Veröffentlichung der Ergebnisse von Cross Border Biowaste

Release of results from
Cross Border Biowaste
with focus on the German area
Ph.D. Stud. Morten Bang Jensen
Content
1.Introduction
2. Goal
3. Life Cycle Assessment (LCA)
4. The waste system
5. Combined biogas and composting
6. Mechanical and biological treatment
7. EASETECH
8. Results
9. Conclusions
Who am I?
- Bachelor of engineering in Chemistry- and Biotechnology (DTU, 2009)
- Bachelor project: Methane emissions from compost windrows
- Master in Environmental technology engineering (DTU, 2011)
- Master project: LCA of the Danish waste system
- Reseach assisstent (DTU 2011 – 2012)
- Danish EPA: Miljøprojekt 1458: Miljø- og samfundsøkonomisk
vurdering af muligheder for øget genanvendelse af papir, pap,
plast, metal og organisk affald fra dagrenovation
- Phd student (Crossborderbiowaste og DTU 2012 – october 2015)
Collection of data
•
•
Looked into trash
Interviews
Build scenarios
•
•
Results
Modelling
Biogas-scenario
Compost-scenario
•
•
Understanding
Dissemination
Project background
In Germany all household
must source separate biowaste
from 1st of January 2015
AWR, ASF and Flensburg have
source separation of biowaste
today but the is potential for
increased separation
In Denmark the recycling rate of
household waste has to increase to
50 % by 2022
Only achievable by source
separation of biowaste
Provas, Sønderborg Forsyning and
Arwos have not got source
separation of biowaste today
The project partners are considering the possibility for collaboration on
possible future collection and treatment of waste.
This LCA is part of the partners desicion making
5
Goal
• Life cycle assessment of collection and treatment of the organic
waste in the Danish-German border region. The waste is
primarily from households
• Collaboration across municipal and country borders:
AWR, ASF, Arwos, Provas, Sønderborg Forsyning
6
What is not included in the project?
1. Economy
2. Garden and park waste with the exception of small amounts collected
alongside the household waste.
3. Industrial organic waste in Denmark.
Amounts from industri that is collected today by AWR, ASF og TBZ indgår
4. Societal effects
5. Upcomming technologies
6. Some soil improving effects of compost
7. The LCA is a snapshot
7
Ziele & die funktionelle Einheit
Ziele
Eine lebenszyklusbasierte Umweltbeurteilung der zukünftigen
Möglichkeiten für die Handhabung von organischem Abfall aus
Haushalten in der deutsch-dänischen Grenzregion
Die funktionelle Einheit
Handhabung inklusive Sammlung, Transport, Behandlung und
Deponierung von eventuellen Restprodukten der gesamten jährlichen
Menge organischen Abfalls (Essensabfälle) aus Haushalten der sieben
verschiedenen Gebiete: Haderslev, Aabenraa, Sønderborg, Tønder,
Flensburg, Schleswig-Flensburg und Rendsburg-Eckernförde.
