磁力管合体における磁気ヘリシティー保存性に関する実 験的検証 小野靖, 河森栄一郎 TS-3 & 4 グループ 東京大学・高温プラズマ研究センター 1. Ion particle effect on rec. speed 2. Anomalos ion heating hz (t) [mWm] Progress in TS-3/4 Merging ST Exp. 3 Bz /B//0 =0.5 Bz /B//0 =1.0 Bz /B//0 =1.6 2 Bz /B//0 =2.2 Bz /B//0 =2.7 Bz /B//0 =3.2 1 0 0 1 2 3 4 [d/ri ](t) High-ß ST ramp-up 3. Plasmoid ejection 5 QuickTimeý Dz ÉrÉfÉI êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ…ÇÕïKóvÇÇ• ÅB 6 Clear evidence of ion heating by outflow! Loop top hard X-ray sources Masuda et al. 1994 Shibata et al. 1995 CONTENTS Helicity effect of two colliding force-free toroids Helicity control by co / counter-helicity merging. 1) Global Helicity Effect ----Global bifurcated relaxations (Nucl. Fusion ‘99) ● Taylor relxation to low-ß force-free state. ● New kinetic relaxations to high-ß state ● Helicity conservation / annihilation /energy release QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ…ÇÕïKóvÇÇ• ÅB Yokoyama, Shibata Nature ‘95 Shimizu, Tsuneta, Astrophys. J. 93 What will the merging spheromaks with varied K relax to ? The counterheilcity merging varied K from zero to KTaylor. Total helicity K=0 Large K K=KTaylor K/W Scan Experiment ヘリシティーのバランスしない2個のスフェロマックの合体を用いると(MHD 不安定の問題なく)プラズマ全体の磁気ヘリシティーK/磁気エネルギーWを (0付近でも)自由に設定できる。 スフェロマック#1(Taylor 状態) K1/W1= a スフェロマック#2(Taylor 状態) K2/W2= a 合体プラズマの磁気ヘリシティー K = K1 - K2 (Counter-helicity Merging のため) 合体プラズマの磁気エネルギー W = W1 + W2 ( Merging のタイプに無関係) Tayl or K /W (K1 K2) /(W1 W2) 1 K2 /K1 1 a 2 0 (K /W )Tayl or K1 /W1 1 W2 /W1 1 a 2 2個の初期スフェロマックの磁気ヘリシティー比 K2/ K1 (磁束比F2/ F1=a)を0から1まで変化させれば、 K/W値は 0からTaylor 状態の値 = aの範囲で自由に設定することができる。 Global Effect : How do the merging toroids relax? Force-Free Loop (Spheromak) vs. High-ß Loop (FRC) Spheromak Taylor State low-ß state FRC High-ß state Bifurcated Relaxations to Non-Tayor State (FRC) and to Taylor State: Spheromak a) Merging spheromaks with Kc>K>0 relax to a Non-Taylor state: high-ß FRC. QuickTimeý Dz DV - NTSC êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ…ÇÕïKóvÇÇ• ÅB Bifurcated Relaxations to Non-Tayor State (FRC) and to Taylor State: Spheromak b) Merging spheromaks with KTaylor>K>Kc relax to a Taylor state: spheromak QuickTimeý Dz DV - NTSC êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ…ÇÕïKóvÇÇ• ÅB KTaylor>K>Kc ⇨ K/W approaches (K/W)Taylor ------ Tayor Relaxation Kc>K>0 ⇨ K/W approaches 0 ------ Non-Tayor Relaxation K/W (m) 0.08 Taylor State (spheromak) Taylor Relaxation to another spheromak 0.06 0.04 Non-Taylor Relaxation (Annihilation of helicity) 0.02 0 10 (c) 20 30 40 Time (µsec) Large Increase in Ti ⇨ Relax to High-ß FRC No Increase in Ti ⇨ Relax to Taylor State Spheromak Relaxation to an FRC Relaxation to another spheromak The largest magnetic energy release of counterhelicity reconnection. If toroidally symmetric and kinetic (fusion plasma), relaxation to an FRC. Energy Loss Flux conversion toroidal magnetic energy Spheromak (ß=0-0.1) If not (solar coronas etc.), the most violent energy release to space. See Y. Ono et al. Phys. Rev. Lett. 76, 3328, ‘99. How does the merging causes large energy-release? If merging toroids have Knorm>0.4, relaxation to min. energy state causes energy loss W(const.)-K. However, if Knorm<0.2, they relax to another stable state. If rBt>>ri, Taylor relxation loses huge energy because K:conserved, W: relax to K. Wloss Magnetic energy of produced spheromak huge energy loss Relaxation to Spheromak? W=const., K is varied. Knorm Possible Mechanism for the Bifurcated Relaxations: Poloidal current Ip was maintained or annihilated depending on Ip loop radius rBt>ri or rBt<ri . Relaxation to FRC (high-ß) Relaxation to spheromak (force-free) Knorm=(K/W) /(K/W) Taylor Mechanisms for Taylor and new high-ß relaxations Low-ß relaxation High-ß relaxation H 0.6 0.4 0.2 Taylor relaxation 0 -0.2 1 Large i 0.8 K/KTaylor Time evolutions of normalized eigenvalues K/KTaylor of merging spheromaks with varied initial helicities (K/KTaylor =1: Taylor state) p/ Taylor K/K Taylor The regime for FRC relaxation is wider in Ar discharge with larger i, while that for the Taylor relxation is wider in H discharge with smaller i. Small i 0.8 p/ Taylor TS-4 large ri (~i ) exp.: RTS-4≈3RTS-3 1 Ar Taylor relaxation 0.6 0.4 FRC relaxation 0.2 0 -0.2 0 10 20 time [ s] 30 40 (a) Taylor状態へ緩和 K/KTaylor 0.8 0.6 / 0 テーラー状態へ緩和する限 界となる境界値/ は S*が大きいほど広範囲. Taylor 1 0.4 FRCへ 緩和 0.2 0 回転が止まる範囲と Taylor 緩和する範囲が一致 V / VA :緩和前の固有値(j/B) y :緩和前の固有値 (=jp/Bp) S*:プラズマ径/イオンスキン長 10 n= 1 n= 2 n= 3 1 (b) V / a =0.1k V A n=3 n=2 0.1 n=1 0.01 0 2 4 6 S* 8 10 CONCLUSIONS Helicity Effects on Reconnection/Merging were studied using co/ counterhelicity merging with varied K but equal W Global Effect ------- Bifurcated relaxations 1) Two merging force-free plasmas relax either to another force-free plasmas or to high-ß FRC, depending on whether initial K>Kc or K<Kc . 2) The threshold value Kc is dermined by that where ri=rBt, indicating the high-ß relaxation is caused by some kinetic effect. 3) The largest energy release was observed in counterhelicity reconnection with ri < <rBt. TS-4 ST/ FRC Merging Device Operation: 1) FRC merging formation 2) High-ß ST formation by FRC 3) Boundary study of CTs/STs R=0.4-0.55m, A=1.2-1.9, Bt0<3-5kG, Ip≈300kA
© Copyright 2025 ExpyDoc