Release of results from Cross Border Biowaste with focus on the German area Ph.D. Stud. Morten Bang Jensen Content 1.Introduction 2. Goal 3. Life Cycle Assessment (LCA) 4. The waste system 5. Combined biogas and composting 6. Mechanical and biological treatment 7. EASETECH 8. Results 9. Conclusions Who am I? - Bachelor of engineering in Chemistry- and Biotechnology (DTU, 2009) - Bachelor project: Methane emissions from compost windrows - Master in Environmental technology engineering (DTU, 2011) - Master project: LCA of the Danish waste system - Reseach assisstent (DTU 2011 – 2012) - Danish EPA: Miljøprojekt 1458: Miljø- og samfundsøkonomisk vurdering af muligheder for øget genanvendelse af papir, pap, plast, metal og organisk affald fra dagrenovation - Phd student (Crossborderbiowaste og DTU 2012 – october 2015) Collection of data • • Looked into trash Interviews Build scenarios • • Results Modelling Biogas-scenario Compost-scenario • • Understanding Dissemination Project background In Germany all household must source separate biowaste from 1st of January 2015 AWR, ASF and Flensburg have source separation of biowaste today but the is potential for increased separation In Denmark the recycling rate of household waste has to increase to 50 % by 2022 Only achievable by source separation of biowaste Provas, Sønderborg Forsyning and Arwos have not got source separation of biowaste today The project partners are considering the possibility for collaboration on possible future collection and treatment of waste. This LCA is part of the partners desicion making 5 Goal • Life cycle assessment of collection and treatment of the organic waste in the Danish-German border region. The waste is primarily from households • Collaboration across municipal and country borders: AWR, ASF, Arwos, Provas, Sønderborg Forsyning 6 What is not included in the project? 1. Economy 2. Garden and park waste with the exception of small amounts collected alongside the household waste. 3. Industrial organic waste in Denmark. Amounts from industri that is collected today by AWR, ASF og TBZ indgår 4. Societal effects 5. Upcomming technologies 6. Some soil improving effects of compost 7. The LCA is a snapshot 7 Ziele & die funktionelle Einheit Ziele Eine lebenszyklusbasierte Umweltbeurteilung der zukünftigen Möglichkeiten für die Handhabung von organischem Abfall aus Haushalten in der deutsch-dänischen Grenzregion Die funktionelle Einheit Handhabung inklusive Sammlung, Transport, Behandlung und Deponierung von eventuellen Restprodukten der gesamten jährlichen Menge organischen Abfalls (Essensabfälle) aus Haushalten der sieben verschiedenen Gebiete: Haderslev, Aabenraa, Sønderborg, Tønder, Flensburg, Schleswig-Flensburg und Rendsburg-Eckernförde. Wirkungskategorie Folge ”International reference Life Cycle Data system” Empfehlung - - - Allgemeine Wirkungskategorien - Treihauseffekt - Stratosphärische Ozonreduzierung - Ionisierende Strahlung - Fotochemische Ozonbildung - Versauerung - Terrestrische Eutrophierung - Süßwasser Eutrophierung - Marine Eutrophierung Toxische Wirkungskategorien - Humantoxizität Krebserregend - Humantoxizität Nicht Krebserregend - Ökotoxizität - Partikln Ressourcenverbrauchskategorien - Abiotische Ressourcen, fossile Brennstoffe - Abiotische Ressourcen, Rohstoffe Substitution 10 The system 11 The German system 12 Abfall menge Szenario 1 (Basis Szenario) 2Quellsortiert bei ASF AWR Flensburg Organischer Abfall im Restabfall [t/a] Quellensortierter organischer Abfall [t/a] Einwohner 1Organischer Abfall pro Einwohner [kg/Einw./a] den Haushalten und verschickt zur Wiederverwertung [Gew.-%] 12.000 9.200 5.500 8.500 28.750 4.800 126 139 116 41 76 47 163.000 273.000 89.000 Szenario 2, 3, 4, 5 (Zukunftsszenario) 2Quellsortiert bei ASF AWR Flensburg Organischer Abfall im Restabfall [t/a] Quellensortierter organischer Abfall [t/a] Einwohner 1Organischer Abfall pro Einwohner [kg/Einw./a] den Haushalten und verschickt zur Wiederverwertung [Gew.-%] 5.125 9.200 2.575 15.375 28.750 7.725 126 132 116 75 76 75 163.000 273.000 89.000 13 Flowdiagramm – Heutige system Organischer Abfall im Restmüll Organisk affald i restaffaldet Quellensortierter organischer Abfall Kildesorteret organisk dagrenovation 14 Flowdiagramm – Zukunft system Organischer Abfall im Restmüll Organisk affald i restaffaldet Quellensortierter organischer Abfall Kildesorteret organisk dagrenovation Scenarie 2: Borgstedt Scenarie 3: Biogas und kompost Scenarie 4: Gülle Scenarie 5: Tunnelkompostering 15 Biogas- und kompostierung Biogas Treihauseffekt Biomasse Sickerwasser 0 Strom + Wärme Sickerwasser Sieb Rejekt Kompost Mechanisch-biologische behandlung Treihauseffekt Biomasse Deponie 0 Deponie Glas und keramik Kleine Grosse FE-schrott FE-schrott NEschrott 2D plastik 3D plastik Zukunft anlage Borgstedt Biogas und kompostierung Gülle