl ik Fjl jk Fil ilFjk jlFjk kl 4g h g E n ( -) ・ 岩盤基質部の弾性係数、 ポ アソン 比 ( E, ν) a b ・ 不連続面の垂直剛性と せん 断剛性 に 関す る パ ラメータ n ( +) ( h, g ) r ・ 不連続面の幾何学特性を 表す 2 階、 4 階の クラックテンソル ( Fi j , Fi j kl ) 多数の不連続面 a: 垂直方向の スプ リング b: せん断方向の スプ リング を 含む岩盤 τ σn ク ラ ッ ク テ ン ソ ル 垂直剛性 , せん 断剛性 ( h, g ) ( Fi j , Fi j kl ) 30 X S Z 軸は鉛直方向 W 調査坑道方向 X Z 軸は鉛直方向 W 調査坑道方向 等方弾性解析 S N N Y 空洞軸 空洞軸 Y E E 解析結果 36mm 52mm52mm 47mm Output Set: I-DEAS Case 1 Deformed(0.0522): Total Translation 9mm 39mm 39mm 15mm Output Set: I-DEAS Case 1 Deformed(0.0391): Total Translation 8mm 18mm 18mm 12mm Output Set: I-DEAS Case 1 Deformed(0.0181): Total Translation ケース3 ケース1 変形図(200倍) 空洞軸を東西方向とするケース2では、二次元断面上の不連続面が鉛直方向(Z方向)に卓越するため それに垂直な方向となるX方向に変形が大きく生じる変形モードとなる。 一方、空洞軸を南北方向とするケース3では、空洞軸方向に対して直交する不連続面が卓越するため、XZ方向の変形 は小さく、空洞軸方向の変形が大きく生じる変形モードとなる。 31 解析結果 ケース1 ケース2 ケース3 天端① -36.18 -35.21 -35.88 右側壁② -24.39 -23.77 -24.23 右偶角③ -36.14 -35.71 -36.21 左側壁④ -24.39 -23.69 -24.26 左偶角⑤ -36.14 -35.73 -36.18 底盤⑥ -18.65 -20.55 -19.34 N N 調査坑道方向 調査坑道方向 Y 空洞軸 W 等方弾性解析 Y Z 軸は鉛直方向 E 空洞軸 W X S ④ ⑤⑥ ③ Output Set: I-DEAS Case 1 Contour: Solid Y Normal Stress ケース1 S 0. 0. -5. -5. -5. -10. -10. ① -15. ② E 0. -10. ① X Z 軸は鉛直方向 -20. -25. ④ ① -15. ② ⑤⑥ ③ -20. -25. ④ -15. ② ⑤⑥ ③ -20. -25. -30. -30. -30. -35. -35. -35. -40. -40. -40. Output Set: I-DEAS Case 1 Contour: Solid Y Normal Stress ケース2 最大主応力分布(N/mm2) Output Set: I-DEAS Case 1 Contour: Solid Y Normal Stress ケース3 32 解析結果 ケース1 ケース2 ケース3 天端① -1.49 -1.45 -1.46 右側壁② -0.48 -0.47 -0.47 右偶角③ -4.80 -5.10 -5.06 左側壁④ -0.48 -0.46 -0.48 左偶角⑤ -4.80 -4.95 -5.14 底盤⑥ -0.03 -0.03 -0.03 N N 調査坑道方向 調査坑道方向 Y 空洞軸 W 等方弾性解析 Y Z 軸は鉛直方向 空洞軸 E W X S ① ④ ⑤⑥ ③ S 0. 0. 0. -2.5 -2.5 -2.5 -5. -5. -5. ① -7.5 ② -10. -12.5 ④ ② ⑤⑥ ③ -17.5 -20. ケース1 ① -7.5 -15. Output Set: I-DEAS Case 1 Contour: Solid X Normal Stress E X Z 軸は鉛直方向 -10. -12.5 ④ -7.5 ② ⑤⑥ ③ -10. -12.5 -15. -15. -17.5 -17.5 -20. -20. Output Set: I-DEAS Case 1 Contour: Solid X Normal Stress ケース2 最小主応力分布(N/mm2) Output Set: I-DEAS Case 1 Contour: Solid X Normal Stress ケース3 33 解析結果 N N 調査坑道方向 Y 調査坑道方向 空洞軸 空洞軸 W 等方弾性解析 Y Z 軸は鉛直方向 W E ケース1 E X S S Output Set: I-DEAS Case 1 Contour: Solid Z Normal Stress X Z 軸は鉛直方向 4. 