Collinear Note Hirotaka Ebisui Something-Joyful Something-Sharp Something-Interesting Amazing-Here 円と円の中の Collinear の不思議 Doval def Composition Since 1969 卵形線研究センター 7KH WK ,QWHUQDWLRQDO &RQIHUHQFH RQ *HRPHWU\ DQG *UDSKLFV DW .\RWR8QLY RQ 㹼 &ROOLQHDU 127( ,1 3267(5 6(66,21 +LURWDND (ELVXL 2YDO 5HVHDUFK &HQWHU KWWSDLWR\XPHGHEORJMS /HW V HQMR\ WKH VWHSV IURP RQH SRLQWOLQHFLUFOH WR VRPH &ROOLQHDU &RQFOXVLRQ㹱 RQ 6KHHWV $QG PHPRUL]H PRUH WKHQ RQH &ROOLQHDU 7KHRUHP ZKLFK \RX OLNH 5DGLFDO $[LV DQG $SSHQGLQJ 1HZ /LQH RQ &ROOLQHDU 7KHRUHP ILJXUH RQ GUDZLQJ D WDQJHQW OLQH RQ 2YDO 3URILOH RI 2YDO UHVHDUFK &HQWHU 6WDQGDUG )RUPXOD RI 'RYDO 'XSOLFDWHG 2YDO &ROOLQHDU 127( QR ,&** .-+ +LURWDND (ELVXL &ROOLQHDU 127( QR พ ,&** .-+ +(;$*21 +LURWDND (ELVXL &ROOLQHDU 127( QR +LURWDND (ELVXL ,&** .-+ &ROOLQHDU 127( QR ,&** .-+ +LURWDND (ELVXL ,&** .-+ +LURWDND (ELVXL 㟷ࣂࣛࡢᐃ⌮ 㟷ࣂࣛࡢᐃ⌮ 㹠㹷 +( 㹠㹷 +( ㉥㟷࣑ࢵࢡࢫᐃ⌮ ㉥ࣂࣛࡢᐃ⌮ ㉥ᑐ㟷 ࣑ࢵࢡࢫ 㟷ࣂࣛࡢᐃ⌮ 㹠㹷 +( ㉥ᑐ㟷 㸯㸸 ࣑ࢵࢡࢫ &ROOLQHDU 127( QR ,&** .-+ +LURWDND (ELVXL &ROOLQHDU 127( QR ,&** .-+ +LURWDND (ELVXL &ROOLQHDU 127( QR ,&** .-+ +(;$*21 7+(25(0 3RLQWV JLYHQ IUHHO\ +LURWDND (ELVXL &ROOLQHDU 127( QR ,&** .-+ +LURWDND (ELVXL ,&** &ROOLQHDU 127( 㸦㹟 7KHRUHP㸧 IRU +XPDQNLQG 22]DUD WR .2]DUD QR 7(,5, ⻄Ꮚ༤Ꮥ E\ +LURWDND (ELVXL /LYH 3HDFH 7KHRUHP 3L+LFR ,&** .-+ +, - !! 3DLXHR -XO\ 6LUFK\ $720 +LURWDND (ELVXL 7+(25(0 E\ +( Collinear Second NOTE No.1 Hirotaka Ebisui AFGS-CO-001-1 Collinear Second NOTE No.2 Hirotaka Ebisui A A AFGS-co-002 Collinear Second NOTE No.3 Hirotaka Ebisui AFGS-co-003 Collinear Second NOTE No.4 Hirotaka Ebisui AFGS-co-004 Collinear Second NOTE No.5 Hirotaka Ebisui AFGS-co-005 Collinear Second NOTE No.6 Hirotaka Ebisui AFGS-co-006 Collinear Second NOTE No.7 Hirotaka Ebisui AFGS-co-007 Collinear Second NOTE No.8 Hirotaka Ebisui AFGS-co-008 Collinear Second NOTE No.9 Hirotaka Ebisui AFGS-co-009 Collinear Second NOTE No.10 Hirotaka Ebisui 87(はな)の定理 2015-5-15 AFGS-co-010 4点以上が共線である定理-10 題 蛭子井博孝発見 1.オイラー線上 2.3 線 3 線 3.ヘキサゴンの定理 4.卵形線構図周辺 5.星々の定理構図内 6.エビスイ-パップスパップス定理 7.円と 3 線 8.平行四辺形と円の定理 9.卵形線の定義構図内 10.2 円二線の共線定理 卵形線研究センター TO-001 TO-002 TO-003 TO-004 TO-005 TO-006 TO-007 TO-008 TO-009 TO-010 2E2S-KST-003 2015-10-14 2E2S-KST-002 2E2S-KST-001
© Copyright 2024 ExpyDoc