Tunnel kompostierung Scenarie 2 Borgstedt Goal: Treatment of organic household waste Biogas Biomasse Sickerwasser Strom + Wärme Sieb Rejekt Kompost Scenarie 2 Borgstedt Goal: Treatment of organic household waste Biogas Propeties ”Consequenses” No pretreatment Dry compost Dry digestion Biomasse Low tech Sickerwasser Mesophil (~37˚C) Possibility for garden waste Strom + Wärme After sorting Dry reject Sieb Kompost More biomass goes through Rejekt Scenarie 3 Biogas and composting Goal: Treatment of organic household waste Biogas Biomasse Sickerwasser Sickerwasser Strom + Wärme Sieb Kompost Rejekt Biomasse Scenarie 3 Biogas and composting Goal: Treatment of organic household waste Properties Biogas ”Consequenses” Pretreatment, screwpress Dry compost Dry digestion Low tech Biomasse Thermophil (~55˚C) Sickerwasser Limits to the amount of garden waste Strom + Wärme Sickerwasser Sieb No after sorting Dry reject Kompost Rejekt Biomasse Loss of biomass Scenarie 4 Manure plant Goal: Digestion of manure Biogas Biomasse Strom+Wärme Sieb Rådnerest Rejekt Biomasse Scenarie 4 Manure plant Goal: Digestion of manure Biogas Properties ”Consequenses” Pretreatment, Ecogi Wet digestate Wet digestion Biomasse High tech Thermophil (~55˚C) No garden waste Strom+Wärme Sieb No after sorting Wet reject Rådnerest Rejekt Biomasse Loss of biomass Scenarie 5 Tunnel compostion Goal: Treatment of organic household waste Biomasse Sieb Kompost Rejekt Scenarie 5 Tunnel compostion Goal: Treatment of organic household waste Properties ”Consequenses” No pretreatment Dry compost No collection of biogas Biomasse Sieb Kompost Thermophil (>55˚C) After sorting Low tech Garden waste allowed Rejekt Dry reject Comparison of technologies Scenarie 2: Borgstedt Scenarie 3: Biogas and composting Scenarie 4: Manure plant Scenarie 5: Tunnel composting Pretreatment Loss No 0% Yes (Screwpress) ~20 % organic Yes (Ecogi) ~5 % organic No 0% Endproducts compost & residues compost & residues Digestate & residues compost & residues Biogas production [Nm3 CH4/ton org. treated] 34 (43) 56 65* 0 Ammonia emissions Yes Yes No (covered) No (covered) Parameter *From household waste only 27 Results - Germany Waste amount: 68.750 tons/year Inhabitants: 525.000 Udvalte miljøpåvirkningskategorier - Tyskland Drivhuseffekt 1 2 3 4 Forsuring 5 1 2 3 FEP 4 5 1 2 3 MEP 4 5 1 2 3 ADP - E 4 5 1 2 3 8000 Scenario 1: Current system 7000 6000 Scenario 2: Borgstedt 5000 Scenario 3: Biogas and composting PE 4000 Scenario 4: Manure plant Scenario 5: Tunnel composting 3000 2000 1000 0 -1000 -2000 Indsamling og transport Forbrænding Biologiskbehandling Udspredning af kompost/digistat Askebehandling Mekanisk og biologisk behandling 28 4 5 Results - AWR Waste amount: 37.950 tons/year Inhabitants: 273.000 Udvalgte miljøpåvirkningskategorier - AWR Drivhuseffekt 1 2 3 4 Forsuring 5 1 2 3 FEP 4 5 1 2 3 MEP 4 5 1 2 3 ADP-E 4 5 1 2 3 4 4000 Scenario 1: Current system 3500 3000 Scenario 2: Borgstedt Scenario 4: Manure plant Scenario 5: Tunnel composting 2000 PE Scenario 3: Biogas and composting 2500 1500 1000 500 0 -500 -1000 Indsamling og transport Forbrænding Biologiskbehandling Udspredning af kompost/digistat Askebehandling Mekanisk og biologisk behandling 29 5 Results - ASF Waste amount: 20.500 tons/year Inhabitants: 163.000 Udvalgte miljøpåvirkningskategorier - ASF Drivhuseffekt 1 2 3 4 Forsuring 5 1 2 3 FEP 4 5 1 2 3 MEP 4 5 1 2 3 ADP-E 4 5 1 2 3 3000 Scenario 1: Current system 2500 Scenario 2: Borgstedt 2000 1500 PE Scenario 3: Biogas and composting Scenario 4: Manure plant Scenario 5: Tunnel composting 1000 500 0 -500 -1000 Indsamling og transport Forbrænding Biologiskbehandling Udspredning af kompost/digistat Askebehandling Mekanisk og biologisk behandling 30 4 5 Results - Flensburg Waste amount 10.300 tons/year Inhabitants: 89.000 Udvalgte miljøpåvirkningskategorier Drivhuseffekt 1 Scenario 1: Current system 2 3 4 Forsuring 5 1 2 3 Ferskvands eutrofiering 4 5 1 2 3 4 5 Abiotiske resurseforbrug grundstoffer Marin eutrofiering 1 2 3 4 5 1 2 3 1200 1000 Scenario 2: Borgstedt 800 Scenario 3: Biogas and composting Scenario 5: Tunnel composting PE Scenario 4: Manure plant 600 400 200 0 -200 Indsamling og transport Forbrænding Biologiskbehandling Udspredning af kompost/digistat Askebehandling Mekanisk og biologisk behandling 31 4 5 Conclusions Germany • Flensburg has the largest environmental changes with increased source separation. • Flensburg has potential environmental improvement by source separating extra biowaste. • The results are very different between the three companies • The environmental profile is similar for the biogas and composting plants • The LCA showed the overall results are not changing significantly in the future scenarios 32 Thank you for the attention We will have a look at the Danish and joint results at 13:05 33
© Copyright 2024 ExpyDoc