KEKB Status 12/14/2004 @ PEP-II MAC K. Oide (KEK) Topics • Performance since April, 2004 • Observation of -tron sidebands due to head-tail motion caused by e-cloud • Better tunes in LER • Compensation of BPM motion due to heating • New permanent magnet (“C-Yoke”) for e-cloud • Noise by the KEK Proton Synchrotron • Damage of IR bellows in LER • Development of crab cavity • Development of C-band linac KEKB Performance Apr. - Dec. 2004 HER Bellows @LER IR LER PS noise Luminosity 13.9 /nb/s Spec. Lum. Daily Luminosity in 2004 Even worse and worse?! 944 /pb May 23 Delivered 1000 /pb/day, 8 times. The best day 5/23/2004 >1000 /pb/day delivered 944 /pb/day recorded Machine Parameters (June 3, 2004) Integrated = 335 /fb (Dec 13, 2004) Observation of vertical sideband due to e-cloud in LER V. Tune Sideband Peak Synchrotron Tune 100 Bunch 1 0.5 Tune • LER Single beam, 4/100/4 • Solenoids off • Vertical Feedback Gain Low (-15.40 dB). 1.0 J. Flanagan, et al Spectra of Bunches 1-10 Bunch 1 Bunch 6 Bunch 2 Bunch 7 Bunch 3 Bunch 8 Bunch 4 Bunch 9 Bunch 5 Bunch 10 LER Blow-up Study • Vertical Tune and Sideband Peaks increase along train. Sideband Peak Bunch 5 Betatron Tune (V) • Difference between tune and peak also increases, then saturates near the 40th bunch. Better tunes in LER • • • w/parasitic w/o parasitic The best vertical tune shifts closer to 1/2, if parasitic collision is taken into account (M. Tawada). KEKB’s luminosity was actually improved by 5% by lowering the vertical tune, from 0.543 to 0.535 as the simulation predicts. Effect of parasitic collision has not been detected directly yet. “Breakwater bunches” enables the lower vertical tune. Detection & compensation of BPM motion relative to sextupole magnet •Heating of beam pipe pushes BPMs and magnets, causing displacement of BPMs relative to sextupoles. Hor. & Ver. Electrostatic displacement monitor •Electrostatic gauge was attached to sextupoles in LER local chromaticity correction section to measure the BPM displacement. •Correction is added to BPM reading to stabilize orbit relative to sextupole center. •Very good result. •Necessary for all sextupoles in future. BPM Sextupole Quadrupole M. Tejima, M. Arinaga, et al •Must be compatible with sextupole movers. BPM gauge was effective to suppress the tune drift. Disp. (mm) v. Tune set v. Tune measured Before compensation After compensation Permanent magnets (“C-Yoke”) in LER C-Yoke •1,600 sets of C-Yokes were installed in LER t gaps of solenoids. •Effects are not yet noticed. M. Suetake and H. Fukuma Noise from KEK Proton Synchrotron(PS) PS 12 GeV, 2.2 sec (for K2K) •Power supplies for KEKB quadrupoles were affected by PS, probably through magnetic flux change. •Tunes of KEKB rings were modulated. •Improved by making the power supplies’ response faster, but… Dny ~0.0033 (p-p) Self oscillation of KEKB quad power supply •Later PS went shut down by failure in the electromagnetic horn. Tunes were modulated by PS. •Horizontal tune of LER was modulated by PS (left). The luminosity degraded by more than 10%. •After fastening the response of quad power supplies, the modulation was reduced (right). •The luminosity was recovered by this fix. M. Yoshida et al Trouble of LER IR Bellows H24 QC1RE QC2RP QC2RE H23 IP H23A Bellows One of the bellows in LER near IP was damaged around Nov. 3. K. Kanazawa, Y. Suetsugu et al IR Bellows •Both temperature (left) and pressure (right) rose at high current. •Since then, LER current has been limited to below 900 mA (was 1650 mA before). •Operating at very bad current ratio degrades the specific luminosity. •The bellows will be fixed during the winter shutdown. Probably similar to the HER QC1LE Bellows Leak in March. • • • • 23日、ベローズを切断、予備を溶接。 フィンガーを固定していた金具(SUSリング)が外れていた。 金具は点付け4箇所。溶接が不十分? L側でも一度経験。その後溶接箇所を増やした。 The RF contact was separated from the chamber. “official” goal 1 /ab comes on the horizon! 44 /fb/mo 24 /fb/mo. Crab Cavity Beam Test 18 /fb/mo. We are here K. Hosoyama et al Crab cavity production schedule (Nb coax) FY 2004 4 1. 原型試験機 1) 成膜装置&試験 2) 簡略同軸部 3) 同軸部 4) 入力結合器 5) クライオ&チューナー 6 )全体組立 7) 低温試験 8) 高周波試験 2. 実用機#1、2 1) 大臣特認(空洞) 2) 特定則(空洞) 3) 空洞成型 4) 空洞組立 5) 空洞表面処理 6) 空洞縦測定 7) 大臣特認 (同軸部) 8) 特定則(同軸部) 8) 同軸部製作 9) 入力結合器 10) クライオ&チューナー 11) 全体組立 12) 低温試験 13) 高周波試験 14) 据付 冷凍機関係 1) 冷凍機制御 2) トランスファーライン 3) 高圧ガス申請 RF吸収体関係 1) RF吸収体 f240, f188 2) 冷却水 横クライオ・テストスタンド 1) T.R.T 2) 大電力 5 6 7 8 FY 2005 9 10 11 12 1 2 3 4 5 #2 #1 #1 #2 7 8 9 10 11 12 1 空洞ジャケット溶接 #1 改造 6 EBW 冶具製作 Coax. coupler RF試験 3 4 prototype #2 #2 2 アニール EP2 ジャケット溶接 EP1 Nb材の手配が必要 KHK 申請(特認) Real model 審議&認許 バレル研磨 空洞形状 成型 型修正 KHK 申請(特認) 開先加工 EP1 EP2 審議&認許 申請書まとめ 着手が必要 ジャケット溶接 アニール EBW 縦測定 アニール ジャケット溶接 製作/ EBW EP1 EP2 製作 エージング 製作工程は実用機#1を示す 実用機#2の工程は1~2ヶ月後 HPR 実機 #1 実機 #2 サマーシャットダウン 2台同時に据付 Install 1/ring 5 Crab Cavity & Coaxial Coupler Top View Input coupler RF Absorber Bellows I.D. 240 Stub Support RF Absorber Coaxial Coupler I.D.100 Monitor Port Liq. He Liq. He 80 K LN2 Radiation Shield Crab Mode Reject Filter C-band accelerating section 1. First prototype C-band accelerating section was fabricated and installed in KEKB linac in 2003 summer. 2. RF pulse compressor was installed in 2004 summer. 3. Achieved field gradient is 42 MV/m with 12 MW RF power from Klystron with pulse compression. T. Kamitani, T. Sugimura, K. Yokoyama et al S-band section C-band section RF pulse compressor SKIP: SuperKEKB Injector Pulse-compressor 1. SLED-type pulse compressor (CERN-LIPS like TE038-mode) 2. Q0 = 132,000 (measured) 3. Coupling beta = 6.6 4. average power multiplication ~ 3.4 5. Achieved power level input RF power : 44 MW, output RF power : 204 MW
© Copyright 2024 ExpyDoc