Wirkungskategorie
Folge ”International reference Life Cycle Data system” Empfehlung
-
-
-
Allgemeine Wirkungskategorien
- Treihauseffekt
- Stratosphärische Ozonreduzierung
- Ionisierende Strahlung
- Fotochemische Ozonbildung
- Versauerung
- Terrestrische Eutrophierung
- Süßwasser Eutrophierung
- Marine Eutrophierung
Toxische Wirkungskategorien
- Humantoxizität Krebserregend
- Humantoxizität Nicht Krebserregend
- Ökotoxizität
- Partikln
Ressourcenverbrauchskategorien
- Abiotische Ressourcen, fossile Brennstoffe
- Abiotische Ressourcen, Rohstoffe
Substitution
10
The system
11
The German system
12
Abfall menge
Szenario 1
(Basis Szenario)
2Quellsortiert bei
ASF
AWR
Flensburg
Organischer
Abfall im
Restabfall
[t/a]
Quellensortierter
organischer Abfall
[t/a]
Einwohner
1Organischer Abfall
pro Einwohner
[kg/Einw./a]
den Haushalten und
verschickt zur
Wiederverwertung
[Gew.-%]
12.000
9.200
5.500
8.500
28.750
4.800
126
139
116
41
76
47
163.000
273.000
89.000
Szenario 2, 3, 4, 5 (Zukunftsszenario)
2Quellsortiert bei
ASF
AWR
Flensburg
Organischer
Abfall im
Restabfall
[t/a]
Quellensortierter
organischer Abfall
[t/a]
Einwohner
1Organischer Abfall
pro Einwohner
[kg/Einw./a]
den Haushalten und
verschickt zur
Wiederverwertung
[Gew.-%]
5.125
9.200
2.575
15.375
28.750
7.725
126
132
116
75
76
75
163.000
273.000
89.000
13
Flowdiagramm – Heutige system
Organischer
Abfall
im Restmüll
Organisk affald
i restaffaldet
Quellensortierter
organischer
Abfall
Kildesorteret
organisk
dagrenovation
14
Flowdiagramm – Zukunft system
Organischer
Abfall
im Restmüll
Organisk affald
i restaffaldet
Quellensortierter
organischer
Abfall
Kildesorteret organisk
dagrenovation
Scenarie 2:
Borgstedt
Scenarie 3:
Biogas und
kompost
Scenarie 4:
Gülle
Scenarie 5:
Tunnelkompostering
15
Biogas- und kompostierung
Biogas
Treihauseffekt
Biomasse
Sickerwasser
0
Strom + Wärme
Sickerwasser
Sieb
Rejekt
Kompost
Mechanisch-biologische behandlung
Treihauseffekt
Biomasse
Deponie
0
Deponie
Glas und
keramik
Kleine
Grosse
FE-schrott FE-schrott
NEschrott
2D
plastik
3D
plastik
Zukunft anlage
Borgstedt
Biogas und kompostierung
Gülle
Tunnel kompostierung
Scenarie 2
Borgstedt
Goal: Treatment of organic household waste
Biogas
Biomasse
Sickerwasser
Strom + Wärme
Sieb
Rejekt
Kompost
Scenarie 2
Borgstedt
Goal: Treatment of organic household waste
Biogas
Propeties
”Consequenses”
No pretreatment
Dry compost
Dry digestion
Biomasse
Low tech
Sickerwasser
Mesophil (~37˚C)
Possibility for garden waste
Strom + Wärme
After sorting
Dry reject
Sieb
Kompost
More biomass goes through
Rejekt
Scenarie 3
Biogas and composting
Goal: Treatment of organic household waste
Biogas
Biomasse
Sickerwasser
Sickerwasser
Strom + Wärme
Sieb
Kompost
Rejekt
Biomasse
Scenarie 3
Biogas and composting
Goal: Treatment of organic household waste
Properties
Biogas
”Consequenses”
Pretreatment, screwpress
Dry compost
Dry digestion
Low tech
Biomasse
Thermophil (~55˚C)
Sickerwasser
Limits to the amount of garden
waste
Strom + Wärme
Sickerwasser
Sieb
No after sorting
Dry reject
Kompost
Rejekt
Biomasse
Loss of biomass
Scenarie 4
Manure plant
Goal: Digestion of manure
Biogas
Biomasse
Strom+Wärme
Sieb
Rådnerest
Rejekt
Biomasse
Scenarie 4
Manure plant
Goal: Digestion of manure
Biogas
Properties
”Consequenses”
Pretreatment, Ecogi
Wet digestate
Wet digestion
Biomasse
High tech
Thermophil (~55˚C)
No garden waste
Strom+Wärme
Sieb
No after sorting
Wet reject
Rådnerest
Rejekt
Biomasse
Loss of biomass
Scenarie 5
Tunnel compostion