4. 4. 3.5 3.5 3.5 3. 3. 3. 2.5 2.5 2.5 2. 2. 2. 1.5 1.5 1.5 1.3 1.3 1.3 1. 1. 1. 0. 0. 0. Output Set: I-DEAS Case 1 Contour: Solid Z Normal Stress ケース2 Output Set: I-DEAS Case 1 Contour: Solid Z Normal Stress ケース3 安全率分布 34 ラフネスの定量的評価 30 JRC 値に対応する典型的な粗さ形状 0~2 2 2~4 3 4~6 4 6~8 5 8~10 6 10~12 7 12~14 8 14~16 9 16~18 10 500cm 20 JRC=5 50cm 500cm 5 10 10cm 50cm 500cm JRC=10 50cm 500cm 18~20 0 JRC= (Df-1)/(4.413×10-5) Lee et al. 50cm JRC 1 10 cm 0 1.00 1.01 1.02 1.03 フラクタル次元 JRC=20 亀裂面のラフネスを測定 し、フラクタル次元を算出 ↓ JRCを評価 総延長(log(N*r+ε)) フラクタル次元 0.05 0.045 y = -0.0158x + 0.0286 0.04 0.035 y = -0.0157x + 0.0238 0.03 0.025 0.02 0.015 y = -0.0125x + 0.0162 0.01 0.005 0 -1.5 -1 -0.5 0 0.5 1 1.5 半径(log(r)) 2-1-1 2-1-2 2-1-3 線形 (2-1-3) 線形 (2-1-1) 線形 (2-1-2) 35 ラフネスの測定例(1) 80 LD mm 片麻岩 70 Df=1.0071→JRC=12 LD mm LD mm 60 80 0 20 40 60 80 100 120 140 160 180 距離(mm) 70 Df=1.0264→JRC=24 60 80 0 20 40 60 80 100 120 140 160 距離(mm) 70 Df=1.0302→JRC=26 60 0 20 40 60 80 100 120 140 距離(mm) Df=1.0121→JRC=16 0 LD mm -10 10 0 20 40 60 80 Df=1.0072→JRC=12 距離(mm) 100 120 140 160 180 0 20 40 60 80 100 距離(mm) 120 140 160 180 0 20 40 60 80 120 140 160 180 0 -10 10 LD mm 片麻岩 LD mm 10 Df=1.0082→JRC=13 0 -10 100 距離(mm) 36 ラフネスの測定例(2) 90 80 100 0 LD mm 片麻岩 LD mm 100 20 40 60 80 100 120 140 160 距離(mm) 90 80 100 0 LD mm Df=1.0125→JRC=16 Df=1.0158→JRC=18 20 40 60 80 100 120 140 160 距離(mm) Df=1.0157→JRC=18 90 80 0 20 40 60 80 100 120 140 160 距離(mm) 90 LD mm 80 100 0 Df=1.0077→JRC=13 20 40 60 80 100 120 140 160 距離(mm) 90 80 110 0 LD mm 片麻岩 LD mm 100 Df=1.0117→JRC=16 20 40 60 100 80 100 120 140 Df=1.0108→JRC=15 距離(mm) 160 90 0 20 40 60 80 距離(mm) 100 120 37 140
© Copyright 2025 ExpyDoc