Goal: Treatment of organic household waste
Biomasse
Sieb
Kompost
Rejekt
Scenarie 5
Tunnel compostion
Goal: Treatment of organic household waste
Properties
”Consequenses”
No pretreatment
Dry compost
No collection
of biogas
Biomasse
Sieb
Kompost
Thermophil (>55˚C)
After sorting
Low tech
Garden waste allowed
Rejekt
Dry reject
Comparison of technologies
Scenarie 2:
Borgstedt
Scenarie 3:
Biogas and
composting
Scenarie 4:
Manure plant
Scenarie 5:
Tunnel composting
Pretreatment
Loss
No
0%
Yes (Screwpress)
~20 % organic
Yes (Ecogi)
~5 % organic
No
0%
Endproducts
compost & residues
compost & residues
Digestate & residues
compost & residues
Biogas production [Nm3
CH4/ton org. treated]
34 (43)
56
65*
0
Ammonia emissions
Yes
Yes
No (covered)
No (covered)
Parameter
*From household waste only
27
Results - Germany
Waste amount: 68.750 tons/year
Inhabitants: 525.000
Udvalte miljøpåvirkningskategorier - Tyskland
Drivhuseffekt
1
2
3
4
Forsuring
5
1
2
3
FEP
4
5
1
2
3
MEP
4
5
1
2
3
ADP - E
4
5
1
2
3
8000
Scenario 1:
Current system
7000
6000
Scenario 2:
Borgstedt
5000
Scenario 3:
Biogas and composting
PE
4000
Scenario 4:
Manure plant
Scenario 5:
Tunnel composting
3000
2000
1000
0
-1000
-2000
Indsamling og transport
Forbrænding
Biologiskbehandling
Udspredning af kompost/digistat
Askebehandling
Mekanisk og biologisk behandling
28
4
5
Results - AWR
Waste amount: 37.950 tons/year
Inhabitants: 273.000
Udvalgte miljøpåvirkningskategorier - AWR
Drivhuseffekt
1
2
3
4
Forsuring
5
1
2
3
FEP
4
5
1
2
3
MEP
4
5
1
2
3
ADP-E
4
5
1
2
3
4
4000
Scenario 1:
Current system
3500
3000
Scenario 2:
Borgstedt
Scenario 4:
Manure plant
Scenario 5:
Tunnel composting
2000
PE
Scenario 3:
Biogas and composting
2500
1500
1000
500
0
-500
-1000
Indsamling og transport
Forbrænding
Biologiskbehandling
Udspredning af kompost/digistat
Askebehandling
Mekanisk og biologisk behandling
29
5
Results - ASF
Waste amount: 20.500 tons/year
Inhabitants: 163.000
Udvalgte miljøpåvirkningskategorier - ASF
Drivhuseffekt
1
2
3
4
Forsuring
5
1
2
3
FEP
4
5
1
2
3
MEP
4
5
1
2
3
ADP-E
4
5
1
2
3
3000
Scenario 1:
Current system
2500
Scenario 2:
Borgstedt
2000
1500
PE
Scenario 3:
Biogas and composting
Scenario 4:
Manure plant
Scenario 5:
Tunnel composting
1000
500
0
-500
-1000
Indsamling og transport
Forbrænding
Biologiskbehandling
Udspredning af kompost/digistat
Askebehandling
Mekanisk og biologisk behandling
30
4
5
Results - Flensburg
Waste amount 10.300 tons/year
Inhabitants: 89.000
Udvalgte miljøpåvirkningskategorier
Drivhuseffekt
1
Scenario 1:
Current system
2
3
4
Forsuring
5
1
2
3
Ferskvands eutrofiering
4
5
1
2
3
4
5
Abiotiske resurseforbrug grundstoffer
Marin eutrofiering
1
2
3
4
5
1
2
3
1200
1000
Scenario 2:
Borgstedt
800
Scenario 3:
Biogas and composting
Scenario 5:
Tunnel composting
PE
Scenario 4:
Manure plant
600
400
200
0
-200
Indsamling og transport
Forbrænding
Biologiskbehandling
Udspredning af kompost/digistat
Askebehandling
Mekanisk og biologisk behandling
31
4
5
Conclusions Germany
• Flensburg has the largest environmental changes with increased
source separation.
• Flensburg has potential environmental improvement by source
separating extra biowaste.
• The results are very different between the three companies
• The environmental profile is similar for the biogas and
composting plants
• The LCA showed the overall results are not changing significantly
in the future scenarios
32
Thank you for the attention
We will have a look at the Danish
and joint results at 13:05
33